ON THE SQUARE-FREENESS OF FERMAT AND MERSENNE NUMBERS

Le Roy J. Warren and Henry G. Bray

Abstract

It has been conjectured that the Fermat and Mersenne numbers are all square-free. In this note it is shown that if some Fermat or Mersenne number fails to be square-free, then for any prime p whose square divides the appropriate number, it must be that $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$. At present there are only two primes known which satisfy the above congruence. It is shown that neither of these two primes is a factor of any Fermat or Mersenne number.

Those odd primes p for which $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$ have long been of interest. No doubt much of this interest has been generated by Wieferich's theorem, which states that if Fermat's equation $x^{p}+y^{p}+$ $z^{p}=0$ has a solution in integers with p an odd prime and $x y z \not \equiv 0$ $(\bmod p)$, then $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

Throughout, " p " and " q " will denote odd primes; " n " is a positive integer other than 1 ; " $2 R p$ " indicates that 2 is a quadratic residue modulo p; " $o(2, p)$ " is the exponent to which 2 belongs modulo p; and $F_{n}=2^{2 n}+1$ and $M_{q}=2^{q}-1$.

Our result follows immediately from the following theorem which proves a bit more than has been indicated so far.

Theorem 1. If p divides some F_{n} [some $\left.M_{q}\right]$, then $2^{(p-1) / 2} \equiv 1$ $\left(\bmod F_{n}\right)\left[2^{(p-1) / 2} \equiv 1\left(\bmod M_{q}\right)\right]$.

Proof. Let $p \mid F_{n}$, then $2^{2 n} \equiv-1(\bmod p)$ and $2^{2^{n+1}} \equiv 1(\bmod p)$ so that $o(2, p) \mid 2^{n+1}$ and $o(2, p) \nmid 2^{n}$. It follows that $o(2, p)=2^{n+1}$. Now $2^{p-1} \equiv 1(\bmod p)$ which implies that $2^{n+1} \mid(p-1)$ and

$$
\begin{equation*}
p \equiv 1(\bmod 8) \tag{1}
\end{equation*}
$$

Hence $2 R p$ and by Euler's criterion $2^{(p-1) / 2} \equiv 1(\bmod p)$ so that $2^{n+1} \mid((p-1) / 2)$. It follows that $\left(2^{2 n+1}-1\right) \mid\left(2^{(p-1) / 2}-1\right)$. Clearly $F_{n} \mid\left(2^{2 n+1}-1\right)$, and therefore $F_{n} \mid\left(2^{(p-1) / 2}-1\right)$.

Let $p \mid M_{q}$, then $2^{q} \equiv 1(\bmod p)$ and $2^{q+1} \equiv 2(\bmod p) . \quad$ Since $q+1$ is even, we obtain that $2 R p$ and therefore

$$
\begin{equation*}
p \equiv \pm 1(\bmod 8) . \tag{2}
\end{equation*}
$$

Also $o(2, p) \mid q$ so that $o(2, p)=q$. As before we get that

$$
\begin{equation*}
q \left\lvert\, \frac{p-1}{2}\right. \tag{3}
\end{equation*}
$$

so that $M_{q} \mid\left(2^{(p-1) / 2}-1\right)$ to complete the proof.
The two known primes p for which $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$ are 1093 and 3511.

Theorem 2. Neither 1093 nor 3511 divides any F_{n} or any M_{q}.
Proof. We have $1093 \equiv 5(\bmod 8)$ so by (1) and (2) of Theorem 1, it follows that 1093 cannot divide any F_{n} or any M_{q}.

Now $3511 \equiv-1(\bmod 8)$, it then follows from (1) of Theorem 1 that 3511 cannot divide any F_{n}. Suppose that for some $q, 3511 \mid M_{q}$; then by (3) of Theorem $1, q \mid((3511-1) / 2)$. This means that q must be one of the three primes 3 , 5 , or 13 . By direct computation 3511 does not divide M_{3}, M_{5} or M_{13}.

Recevied October 10, 1966.
San Diego State College
San Diego, California

