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NOTE ON THE PWB-METHOD IN THE
NON-LINEAR CASE

S. GRANLUND, P. LINDQVIST AND O. MARTIO

The Perron-Wiener-Brelot (PWB) method is applied to an im-
portant nonlinear situation. Unbounded subsolutions, their approxima-
tion and a counterpart of the harmonic measure are considered.

Introduction. The Perron-Wiener-Brelot (PWB-) method as intro-
duced by O. Perron [P] and refined by several mathematicians is well-
known in Potential Theory and it is mainly used in the theory of harmonic
functions although it has a wider scope of applications [CC]. The PWB-
method was generalized by E. Beckenbach and L. Jackson [BJ, J] to the
non-linear situation. Their approach used the strong maximum principle
for the difference of two solutions [BJ, Postulate 2]. The purpose of this
note is to show that the PWB-method can be employed without this
assumption in certain important non-linear cases. We are also able to deal
with unbounded subsolutions.

We consider weak solutions, called F-extremals, of an Euler equation

(1.1) V VΛF(x,Vw) = 0,

where the variational kernel F: G X Rn -> R satisfies the assumptions:
(a) For each ε > 0 there is a closed set C in the domain G c Rn such

that m(G\C) < ε and F\C X Rn is continuous.
(b) For a.e. x e G the function h »-> F(x, h) is strictly convex and

differentiable in Rn.
(c) There are 0 < a < β < oo such that for a.e. x e G

a\h\n<F{x,h)<β\h\\

h <=Rn.
(d) For a.e. x e G

λ e Λ, A e JRΠ.
For a thorough analysis of the above assumptions see [GLM1]. Some

of the assumptions are not necessary for the constructions. The exponent
n in (c) is essential for applications in conformal geometry, cf. [GLM1-2].
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A function u e C(G) n \ocWf(G), i.e. u is ACL", is called an
F-extremal in G if for all domains D c<z G

IF{u,D)= inf IF{υ,D),

where

is the variational integral with the kernel F and

^ = { y e C(2))n W*(D)\v = uind

A function w is an JF-extremal if and only if u e C(G) Π loc ̂ ( G ) is a
solution of (1.1) in the weak sense.

An upper semi-continuous function u: G -> R U {-00} is called a
sub-F-extremal if M satisfies the F-comparison principle in G, i.e. if
D c c G is a domain and Λ e C(Z>) is an F-extremal in Z>, then h > u
in 3D implies h > u in D. A function w:G-» i ϊU{oo} i sa super-F-ex-
tremal if -w is a sub-.F-extremal. For the basic properties of F-extremals
and sub-F-extremals we refer to [GLM1].

Let G c Rn be a domain and let /: 3G -* R U {±00} be any
function. The fundamental concepts in the PWB-method are the upper
and lower classes %f and £Pf determined by /. Our first theorem,
Theorem 2.2, states in the complete analogy with the PWB-method that
the function

is either 4- 00, -00 or an F-extremal in G. The proof differs in several
aspects from the classical proof, cf. e.g. [H]. First, a method like the
Poisson modification of a sub-i^-extremal is needed and since no Poisson
formula is available in the non-linear case, our modification is based on
approximation and on the solvability of the Dirichlefs problem in balls.
The crucial step in the proof is to show that the function Hf is continuous
if it is not + 00 or -00. The proof is based on a uniform Holder-estimate,
see [GLM1, Theorem 4.7], which is quite similar to Harnack's inequality.
Moreover, the proof for Theorem 2.2 uses a uniform approximation
argument, Lemma 2.14, for the function Hf and Harnack's principle
several times.

The rest of the paper is devoted to applications of the PWB-method
and to byproducts of the method. In Chapter 3 we develop the barrier
method for the non-linear case. Here the method works as in the linear
case. Moreover, this method gives a necessary and sufficient condition for
the solvability of the Dirichlet problem with continuous boundary values.
In the non-linear case the best condition for solvability has been the
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celebrated Wiener criterion, see [Maz], [GZ]. In the harmonic case these
conditions are equivalent but this is not known in the non-linear situation.

Approximation of sub-F-extremals by means of regular sub-F-ex-
tremals is studied in Chapter 4. These results which are usually proved
using a simple convolution argument, cf. [R], are more difficult to obtain
in the non-linear case and we need a solution to an obstacle problem in
the calculus of variations, cf. [GLMl, Theorem 5.15]. As a consequence we
especially show that a bounded subharmonic function in a plane domain
belongs to the Sobolev space locW^1- These results are needed in the
variational interpretation of subharmonicity and, more generally, sub-i7-
extremality.

Chapter 5 is devoted to the construction of the inharmonic measure
in general domains. This concept has turned out useful in studying the
boundary behavior of F-extremals, see [GLM2], [GLM3].

Our notation is standard and generally as in [GLMl].

2. The Perron-Wiener-Brelot method. Suppose that G c Rn is a
domain and that / : 3 G - > i ? U { ± o o } i s a function.

2.1. DEFINITION. The lower class S£f consists of the functions u:
G -> R U {-oo} for which

(a) u is a sub-F-extremal in G,
(b) u is bounded above,
(c) hmx^yu(x) < f(y) for all y e 3G,
(d) there is a compact set Ku<z Rn such that w < 0 i n G \ ^ M .

The upper class °Uf is defined analogously via super-JF-extremals.
Let Ήf = inf{ u\u e <%f} and Hf = sup{ u\u e <£}}. The next theorem

is fundamental for the PWB-method.

2.2. THEOREM. The function Hf satisfies one of the following conditions:
(i) Hf is an F-extremal in G,

(ϋ) Hf=oo in G,
(iii) Hf=-oo in G.

The same is true for the function Hf.

Some auxiliary results are needed in the proof of the above theorem.
The so-called ^-comparison principle is a basic tool.

2.3. LEMMA. Let G c Rn be a bounded open set, u a sub-F-extremal
and v a super-F-extremal in G. Suppose

(2.4) Πϊn u(x) < lim v(x)
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for ally E 3G. // the left and right-hand sides are neither oo nor -oo at the
same time, then u < v in G.

Proof. Fix any x e G. We will show that u{x) < v(x). Let ε > 0 and
consider the open set H = [y e G\u(y) < υ(y) + ε). There exists a
regular domain Dε, Dε c G, such that x ^ Dε and dDε c H. Choose a
decreasing sequence φi e C°°(G) and an increasing sequence ψ, e C°°(G)
such that φ, -* u and ψf. -> i; + ε. Since 3De is compact we have φ, < ψ,
on 3/)e for some i e TV. Let A) and Az

2 be F-extremals such that h)\dDε =
φβD, hj\dDε = ψβD. It follows from [GLM1, Definition 5.1] that

u < h) < h] < v + ε in Dε.

Since x e Dε and ε > 0 was arbitrary, we obtain the desired inequality
u(x) < v(x).

The F-comparison principle yields:

2.5. LEMMA. Hf < Ήf.

The Poisson modification of a subharmonic function so as to be
harmonic over part of its domain is a basic operation in the classical
potential theory. In the proof of Theorem 2.2 we employ a similar
modification method for sub-F-extremals, cf. [R].

2.6. Modification of sub-F-extremals. Suppose that G c Rn is a do-
main and that w : G - > i ϊ U { - o o } i s a sub-F-extremal. Let B c G be a
ball. We modify the sub-F-extremal by an approximation argument. Since
u is upper semicontinuous in G, there exists a sequence φ, G C°°(G) such
that φx > <p2 > > u in B and lim j ^^φ 7 = w in B.

Choose F-extremals hi in B such that A^θ^ = ψβB and Λ,. G C(5)
Π W^(5). By Lemma 2.3, hλ>h2> > w in ΰ. The function Λ =
lim^^^ Λ. is an F-extremal or identically -oo in B, see [GLM1, Theorem
4.22]. For any ζ e dB

ΪSί Λ(x) < fiS Λf.(x) = φf (f), i = 1,2,3,...,

x<=B xeB

and thus

(2.7) ΠS A(JC) < u(ζ).

xeB

Write
(x), x<=G\B
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It is easy to see that P(w, B) is independent of the sequence φ i ? although

this fact is not needed in the sequel.

Now P(w, B) > u in G and we shall prove that the function P(u, B)

is a sub-F-extremal. For that purpose an auxiliary result is needed.

2.8. LEMMA. A sub-F-extremal u is identically -oo if and only if it is

-oo in some nonempty open subset of G.

PROOF. Write H = inf{x e G\u(x) = -00} and suppose H Φ G. Let

x0 e dH Π G and choose δ > 0 such that Bn(x0, δ) c G and

Sn~\xO98) Π H Φ 0 . Pick a closed cap # c 5 I I " 1 ( ^ 8 ) n H a n d de-

note the F-harmonic measure ω(K, Bn(x0,δ); F) by h. It follows from

[GLM2, Theorem 4.10] that h is not identically zero. Let a > 0 and

consider the F-extremal v = M — ah where M = supβ*(jCo δ ) u. Now

lim υ(x) > lim w(x)

for all 7 e 5r"~1(jc0, δ) and the left-hand side is finite. Hence by Lemma

2.3, v > u in £ n (x 0 ,e) . Letting α -> 00 we obtain u(x) = -00 for all

x e Bn(x0, δ), a contradiction since i?n(;c0,δ) contains points not in H.

The lemma follows.

We are ready to prove

2.9. LEMMA. The function <%= P(u, B) is a sub-F-extremal in G.

Proof. If h is identically -00, so is u by Lemma 2.8 and there is

nothing to prove. Otherwise, h is an F-extremal and we first show that °U

is upper semicontinuous. We need only consider points ξ e 92?. Now

Πϊn <%(x)= Πϊn u(x) < u(ξ) =

By combining (2.7) and the inequality above it readily follows that °ll is

upper semicontinuous.

Next we prove that ^ satisfies the ^-comparison principle in G.

Suppose that D c c G is a domain and that i/ ^ C(Z>) is an F-extremal

in D with 7/|3i) > Φ|3D. We will show that ί ί > ^ in i). Now i/ > w

in Z>, since °U> u in G and w is a sub-i^extremal. Let f G 3(D Π B).

Now
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and hence

lim H(x) > Πnϊ h(x).

x^DΠB

Lemma 2.3 implies H > h = W in D Γ\ B. Consequently H > <% in the
whole D as desired.

2.10 Three lemmas for Hf. In what follows we shall only consider the
function Hf. The lemmas and proofs for Hf are similar. First we prove
that it is possible to replace ££f by a subfamily, which is bounded from
below in compact subsets of G. This new family gives the same Hf.

2.11. LEMMA. Suppose K c G is compact and Hf is not identically -oo.
Then there exists ££κ c S^f such that &κ is bounded from below in K and

Proof. There exists w0GJS^ such that u0 is not identically -oo.
Choose a finite cover {Bn(xι,RXi)9...,B

n(xk,RXk)} of K such that
Bn(xi92Rx) c G for i = 1,...,*, and let ^ = P ^ , ! ^ ^ ) ) , / =
1,..., A:. Lemma 2.9 yields ^ e Sef and Lemma 2.8 shows that ^ > -oo
in Bn{xi,2Rx), i = l,...,Jk/Since ΦΛ/ is an F-extremal in Bn(xi,2Rx)
the continuity of °UX_ gives AT, < oo such that 48^ > -M x in ^"(JC^ i?^).
Choose Seκ = {max{ w, ΦX i,. . . ' , <tlXk} \u e J2}}. Observe that for all U<Ξ&K

we have w > minf-M^,..., -MXk) in ίΓ. Let u e JS .̂ Then there exists
w* e JS?̂  such that w* > w in G. It follows that supJέf̂  = Hf.

The next lemma is the basic step for the proof of Theorem 2.2.

2.12. LEMMA. If Hf is locally bounded above, then Hf is continuous or
identically -oo.

Proof. Let ε > 0 and assume that Hf is not identically -oo. We will
show that there is r > 0 such that

(2.13) \Hf{xλ) - Hf{x2)\ <ε for xl9x2 e Bn(x0,r).

Fix a ball Bn(x0, R) a G and let K = Bn(x0, R). By Lemma 2.11 we
can restrict to the class SPK and there is a constant 0 < Mκ < oo such
that \u(x)\ < Mκ, x e K, for all w e S?κ. Suppose xv x2 e ί"(jc0 ) r) c
^"(xo, R), where r > 0 will be fixed later. Assume, for example, that
Hf(x2) > Hf(xλ). We can choose a sequence of functions u{ e <£κ
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such that l i m ^ ^ ui(x2) = Hf(x2). Consider the functions (Vi =
P(ui9 Bn(x0, R)). Again we have

Um %(x2) = Um P(ui9B*(xθ9R))(x2).
i —• oo i-*oo

Choose i 0 e N so large that Hf{x2) — ̂ ( J C 2 ) < ε/2 for z > /0. Now

0 < Hf(x2) - Hf(Xι) < %(x2) + § - %(xλ)

It is possible to choose r independent of i such that
oso{<iίi,B

n{xQ9r)) < ε/2. Since % is an F-extremal in Bn(x0, R), this
follows from the Holder-estimate of F-extremals

cf. [GLMl, Theorem 4.7]. In the same way (2.13) can be proved if
Hf(x2) < Hf{xx).

2.14. LEMMA. Suppose that C c G is compact and that Hf is locally
bounded from above in G. Then for arbitrary ε > 0 there exists υE^S^f such
that

(2.15) Hf(x) < vε(x) + ε forx^C.

Proof. By Lemma 2.12 there are two possibiUties: either Hf is
identically -oo or continuous. In the first case choose vε = -oo. In the
second case for each x e C choose Bn(x, 2RX) c G. Let

K= U B"(x9Rx)9

and replace .2^ by the class JSf̂ . Now ££κ is uniformly bounded on the
compact subset K of G.

For all x e C there exists ux e Jδf̂  such that ux(x) > Hf(x) — ε/3.
Consider Qlx = P(ux, Bn(x, Rx)). There exists Mκ > 0 such that
osc(tyχ, Bn(x, Rx)) < Mκ. Let x e .fiΓ. Since ΛΓy is continuous and the
Holder-estimate [GLMl, Theorem 4.7] is vahd for <1lx in Bn(x,Rx) we
can choose a ball Bn(x, rx), 0 < rx < Rx, such that

Now {#"(*, rΛ)|x e C} is an open cover for C and there is a finite
subcover {£"(*!,/g,.. .,5"(x A ,/ ̂ )} of C. For j> e B\xt,rx), i e
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{l,...,k}, we have

= {Hf{y)-Hf{x,)) +(Hf(xt) - %{xt

< - + - + - = ε .

The function vε = max{#Λ i,..., <%Xk) is a sub-jF-extremal [GLM1, Lemma
5.2] and has the desired property.

Proof of Theorem 2.2. Assume first that Hf is not locally bounded
from above. Then there are a sequence of functions ut e ££f and a
sequence of points xi e G such that l i m ^ ^ W ĴC,.) = oo, lim/_>00 JC,. = x0

e G.
Suppose that j e G . We will prove that Hf(y) = oo. There is a

domain Z> such that Z> is compact in G, y e Z> and x , x0 e i). By
Lemma 2.11 we can restrict to a sublcass =5^ c oŜ , which is uniformly
bounded from below in D. For that reason we may assume that the
functions in J5^ are non-negative in D. Choose balls Bn(zj,2rj) c D,
j = 1,..., k, with the following properties,

(i) xi9 x0 G £*(*!, rx), for i > iQ,
(ii)y<ΞB»{zk,rk\

(w)B"(zJ,rJ)ΓιBn(zJ+l9rJ+ι)Φ 0, j = 1,..., r - 1.
Let / > /0 and define the functions Φ/ as follows: Φ/ = ui9 <tiί/+ι =
P(Φ/, Bn(zj92rj)), j = 1,..., ik - 1. By iterated use of Harnacks's in-
equality for the functions Φ/, y = 1,..., k, it is easy to see that there is a
constant c > 0 independent of i such that

«,(*,) < \<*e?{y) < -Hf{y).
C C

By letting / -> oo we obtain Hf(y) = oo.
Next assume that Hf is locally bounded from above. According to

Lemma 2.12 either Hf is continuous or identically -oo. In the latter case
the proof is complete. Suppose that Hf is continuous. Let Bn(xQ9r) c G
and choose C = Bn(xθ9 r) in Lemma 2.14. Lemma 2.14 shows that there
is a sequence υt G JS% such that #• > Hf— \/i in -SΠ(JC0, r). Consider the
functions 1̂ . = P(υi9 Bn(x0, r)). Again we have lim-^^ F; = Hf uniformly
in Bn(x0, r). It follows from Harnack's principle [GLM1, Theorem 4.21],
that Hf is an jp-extremal in Bn(xθ9 r) and thus in G.

3. Regular boundary points. As in the classical harmonic case it is
possible to define a barrier function for the boundary value problem of
F-extremals. In this chapter we show that it gives a necessary and
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sufficient condition for the regularity of boundary points. The proof for

necessity differs considerably from the linear situation. Our variational

principle also gives a new proof for Bouligand's theorem [H, p. 169].

Let G c Rn be a bounded domain. A point X O G 3G has an ^-barrier

if there exists a sub-F-extremal w: G -> R such that

(a) hmx_>yw(x) < 0 for all y e 3G, y Φ x0,

3.1. THEOREM. Suppose that f: dG -> R is bounded and continuous at

x0 G 9G. Ifx0 has an F-barrier, then

lim Hf(x)=f(x0).
x^>x0

Proof. The proof is completely analogous to the classical proof. Let

ε > 0 and M = sup|/|. By virtue of the assumptions there are constants

8 > 0 and k < 0 such that \f(x) - f(xo)\ < ε if \x - xo\ < 8 and kw(x)

> 2M if |JC - JCO| > 8. Note that the functions f(x0) + ε + kw and

f(x0) - ε - kw belong to the classes °Uj and ££f respectively. Observe

that kw is a super-JF-extremal and -kw is a sub-F-extremal. Then

f(x0) - ε - kw(x) < Hf(x) < Hf(x) < f(x0) + ε + kw(x)

or

\Hf(x)-f(x0)\<ε + kw(x).

Since w(x) -* 0 as x -> xQ we obtain Hf(x) -> /(x 0 ) as x -> x0.

3.2. DEFINITION. A bounded domain G c: Rn is called ^-regular, if

for all continuous /: dG -> i? there is an F-extremal w G C(G) with

u\dG=f.

3.3. LEMMA, yl domain G (z Rn is F-regular if and only if

\imx_+yHf(x)=f(y) for ally e dG.

Proof. Suppose that G is F-regular. Then for / e C(3G) there is u as

in Definition 3.2. Since w G J2} it follows that Hf > u in G. Let i; G J2}

and y G 3G. NOW

lim ι (jc) ̂ / ( j ) = lim w(x)

and the /'-comparison principle implies υ < u in G. Then i/y =

sup{ι;|t; G «Sy} < w in G. We have proved that Sf=u and thus

limx_+yHf(x) = limx_+yu(x) = f(y) for all j e 3G. The converse is

trivial.
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3.4. DEFINITION. A boundary point x0 of a bounded domain G c Rn

is called F-regular, if for all continuous /: dG -> R

lim Hf(x)=f(x0).
x-*x0

Lemma 3.3 implies

3.5. COROLLARY. A bounded domain G is F-regular if and only if each
boundary point of Gis F-regular.

Theorem 3.1 gives

3.6. COROLLARY. A point x0 e dG is F-regular if it has an F-barrier.

The converse of Corollary 3.6 is also true.

3.7. THEOREM. A point x0 e dG is F-regular if and only if x0 has an
F-barrier.

Proof. Suppose that Λ ; O G 3 G has an F-barrier. It follows from
Corollary 3.6 that x0 is F-regular. To show the converse assume that
x0 G 3G is F-regular. Let G c Bn(x0, R). We shall construct a barrier
function w at x0. For this purpose we need a continuous sub-F-extremal u
in Bn(x09 R) such that u(x0) = 0 and u(x) > 0 for x e Bn(x0, R). The
function u is constructed as a solution of an obstacle problem.

We will use the function φ = \x — xo | as an obstacle. Let B =
Bn(x0,R) and

= { i e C(B)Π Wf

There exists u e J^(φ) such that IF(u, B) = inf{ JF(u, B)\υ e i^(φ)}, see
[GLM1, Theorem 5.15]. Now [GLM1, Theorem 5.17(ϋ)] implies that the
function u is a sub-F-extremal.

In what follows we will show that u(x0) = 0 and u(x) > 0 for x e B,
x Φ x0. The function h = max{w,0} belongs to the class ^ ( φ ) , hence
u(x0) = 0 and u > 0 in £ n (x 0 , iϊ). Suppose that there is xλ e 5n(x 0,i?)
such that wί q) = 0 and xx Φ x0. Now Λ:X e 4̂, where 4̂ is a component
of the open set {x e Bn(x0,R)\u(x) < <p(x)}. Observe that u is an
F-extremal in the set A [GLM1, pp. 39-40]. Harnack's inequality implies
that u(x) = 0 for x e A. This is a contradiction. Hence u(x) > 0 for
x^Bn(x0,R)\{x0}.
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We are ready to construct the barrier at i 0 G 3G. Consider the

function Hu. Now u e <£?M and hence Hu > u in G. This yields

lim Hu(x) > lim w(jc) = u(y) > 0 f o r j ^ = x 0 .
x-*yedG x-*y(=dG

Since x 0 is F-regular it follows from Definition 3.4 that limx_^ x Hu(x) =

u(x0) = 0.

For the barrier we choose the function -Hu.

3.8. REMARK. The function Hu is the barrier sought in Bouligand's

theorem.

4. Approximation of sub-F-extremals. In the classical potential theory

it is well-known that subharmonic functions can be approximated by

regular subharmonic functions. The following theorem gives a correspond-

ing approximation result for sub-F-extremals. In particular, it follows that

a general sub-F-extremal which is locally bounded from below is in the

Sobolev-space l o c H ^

4.1. THEOREM. Suppose u: G -> R U {-00} is a sub-F-extrernal and

D c c G a domain. Then there exists a decreasing sequence of sub-F-ex-

tremals ui e C(D) Π W^(D) such that l i m ^ ^ ut = u in D. If u is locally

bounded from below then u is in locW^G) and

(4.2) ί F{x,vu)dm<[ F(x,v(u - η))dm,

for all non-negative η e C™(G).

Proof. Since u is upper semicontinuous there exists a decreasing

sequence φz e C°°(D) Π C(D) such that lim ^ ^ φ = u in Ί). We may

assume that the domain D is regular. We shall again employ the solutions

of an obstacle problem. Choose functions ut which minimize the integral

(4.3) IF(u>D)= ί dm

in the class ^ ( φ z ) = {u e C(ϊ>) Π W*(D)\u < φz in Z>, u = φ. in

see [GLM1, Theorem 5.15]. The functions t/z are sub-F-extremals.

Next we show that u < ut< φ( in D. Consider the set At, = {x G

D I M ^ X ) < φ z(x)}. Let 4̂Z be a component of At. Then wz is an F-ex-

tremal in Ai9 see [GLM1, the proof of Theorem 5.17], and ui\dAi = φi\dAi

> u\dAr By the F-comparison principle ui > u in 4̂, and clearly in the

whole D. Thus u = limJ._*ooφ|. > lim,.^^ ui > u in D.
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Next we prove that the sequence ut is decreasing. Assume the
contrary. Then the open set A = {x e D\ui+1(x) > u^x)} is non-empty
for some i. The function min(w7, ui+1) belongs to the class ^"(φ / + i). Now

IF(ui+l9D) = IF{ui+l9A) + IF{ui+ι,D\A)

and hence IF(ui+ι, A) < /F(wi? A), In the same way we obtain

= IF(Ui+l9A)+I(ui9D\A),

i.e. IF(ui9A) < IF(ui+vA). Thus IF(uiyA) = IF(ui+vA) and it follows
from the strict convexity of the kernel F that the set A is empty and
ui+ι < ut in D.

Suppose u is locally bounded from below. We prove that u is in
\ocW^{D). Since ut e C(D) Π W^(D\ [GLM1? Theorem 5.17] implies
that

ί F(x^ui)dm<( F{x,v{ui- η)) dm
^sptη •'sptη

for all non-negative η G C™(D). Since u is locally bounded from below
we may assume that it is non-negative in D. Then also the functions ut

are non-negative. Let Bn(x0, r) c D and consider the condenser
(2), Bn(x0, r)). Analogously to the proof of [GLM1, Lemma 4.2] it can be
shown that

(4.4) ί IvwJ11 dm < cosc(ui9 D)ncapπ(Z), Bn(x0, r))
JB"(x0,r)

where the constant L does not depend on /. This shows that the ZΛnorms
of VW; are uniformly bounded. Hence there is a subsequence of Vw,
converging weakly in Ln(Bn(x0, r)) to the generalized gradient Vw of w,
which is in Ln(Bn(x0, r)). Since the ball Bn(x0, r) was arbitrary, u
belongs to \ocW^{D).

In order to prove the inequality (4.2) we show that there is a
subsequence of Vw, such that v t / , ^ Vw a.e. in compact subsets of D.
The expression

(4.5) (v Λ F(x, AJ - VhF(x,h2)) .(At - Λ2),
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is strictly positive for a.e. x e G, and all hl9 h2 ^ Rn, hλ Φ Λ2. Since the

functions ut are sub-F-extremals in D and belong to C(D) Π W*(D),

they satisfy the inequality

(4.6) / T7hF(x,\fui) - Vy\dm < 0,
''sptη

for all non-negative η G C™(D).

Let 5 = 2?w(x0, r) c Z), 0 < r' < r, f G C0°°(J5)? 0 < ξ < 1, and

f(jc) = 1 for x ^ ^"(^o> r 0 P u t V = ζ(ui ~ u) a n d use (4.6) to obtain

• V^W; - w))Jm
spt^

ί
yspt?

•(VW; — Vw) /̂m

,.) - VhF{x,Vu)) - Vζdm

(VM, - Vu)dm.

Because of the inequality (4.4) we can choose a subsequence of ut

such that Uj -* w in Ln(Bn(x0, r)) and Vw, -> Vw weakly in

L π (5 w (x 0 , r)), see [M, p. 75, Theorem 3.4.4]. Then the last two integrals

and the integral If tend to zero for i -> oo. Now (4.5) yields 1} > 0 and

hence lim^^^ /?• = 0. Then we employ the condition (4.5) to show that

there is a subsequence of V ui such that V w, -» V u for a.e. x e Bn(x0, r').

Write

ft(^) = ( v Λ F ( x , v ^ ( x ) ) - VAF(λ,V«(x))) -(vWfW - Vu{x)).

Then gy -> 0 in L\Bn(x09 r')) and hence there is a subsequence such that

g,.(jc) -> 0 for a.e. x G J B ^ ^ Γ ' ) . It follows from (4.5) that Vu^x) ->

VM(X) for a.e. Λ: G JBΠ(X0, r
r).

Finally choose a non-negative η G Co3(Bn(xo, /*')) in (4.6). Since the

integrals

/
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are uniformly bounded and V/^ίXVW O)) -> VhF(x,Vu(x)) a.e. in
Bn(x0, r'), the inequality (4.6) yields via weak convergence

ί V/(x,V«) 'Vτ)dm < 0.
JBn(x0,r

f)

Thus the above inequality holds in D and (4.2) follows from [GLM1,
Theorem 5.17].

5. jF-harmonic measure. The PWB-method can be used in the defini-
tion of the F-harmonic measure. In [GLM2] the F-harmonic measure was
constructed via generating sequences. This method can only be used in
regular domains.

Suppose G c Rn is a bounded open set. Let C c dG be a closed set
and let /: dG -> R be the characteristic function of C. The function Hf,

which is an F-extremal, is the F-harmonic measure of C with respect to
G. The next theorem shows that in regular domains this concept gives the
same F-harmonic measure.

5.1. THEOREM. Suppose that G c Rn is a regular domain, and that

C c dG is a closed set. If f is the characteristic function of C, then

Hf=ω(C,G;F), where ω(C,G\F) is the F-harmonic measure as in

[GLM2, Definition 2.16].

Proof. Let φ, be a (C,Gr)-boundary sequence, see [GLM2, pp.
235-236]. Consider the F-extremals ut e C(G) Π W*(G) with u(\dG =
φβG. It was shown in [GLM2, pp. 3-4] that \imi^O0ui = ω(C,G;F)

locally uniformly in G. Now ut e <2fcy and hence ui > Hf. Thus
ω(C, G; F) = l im, .^ ut > Hf. On the other hand, for u G Φ/ 9

limx_^yGdGu(x)>f(y)>limx^y€ΞdGω(C,G;F), see [GLM2, Remark
2.20]. Lemma 2.3 implies that w>ω(C,G;F), in G and thus i/ 7 >
ω(C, G; JP), which together with the previous inequality completes the
proof.
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