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ON REAL EIGENVALUES OF COMPLEX MATRICES

DAVID H. CARLSON

This paper contains many inter-related results dealing
with the genera! question of determination of real eigenvalues
of complex matrices. We first discuss the relationship between
the number of elementary divisors associated with real
eigenvalues of a matrix A and the signature of a Hermitian
matrix H when AH is also Hermitian. We then obtain sets
of equivalent conditions for a matrix to be similar to a real
matrix; for a matrix to be symmetrizable; and for a matrix
to be similar to a real diagonal matrix. As corollaries we
obtain results on the eigenvalues and elementary divisors of
products of two Hermitian matrices. Some of the results are
not new; these are included to give a more complete survey
of what is known in these particular areas,

Recently a theorem on the stability of complex matrices, due
to Lyapunov, has been generalized by Taussky [15, 16], and inde-
pendently, by Ostrowski and Schneider [12], Their result may be
stated as follows: Given a complex matrix A9 there exists a
Hermitian H for which AH + HA* > 0 (positive definite) iί and only
if A has no imaginary eigenvalues. Further, if AH + HA* > 0, the
numbers of eigenvalues of A with positive and negative real parts
equal respectively the numbers of eigenvalues of H which are positive
and negative.

Further generalizations of these results have been obtained by
Schneider and this author [4, 6], under the condition that AH +
HA* ^ 0 (positive semi-definite). This paper will use these results
and methods to prove the theorems mentioned in the synopsis above.

I wish to acknowledge with thanks the contribution of Professor
Emilie Haynsworth, who pointed out to me the connection between
[7] and my results, and thus sparked this investigation. I also wish
to thank the referee for many helpful comments, and for references
to several related papers, especially [13], [14], and [17], with which
I had not been familiar.

2* Definitions* We define the inertia of a complex matrix A to
be In A = (π(A), v(A), δ(A)), where π(A), v(A), 3 (A) are respectively
the number of eigenvalues of A with positive, negative, and zero real
parts. We shall always let G, H and K represent Hermitian matrices;
we denote the signature of H by σ(H) = π(H) — v(H). We shall
define, as in [12], R(AH) = i(AH + HA*).
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We shall use several simple propositions throughout the paper.
The first two assume a matrix of the form (we let denote a zero
matrix)

I -i l l A 1 2 . .

A = \ m or A = _Ai

We let λ be an eigenvalue of A, and let

be the degrees of the elementary divisors associated with λ in re-
spectively A, An, and A22 (let α< = 0 for i > r, etc.).

PROPOSITION 1. a{ <Ξ bx + cλ for all i.

PROPOSITION 2. &< ^ ĉ  for all i, and s ^ r; ΐ/ cL = c2 = = 0 ,

then b{ — a{ for all ί.

Proofs. Proposition 2 follows immediately from the more precise
inequality

at+1 ^ bt ^ α* for all ΐ

proved in Appendix A of [5].

To prove Proposition 1, we first assume λ = 0 (if λ Φ 0, we
consider A — XI in place of A). Let {xj9 j = 1, , α j be a lower
Jordan chain (see [8], p. 201) associated with λ = 0 and define x0 = 0;
we have Ax3 = Xj_lf j — 1, , αί# Let

'l/i Ί ,, .
then Ax3- =

«i J L Λ2Z;
Suppose & is the minimal j for which z3- Φ 0; then it follows from the
above calculation that Any3 = y3_l9 j = 1, , jfc — 1, and A22^ = ^-_ly

ji* = k + 1, , di and A222/c = 0. Thus {y39 j = 1, , k — 1} and fo ,
j — k9 * " 9 α j form parts of Jordan chains for An and A22 respectively.
As &! and cx are respectively the maximal lengths of such chains,
k — 1 ^ 6j. and α̂  — fc + 1 ^ cx, so that α* ^ 62 + clβ

Our third proposition is quite different. If AH — K, and S is
nonsingular, let B = SAS~\ Ho - SHS*9 and Ko = SKS*. Then BH0 =
KQ and 5 is similar to A; Iwiϊo — InH and Iwif0 = InK (by Sylvester's
Law of Inertia). Thus we have

PROPOSITION 3. If AH = Z", we may replace A by a matrix
similar to it and either H or K by a matrix complex-congruent to
it, leaving invariant the eigenvalues and elementary divisors of A
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and the inertias of H and K. In particular, we could assume A to
be in some variant of Jordan canonical form or H — Hn 0 0, where
Hn is nonsingular. We shall also always assume that A, H, and K
are partitioned conformably into submatrices.

It will be convenient to make the following definitions. Let y(A)
be the number of ai which are associated with real eigenvalues λ.
Let ΎQ(A) be the number of a{ which are odd and associated with real
λ. Let Ύι(A) be the number of cti which are either odd and associated
with real nonzero λ, or even and associated with λ = 0. Let a(A) be
the sum of all ai associated with real λβ

One last comment: throughout the paper we shall discuss matrices
of the form AH or HJH^ where (say) H2 has some special property.
All our results will remain true if we replace AH by HA, or assume
Hι has the desired special property instead of H2.

3* Elementary divisors associated with real eigenvalues*
Drazin and Haynsworth in [7] proved that a necessary and sufficient
condition that A have (at least) m elementary divisors associated with
real eigenvalues is that there exists an H g: 0, of rank m, for which
AH is Hermitian. Our first theorem generalizes the conditions on H.

THEOREM 1. Let A he a complex matrix. A necessary and
sufficient condition that Ί{A) Ξ> m is that there exists a Hermitian
H for which

(1) I σ(H) I = m

and AH is Hermitian.
If AH is Hermitian and H is nonsingular, then

(2) I σ(H) I ̂  70(A) ,

(3) I σ(AH) I S

Proof. The necessity of the first assertion is contained in the
Drazin-Haynsworth theorem (If H ^ 0, of rank m, then | σ(H) | = m).
To prove sufficiency, we assume that AH is Hermitian (he,, AH —
HA* = 0) for some H satisfying (1). Then if A = %B, j(A) is also
the number of elementary divisors associated with imaginary eigenvalues
of B. We have R(BH) = i(BH + HB*) = 0. We may apply Theorem
3 of [4], which gives a set of bounds on the inertia of H when
R(BH) ^ 0, of rank r (obviously here r — 0). For r = 0, bound (14)
of [4] becomes | o(H) \ ̂  y(A). As | σ(H) \ ~ m was assumed, the
sufficiency is proved.

If H is nonsingular, then (2) is merely a restatement of the second
display of § 9 of [4]. Also, (3) is a restatement of a theorem by
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Loewy [10, p. 69] as given by Bromwich [3, pβ 349], This completes
the proof.

4* Complex matrices similar to real matrices* The next result
contains a conjugate-transpose analogue for complex matrices of a
theorem proved by Taussky and Zassenhaus [18]: That every matrix
with elements in a field F may be taken into its transpose by simil-
arity transformation by a matrix symmetric in F.

THEOREM 2. Let A be a complex matrix. The following four
conditions are equivalent:

( i) A is similar to a real matrix.
(ii) There exists a Hermitian H for which H~γAH — A*.
(iii) There exists a nonsingular Hermitian H for which AH is

Hermitian.
(iv) There exist Hermitian matrices G and H, with H non-

singular, for which A = GH.

Proof. Suppose there exists a matrix T so that B — T~λAT, where
B is real. By the Taussky-Zassenhaus theorem, there exists a real
symmetric S so that S^BS = B' — B*. Calculation shows that
(TST*)-1 A(TST*) - A*; clearly TST* is Hermitian. Conversely, if
H~XAH ~ A*, A is similar to A*, and conjugate eigenvalues of A
must have elementary divisors with identical degrees. Thus A must
be similar to a real matrix.

The equivalence of (ii), (iii), and (iv) is obvious.

5* Products of Hermitian matrices. As corollaries of the
Drazin-Haynsworth theorem and our previous theorems, we obtain
results on the eigenvalues and elementary divisors of products of two
Hermitian matrices. Some are not new; some are easily proved
independently. They are all presented, however, as, taken together
they give a fairly complete description of the eigenvalues of a product
of two Hermitian matrices.

Corollary 1 extends a result credited by MacDuffee [11, p. 65] to
Klein [9].

COROLLARY 1. If H1 and H2 are Hermitian, then

(4) ΊiHΆ) ^ I σ(H2) I ,

(5) a{HJKι) ^ I σ(H2) | + d(H2) .

If H2 is nonsingular, then

(6) ΎoiHΆ) ^ I σ(H2) I, ΊAHΆ) ^ | σ{Hx) \ .
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Proof. We first suppose H2 is nonsingular. Then for A — H1H2f

and H = H^1, AH = H1 is Hermitian and (4) and (6) follow from
Theorem 1 (as InH2 = InH^1). This completes the proof of (6).

If H2 is singular, we may assume H2 = Kn@ 0, where Kn is
nonsingular (there exists a unitary U so that U*H2U — iΓ n 0O; we
write Hλ for UHJJ*). Then

(7) H,H2 =
Hn H12

H21 H22

κn
HnKn

H2ίKu J

As Hn and Kn are Hermitian and Kn is nonsingular, we may
apply (4) to Hn and Kn to obtain

(8) 7(HnKn) ^ \ σ(Kn) I .

As π(Kn) = π(iί2) and v(Kn) = v{H2), we have

(9) I σ(Kn) I = I σ(H2) \ .

By Proposition 2 applied to all real eigenvalues,

(10) ΊiHΆ) ^ Ί{HnKn) .

Combining (8), (9), and (10) we have proved (4) for all H1 and H2o

It is clear from our definitions that

(11) a(A) ^ Ί{A)

for any A; hence (5) follows from (4) when H2 is nonsingular (heo

d(H2) — 0). When H2 is singular we again assume, as in (7), HλH2 —
Hu(Knφ 0), where the zero matrix has order δ(H2); clearly

(12) aiHΆ) = cc{HnKu) + δ(H2) .

From (8), (9), and (11) (with A = HnKn), we have

a(HuKu) ^ i(HuKn) ^ I σ(Kn) \ = |

and substituting this in (12) we obtain (5). We have proved
Corollary 1.

COROLLARY 2. If H1 and H2 are Hermitian, then HγH2 is
similar to a real matrix.

Proof. If H2 is nonsingular, this is part of Theorem 2. If EL
is singular, as in Corollary 1 we may assume H2 = i Γ u 0 0, with Ku

nonsingular. Now HJί2 is given by (7).
We shall use Proposition 2 for A — HYH2 and An — HnKn. To

avoid confusion, we attach a superscript (λ) to each ai and b{ associ-
ated with the eigenvalue λβ As HuKn is similar to a real matrix by
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Theorem 2, and A22 — 0, we have for all nonreal λ,

β(λ) __ j(λ) __ j(λj __ ^ ΰ )

This implies that HJί2 is similar to a real matrix.

REMARK 1. Corollary 2 implies that i?iiϊ2 is similar to HλH2 (we
have that HλH2 is similar to HJϊ2 and hence to (HJI2Y — H2Hλ) for
all Hermitian Hγ and if2, a property not enjoyed by all pairs of
matrices: for example take

"1 01 Γ0 01 Γ0 1
AB = \ , BA =

.0 Oj Lθ θ j ? Lθ 0
REMARK 2. We note that when H2 is nonsingular the above result

is trivial ((H.H.Y = H2HX = H^H.H^Hς1). However, the singular case
cannot be handled in the obvious way by continuity arguments on
H2 + ε /, as the elementary divisors structure is not a continuous
function of the elements of the matrix. The same comment applies
to the two corollaries below.

COROLLARY 3. If Hλ and H2 are Hermitian and H2 > 0, then
H±H2 is diagonalizable, with all real eigenvalues, and In HXH2 =
In Hλ.

Proof. Let A = HXH2 and H = H2

ι > 0; then AH = H,. By the
Drazin-Haynsworth theorem, for m — order A, we have that HXH2 is
diagonalizable, with all real eigenvalues. By Corollary 3 of [12], In
HJI2 = In H2.

REMARK 3. Corollary 3 is well known; cf. [19, pβ 108, problem

6].

Corollary 4 (below) has connections with previous work on sym-
metrizable operators; we shall discuss this further in § 6.

COROLLARY 4. // H1 is Hermitian and H2 Ξ> 0, then HXH2 has
all real eigenvalues; nonzero eigenvalues have linear elementary
divisors, zero eigenvalues have elementary divisors of degree less
than or equal two. We have

(13) πiH.H,) ^ π{H^, v{HxH2) ^ v(H,) .

Proof. Let H2 = Kn © 0, where Kn > 0. Again HλH2 is given
by (7). By Corollary 3, HnKn is diagonalizable, with all real
eigenvalues. As {HJI^ — 0, we have by Proposition 2

a[λ) = blλ) = 1
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for all λ Φ 0 and all nonzero aiλ). We also have by Proposition 1

aλ ^ uλ t w ^ Δ

for all nonzero al0).

All that remains to be proved is (13); but this follows from Corol-
lary 4 of [12].

6* Symmetrizable matrices. In a recent paper [14] Silberstein
discusses symmetrizable operators in unitary spaces. (Other results on
symmetrizable operators may be found in Reid [13] and Zaanen [20]).
We specialize his definition to our finite dimensional setting:

DEFINITION. The complex matrix A is symmetrizable if there
exists a Hermitian H, H ^ 0, for which

(i) Hx — 0 implies Ax — 0.
(ii) HA is Hermitian.

THEOREM 3. Let A be a complex matrix. The following condi-
tions are equivalent:

( i) A has all real eigenvalues) nonzero eigenvalues have linear
elementary divisors, zero eigenvalues have elementary divisors of
degree less than or equal two.

(ii) A is symmetrizable.
(iii) There exists a nonsingular H for which AH ^ 0.
(iv) There exist Hermitian matrices H and K, with K ^ 0, for

which A — HK.
(v) There exist Hermitian matrices H and K, with H non-

singular and K ^ 0, for which A — HK.

Proof. That (i) « ( i i ) is due to Silberstein (Theorems 3.1 and 3.2
of [14]). That (iii) => (i) follows from our Corollary 4. We however,
shall prove (i) => (iii) => (v) => (iv) ==> (ii).

Suppose A satisfies (i). Then for some P, P~ιAP — J — D 0 0 ®
(Σ» Θ J%)> where D is a real nonsingular diagonal and each

Ό 1

0 0

Define K = D φ / © ( Σ , Θ %<), where each

H ] ; J'" LOO

Then K is nonsingular, Hermitian, and JK S: 0. We define H = PKP*,
and then AH = (PJP~ι) (PKP*) ^ 0.

Suppose (iii) holds; then A = HK, where K = H~Ά = H-^AH)^1^
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0. That (v) => (iv) is obvious. Suppose (iv) holds, and A — HK, where
K ^ 0. Then KA = KHK is Hermitian, and Kx = 0 => Ax = HKx =
0. The proof is complete.

As a corollary we give a slight generalization of a result due (in
a more general Setting) to Reid [13].

COROLLARY 5. // AH ^ 0 for some H, rank H = r Φ 0, then
a(A) ^ r. In particular, if H Φ 0, A has a real eigenvalue.

Proof. We may assume by Proposition 3 that H — Hn 0 0, Hn

nonsingular. Then

(14) AH =
A A A21Jdn

As AH is Hermitian, A21Hn — 0; as Hn nonsingular, An — 0. Now
by Theorem 3, as AnHn ^ 0, An has all real eigenvalues. As A21 = 0,
obviously a{A) ^ a(An) — r.

7* Elementary divisors associated with positive and negative
eigenvalues* We give a corollary to Theorem 3 similar in nature to
Theorem 1.

COROLLARY 6. A necessary and sufficient condition for A to
have at least p and q elementary divisors associated with, respectively,
positive and negative eigenvalues is that there exist a Hermitian H
for which π(H) — p, v(H) — q, and AH ^ 0, of rank p + q.

Proof. The proof of the necessity is modeled after the cor-
responding proof of the Drazin-Haynsworth theorem. Let β19 , βp+q

be real eigenvalues of A, of which p are positive and q are negative;
let Vly , Vp+q be a set of linearly independent associated eigenvectors
for β19 , βp+qm Let D = diag (ft, • • •, βp+q) and let V = (Vu ,
Vp+q). We have i 7 = VD and

AVDV* = VD2V* = VDV*A* .

We take H = VDV*; clearly π(H) = p, v(H) = q. As D2 > 0, of
order p + q, AH = HA* = VD2V* ^ 0, of rank p + q.

To prove sufficiency, we assume by Proposition 3 that H = Hn 0 0,
where Hn is nonsingular. As in Corollary 5, A21 — 0 and AH —
AnHn 0 0. We have

rank Hn = rank H = p + q — rank AH ~ rank AnHn

and AnHn ^ 0; therefore AnHn > 0.
By Theorem 1 of [12], InAn = InHn = (p, q, 0). By our Theorem
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3, as An and Hn are nonsingular, An has all real nonzero eigenvalues
with linear elementary divisors. Thus An has p and q elementary
divisors associated with respectively positive and negative eigenvalues.
By Proposition 2, as A21 = 0, A has at least as many of each.

8* Matrices similar to real diagonal matrices* We next give
conditions for a complex matrix to be diagonalizable, with all real
eigenvalues. For the case when A is real, some of these have been
given by Taussky [17],

COROLLARY 7. The matrix A is diagonalizable, with all real
nonzero eigenvalues, if and only if there exists an H for which
AH > 0. // AH > 0, then InA = InH.

Proof. This is Corollary 6 for p + q — order A.

COROLLARY 8. Let A be a complex matrix. The following
conditions are equivalent:

( i) A is diagonalizable, with all real eigenvalues,
(ii) There exists an H for which AH ^ 0, with rank A ~ rank

H = rank AH,
{iii) There exists an H > 0 for which AH is Hermitian,
(iv) There exists an H ^ 0 for which AH is Hermitian and

rank A — rank AH,
(v) There exist Hermitian matrices G and H, with H > 0, for

which A — GH.
Further, if (ii) holds, then InA — InH. If either (iii) or (iv)

holds, then InA — In AH. If (v) holds, then InA — InG.

REMARK 4. If A is a real matrix, all of the Hermitian matrices
G and H of Corollaries 7 and 8 may be chosen to be real symmetric
In fact, all constructions of G and H, given in proof or referred to,
may be used to obtain such real G and Ho The real case of Corollary
8, (i)<=*(v), is known; cf. [17, p. 133].

REMARK 5. That (i) *=> (iii) is contained in Theorem 3.3 of [14].
That ( i)« (v) has been noted by Taussky (Amer. Math. Monthly 66
(1959), p. 427, problem 4846; published solution by Parker, Amer.
Math. Monthly 61 (1960) p. 192). That (v) => (i) is our Corollary 3.
Alternate proofs for Corollary 7 and Corollary 8, (i) <=> (iii), may be
obtained using the equivalence of (i) and (v).

Proof of Corollary 8. (i) =* (ii). Let S^AS = B = diag (ft,
βn), where the ft are real. Obviously B2 ^ 0, with rank B = rank B2;
and if we let H = SBS*, AH ^ 0, with rank A = rank H = rank AH.

(ίi) => (i). Assume H = Hn © 0, Hn nonsingular. As in the proof



1128 DAVID H. CARLSON

of Corollary 5, A21 = 0 and AH = AnHn 0 0 ^ 0 . As rank H =
rank AH, AnHn > 0 and by Corollary 7, A n is diagonalizable, with all
real nonzero eigenvalues. As rank A = rank H — rank £Γn = = rank An,
and An = 0, we have A22 = 0. The proof of (i) now follows from
Proposition 1. That In A — InH follows from (i) and Corollary V.2
of [6].

(i) <=> (iii). This is the Drazin-Haynsworth theorem for m = order
A. That InA = InAH follows from Corollary 3 of [12].

(i) ==> (iv). Assume S^AS — B = diag (βl9 , /9J, where the &
are real. Let H = SB2S* ^ 0.

Clearly AH = SB3S* is Hermitian, rank A = rank AH.
(iv)=>(i). Suppose now AH is Hermitian, rank A — rank AH,

and H = Hn(B 0, where H n > 0. By (iii), as (AH)n = AnHn is
Hermitian, An is diagonalizable, with all real eigenvalues, and InAn —
In(AnHn). As before, A21 = 0, and AH — AnHn φ 0. As rank A —
rank AH = rank An-BΓn = rank Allf we must have A22 = 0, so that all
eigenvalues of A are real. Further, all nonzero eigenvalues have linear
elementary divisors by Proposition 1.

We now prove that zero eigenvalues also have linear elementary
divisors. Let Sn be a matrix for which Sn1AnS11 = ΰ φ θ , where D
is a nonsingular diagonal. Let S — Sn 0 7. Then

~D JBU

S-LAS = B =

where 4̂22 corresponds to the zero matrix in the lower-right corner of
B. As rank D = rank A u = rank A, obviously 5 2 3 = 0 and all zero
eigenvalues have linear elementary divisors, (again by Proposition 1).

As A22 = 0, π(A) = π(An) = π(AnHn) — π(AH), and similarly v(A) —
v(AH). The proof is complete.
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