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A NOTE ON THE FUNDAMENTAL
GROUP OF A COMPACT MINIMAL HYPERSURFACE

GREGORY J. GALLOWAY

In this paper we generalize a well-known result of Frankel which
relates the fundamental group of a complete Riemannian manifold with
positive Ricci curvature to the fundamental group of a compact immersed
minimal hypersurface. Here we consider the situation in which the Ricci
curvature of the ambient manifold is only assumed to be nonnegative,
and show that the conclusion of FrankePs theorem can fail only under
special circumstances.

1. Introduction. The theory of minimal surfaces has provided a

powerful tool for studying the topology of complete Riemannian mani-

folds of low dimension with nonnegative scalar or Ricci curvature. In

general, it is a problem of basic interest to study the topological and

geometrical relationships between a minimal submanifold and the mani-

fold in which it is immersed. A well-known result of Frankel [1] asserts

that if Σ is a compact immersed minimal hypersurface in a Riemannian

manifold M with strictly positive Ricci curvature then the homomorphism

of fundamental groups: Π(Σ) -> Π ( M ) induced by inclusion is onto. As

the product of spheres Sι X S2 shows, the conclusion of FrankeΓs theo-

rem is false if the Ricci curvature is only assumed to be nonnegative. The

purpose of this paper is to study the rigidity of FrankeΓs theorem, i.e. to

study the extent to which FrankeΓs theorem can fail when the Ricci

curvature is only assumed to be nonnegative. Our main theorem, stated

below, shows that the theorem can fail only under special circumstances.

THEOREM. Let M be a complete n-dimensional Riemannian manifold

with nonnegative Ricci curvature. Let φ: Λ -> M be a minimal immersion,

where Λ is a compact (n — l)-dimensional manifold, and let Σ = φ(Λ).

Consider the homomorphism of fundamental groups /*: Π ( Σ ) — > Π ( M )

induced by the inclusion map i: Σ —> M. Then either (a) below holds, or Σ is

an imbedded totally geodesic submanifold of M and one of (b)-(e) holds.

(a) i* is onto.

(b) Π(M)// 3 | e (Π(Σ)) = Z 2 . Σ separates M, and the closure of one of

the components of M — Σ has a double covering which is isometric to

[0, L] X Σ.
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(c) M is isometric to the (possibly twisted) product of Sι and Σ. (More

precisely, Σ is two-sided and M — Σ is isometric to (0, L) X Σ, where the

isometry is given by exponentiating normally from one side of Σ to the

other).

(d) 2 separates M, and a double covering of M is isometric to the

(possibly twisted) product of Sι and Σ.

(e) Σ is one-sided, and a double covering of M is isometric to the

(possibly twisted) product of Sι and a double covering of Σ.

In addition, if i* is not onto, the Ricci curvature vanishes on all vectors

orthogonal to Σ.

We remark that if one assumes M and 2 are orientable then case (e),
and only case (e), can be eliminated. There are simple models illustrating
each of the possibilities (a)-(e).

Case (a). M = projective 2-space realized as S2 with antipodal points
identified; Σ = equator with antipodal points identified.

Case (b). M = projective 2-space realized as S 2 flattened near the
equator, with antipodal points identified; Σ = circle of latitude near the
equator.

Case (c) (a twisted example). M = flat Klein bottle realized as a
square with horizontal sides identified in the opposite direction, and
vertical sides identified in the same direction; Σ = S1 realized as a
horizontal line segment joining the vertical edges.

Case (d). M as in case (c); Σ = Sι realized as two vertical line
segments symmetrically spaced around the central vertical line.

Case (e). M as in case (c); Σ = Sι realized as the central vertical line.
Lawson ([4], Theorem 1) has obtained a result closely related to

FrankeΓs. He proves that if M is a compact connected Riemannian
manifold with mean convex boundary dM and if M has positive Ricci
curvature then dM is connected and the homomorphism Tl(dM) -» Π(M)
induced by inclusion is onto. Meeks ([6], Proposition 1) has considered the
rigidity of Lawson's result in the case M is flat. He shows i*: Π(3M) ->
H(M) is onto unless dM is totally geodesic, and observes that if z* is not
onto then Π(M)/7*(Π(ΘM)) = Z2. The proof of our main theorem
makes use of an appropriately generalized version of Meek's result. We
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would also like to mention here the paper of Meyer [8] which is related to
various aspects of our work.

2. The proof. We begin with a number of preliminary results. The
first result is the principal geometric tool upon which the proof of the
main theorem relies.

LEMMA 1. Let M be a complete connected Riemannian manifold with
mean convex boundary dM which has at least two components, Σ x and Σ 2 .
If M has nonnegative Ricci curvature and Σ x is compact then dM = Σ x U Σ 2

and M is isometric to [0, L] X Σv where the isometry is given by exponenti-
ating normally from Σ1toΣ2. In particular, Σλ and Σ2 are isometric.

Ichida [2] and Kasue [3] have given proofs of this result by different
methods. The proof in a less general setting is implicitly discussed in
Meeks ([6], Proposition 1). The following lemma generalizes Proposition 1
in Meeks [6] and Theorem 1 in Lawson [4]. The idea of the proof is similar
to that of Proposition 1 in Meeks [6].

LEMMA 2. Let M be a complete connected Riemannian manifold with
compact connected boundary Σ. Assume M has nonnegative Ricci curvature
and Σ is mean convex. Then, either

(a) /*: Π(Σ) -> U(M) is onto, or
(b) Π(M)//*(Π(Σ)) = Z2, and M has a double covering which is

isometric to [0, L] X Σ. In particular, Σ is totally geodesic and the Ricci
curvature vanishes on all vectors orthogonal to Σ.

Proof of Lemma 2. The proof is an application of Lemma 1. Let
(M, p) be the Riemannian covering manifold of M such that
p*(U(M, s)) = /*(Π(Σ, s)). Let Σ o be the component of p~\Σ) passing
through s. We mention two simple properties of (M, p): (i) Any loop in
M based at s is fixed end point homotopic to a loop in Σ o based at s, and
(ϋ) p 12o: Σo -> Σ is injective (and hence an isometry).

Suppose /* is not onto. Then there exists a component Σ of dM
distinct from Σ o . By Lemma 1, dM = Σo U Σ, and M is isometric to
[ 0 , I ] x Σ 0 . It follows that Σ is totally geodesic and that the Ricci
curvature vanishes on vectors normal to Σ. Since p \ ^: Σ -» Σ is a
covering map, we have vol(Σ) = A:vol(Σ), where k is the number of
sheets of the covering (%p\$). Thus, since Σ is isometric to Σ o , and Σ o

is isometric to Σ, (%p\%) must be a single sheeted covering of Σ, i.e.
p IΣ: Σ -> Σ must be injective.
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Since p~ι(Σ) consists of two copies of Σ we have that (M, p) is a
double covering of M. Statement (b) now follows from the fact that, for
regular coverings, the group of deck transformations (which in the present
case is Z2) is isomorphic to Π(M, s)/p*H{M, s).

The following lemma is the basic imbeddedness result needed for the
proof of the main theorem.

LEMMA 3. Let M be an n-dimensional complete connected Riemannian
manifold with nonnegatiυe Ricci curvature. Let φa: Aa -> M9 a = 1,2, be
minimal immersions such that dimΛ α = n — 1, and let Σa = φa(Aa).
Assume Aλ is compact and Σ2 is closed. If Σ x and Σ 2 don't meet then they
must be totally geodesic imbedded submanifolds ofM, and Σ 2 is compact.

Proof of Lemma 3. The proof is an application of the maximum
principle for the mean curvature equation (cf. Ichida [2]). Without loss of
generality we can assume that φx: Ax -> M is a two-sided immersion, by
which we mean there exists a smooth nonvanishing normal vector field
defined along φ1? i.e., there exists a smooth map N: Ax -> TM such that
for each p e Λ1? N(p) is a vector at Tφ^p)M orthogonal to dφλ{TpA^).
Indeed, if φλ is not two-sided then by standard covering space arguments
there exists a two-sheeted covering (Al9p) of Ax such that φ1° p:
Aλ -> M is two-sided.

Let L > 0 be the distance between Σλ and Σ2. Let γ: [0, L] -> M be
any unit speed geodesic segment, with γ(0) = qλ G Σλ and γ(L) = q2 G
Σ 2 , which achieves this minimum. (Since Σλ is compact and Σ2 is closed,
at least one such γ exists), γ strikes Σλ and Σ2 orthogonally. In particular,
there can be no transverse self-intersections at qx and q2. For each
a = 1,2, choose a point />α e φ " 1 ^ ) and a neighborhood Ua of /?α such
that φa I ^ : ί/α -> M is an imbedding., Set Fα = φα(ί4) By the lemma in
Section 3 of Ichida [2], whose proof is an application of the maximum
principle for the mean curvature equation, there is a neighborhood Wλ c
Uλ of px such that φ1(ϊF1) is totally geodesic and the map E: W1 -> M
defined by £"(/?) = Qxpφι^LN(p), where JV is the normal vector field
defined along φx which equals y^O) at ql9 is a smooth isometric imbed-
ding such that E(Wι) c F2 and £(W î) is totally geodesic. (The metric on
Wx is the pullback of the induced metric on Vλ).

Now fix a geodesic segment γ: [0, L] -> M which minimizes the
distance from 2X to Σ 2 , and let Λ̂  be the normal vector field along φx

which agrees with γ^O) at γ(0). The set W= {p G Σ: expψi(p)LN(p) G
Σ 2} is closed by the continuity of the exponential map, and open by the
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discussion in the previous paragraph. Thus, by connectedness, W = Λx

which implies that each geodesic issuing from Σλ with initial direction N
achieves the minimum distance between Σλ and Σ 2 . From the discussion
in the preceding paragraph Σx is totally geodesic. Furthermore, by another
connectedness argument we see that Σ 2 = {expφi(/ϊ)LiV(/?): p e Λx}, and
hence Σ2 is compact and totally geodesic, as well.

We have shown that every point in Σx is the minimum distance L
from Σ2 (and vice-versa). Thus, any self-intersections in Σλ must be
tangential. Let xv x2 ^ Σx be such that qp̂ Xx) = <Pi(*2) = y- Let Sly S2

be neighborhoods of xλ and x29 respectively, such that ψιiSa -» M,
α = 1,2, are imbeddings. Since ψiiSJ and φ^S^) meet tangentially at y
and are totally geodesic, there exist neighborhoods Qa c Sa, of xa,
a = 1,2, such that φi(βχ) = <Pi(β2) Using this observation and the
compactness of Λ1? one can show that for each p e Σl9 there exists an
open set o in M containing p and an open set W in Σ such that φ1{W:
W -> M is an imbedding and φx( W) = Σ t n o. It follows that Σx is an
imbedded submanifold. A similar argument shows that Σ2 is imbedded.

COROLLARY. Let the setting be as in the main theorem. Ifi* is not onto
then Σ is an imbedded totally geodesic submanifold of M.

Proof of the Corollary. Let (M,p) be the Riemannian covering mani-
fold of M satisfying p*(Tί(M,s)) = /*(Π(Σ, s)). (This covering was
introduced in the proof of Lemma 2, but in a slightly different context.
The properties mentioned there hold in the present context as well.) Let
Σ o be the component of ρ~\Σ) containing s. Since z* is not onto, there
exists at least one other component, % say, of p'\Σ). Using basic
covering space theory (see e.g. Massey [5]) there exist immersions φλ:
Λ -> M and φ2: A -> M, where Λ is a manifold covering Λ, such that
φx(Λ) = Σ o , φ2 is proper, and φ2(Λ) c Σ. (Take (A,/^) to be the
covering manifold of Λ satisfying (/^^(ΠίA)) = φ~\(p*(H(M)).)
Hence, by Lemma 3, Σ o is imbedded and totally geodesic. Since p:
M -• M is a local isometry the same conclusions apply to Σ.

Proof of the Theorem. In view of the corollary to Lemma 3 it is
sufficient to prove the main theorem under the assumption that Σ is a
compact imbedded minimal hypersurface in M.

Assume for the time being that Σ is two-sided. Suppose Σ does not
separate M. Since Σ is two-sided we can make a "cut" along Σ to obtain
a manifold with boundary M\ whose boundary consists of two disjoint
copies of Σ, Σλ and Σ 2 say, such that any curve in M' from Σλ to Σ 2
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corresponds to a curve in M from one side of Σ to the other. Lemma 1
implies that the normal exponential map Φ: [0, L] X Σλ -» M', where
L = d(Σv Σ 2 ), is an isometry. Thus, part (c) of the theorem holds.

Suppose now that Σ separates M. Let Mλ and M2 denote the closures
of the two components of M - Σ. Hence, Mx and M2 are manifolds with
common boundary Σ, Consider the following diagram of inclusion maps,

M

h

Set GQ = /*(Π(Σ)), Ha = (*J*(Π(Σ)), Ga = ( Λ ) ( Π ( Λ # J ) , a = 1,2. By
Lemma 2, either Π(MJ = Ha or Π(MJ/// α = Z 2. It then follows easily
that either Ga = GQ or Gα/G0 = Z2, a = 1,2.

We now consider several cases. Recall by the Seifert-Van Kampen
theorem that Π(M) is generated by Gx and G2.

Case 1. Gλ = GQ and G2 = Go. In this case, Π(M) = Go, and state-
ment (a) of the theorem holds.

Case 2. Gλ Φ Go and G2 = Go. In this case U(M) = G^ Statement
(b) of the theorem now follows from the equality, GX/GQ = Z2, and
Lemma 2.

3. Gx = Go and G2 Φ Go. As in Case 2, this leads to statement
(b) of the theorem.

Case 4. Gλ Φ Go and G2 Φ Go. In this case, U(Ma)/Ha = Z2, α =
1,2. For each a = 1,2, let (Mα, /?J be the covering manifold of Ma which
satisfies, (pa)*(Tl(Ma)) = /ία. Then (Mα, /?α) is a double covering of Ma,
and Mα is a manifold with boundary /?~1(Σ) which consists of two copies
of Σ. By appropriately "gluing" together the boundaries of Mx and M29

we obtain a double covering of M which contains two copies of Σ, neither
of which separates. But this situation was considered at the beginning of
the proof. From what was done there, one sees that we are now led to
part (d) of the theorem.

Thus if Σ is two-sided one of the cases (a)-(d) must hold.
Suppose now that Σ is not two-sided. It is then standard, using Mod

2 intersection theory, to construct a two-sheeted covering (M,ρ) of M
such that (Σ = p~ι(Σ), p ^) is a connected double covering of Σ and Σ is
two-sided. In fact this construction actually implies that Σ separates M.
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Thus, cases (a)-(d) of the main theorem (and the arguments leading to
these cases) apply to Σ c M. We now observe that if /*: Π(Σ, s) ->
Π(M,s) is onto, so is /*: Π(Σ,s) -> U(M,s) (where S ^ ρ'\s)). Let
g = (γ) be any element of Π(M, s), where γ is a loop based at s. Let γ
be the lift of γ from S e Σ to jt e Σ. Let σ be a curve in Σ from x to ί.
By assumption, (γσ> e / S | C Π(Σ,5) . Projecting via the covering map gives
( γ ) ( σ ) = (γσ) e /+Π(Σ,s), where σ = p°σ. Hence, since (σ) e
/*Π(Σ, s), g = <γ> e z*Π(Σ, 5). Thus, if case (a) holds for Σ c M then
case (a) holds for Σ c M. Since the two components of M — Σ are
isometric (via a deck transformation), the discussion leading to case (b) in
the two-sided setting shows that case (b) is not applicable to Σ c M. Case
(c) is also ruled out because Σ separates. It remains to consider case (d).

By our earlier arguments which led to case (d) we may assume that
there exists a double covering (M, φ) of M such that (1) φ - 1(Σ) consists
of two disjoint copies, Σx and Σ 2 , say, of Σ and (2) each component of
M — Σ is double covered by a component of M - (Σx U Σ 2 ). (M, ψ),
where ψ = p ° φ, is a four-sheeted covering of M. We use the "cut and
paste" method on M to obtain a new double covering of M.

Let U be a component of M — Σ, and let U be the component of
M — (Σ x U Σ 2 ) such that (£/, φ | ^) is a double covering of II. Since {/ is
one of the two components of p~\M - Σ), (£/, p \ ϋ) is a single covering
of M - Σ. Consequently, (£/, ψ | ^) is a double covering of M - Σ. The
closure of t/, call it D, is a manifold with boundary Σx U Σ 2 = ψ~x(2).
Let V denote the manifold without boundary obtained from D by
identifying the points of Σλ and Σ 2 as follows: For all xλ ^ Σ1 ? x2 e Σ 2 ,
identify xλ and x2 if and only if Ψ(JCX) = ψ(x2) and φ(xχ) Φ φ(^ 2 )
Then F (with covering map essentially given by ψ) is a double covering of
M such that the inverse image of Σ with respect to the covering map is a
double covering of Σ which is two-sided, but which does not separate V.
(To visualize this construction, it is helpful to carry it out explicitly on the
example of case (e) given after the statement of the main theorem.) The
argument of case (c) applied to the present situation now leads to case (e)
of the theorem.

Thus, we have shown that one of the cases (a)-(e) must hold. If /* is
not onto then, by the corollary to Lemma 3, Σ is totally geodesic. The last
sentence in the statement of the theorem is a consequence of the product
structure in cases (b)-(e). D

The following corollary singles out the situation in which M is
noncompact. The imbeddedness result needed for this corollary has al-
ready been established in Kasue ([3], Theorem 1).
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COROLLARY. Let M be a complete noncompact n-dimensional Riemann-

ian manifold with nonnegatiυe Ricci curvature. Let φ: Λ -» M be a minimal

immersion, where Λ is a compact (n — lydimensional manifold. Then

Σ = φ(Λ) is an imbedded totally geodesic submanifold of M and one of the

following must hold.

(1) M is isometric to R X Σ.

(2) M has one end, and there is a double covering of M which is

isometric to the product of R and a double covering of Σ.

(3) M has one end and Σ separates M. The closure of the component of

M — Σ containing this end is isometric to [0, oo) X Σ and,

Proof. We begin by observing that (*) holds in all cases. Indeed, since
M is noncompact only cases (a) and (b) of the main theorem are
applicable. (However note in cases (1) and (2), i* is actually onto.) By
Theorem 1 in Kasue [3], Σ is imbedded and totally geodesic. Suppose Σ is
two-sided. Then Σ must separate M (otherwise M would be compact as
in case (c) of the main theorem). M has at most two ends. If M has two
ends then (as observed in Meeks, Simon and Yau [7], §9) the splitting
theorem of Cheeger and Gromoll implies that (1) holds. If M has only
one end then Theorem C in Kasue [3] implies that the closure of the
component containing this end is isometric to [0, oo) X Σ.

Suppose now that Σ is not two-sided. As discussed earlier, there is a
double covering (M,/?) of M such that Σ = p~λ(Σ) is connected and
separates M. Furthermore each component of M - Σ must be noncom-
pact and hence M has two ends. Case (1) then applies to Σ c M, and
thus case (2) holds. D

Again, there are simple models illustrating each of the three cases. For
instance, the nontrivial line bundle over Sι (i.e. the Mδbius band) is an
example illustrating case (2).

As a final remark note that if M is three dimensional and satisfies the
hypotheses of the corollary then, by Gauss-Bonnet, Σ must have genus
zero or one. All three cases can occur in dimension three. (In the case M
is orientable, Theorem 6 in [7] overlooks the possibility that case (3) can
occur.)
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