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Introduction* The concept of the "injective envelope" of a module
was first given by Eckmann and Schopf [2], although this terminology
was first employed by Matlis [5]. The injective envelope of a module
always exists and is unique in a certain sense. The dual concept of
the "projective cover" of a module has been given by Bass [1], and the
concept of "minimal epimorphism" in a "perfect category" as defined by
Eilenberg [3] is a particular case of this concept. The projective cover
of a module does not always exist but is unique whenever it exists.
Eilenberg [3] has proved that every module in a perfect category pos-
sesses a projective cover. Bass [1] calls a ring "perfect" if every module
over the ring possesses a projective cover, and he gives several charac-
terizations of a perfect ring. We shall call a module "perfect" if it
possesses a projective cover. It would be natural to try to characterize
a perfect module, but it seems likely that such attempts may result
in obtaining equivalent definitions of the projective cover of a module.
One might instead consider specific types of modules and try to obtain
necessary and sufficient conditions so that they may be perfect. In §1
we first define a category of perfect modules and then give a necessary
and sufficient condition for a finitely generated module over a Noetherian
ring to be perfect. In §2 we give some results on "essential monomor-
phism" and "minimal epimorphism" [1, 2]. In §3 we give some results
on modules over perfect rings. In §4 we give new proofs of some
known results to show how the concepts of the injective envelope and
the projective cover of a module simplify the proofs considerably.

I should like to thank Professor Cartan under whose guidance this
work was done. I should also like to thank Pierre Gabriel with whom
I have had interesting discussions on the subject.

l A category of perfect modules. Let A be a ring with unit
element 1^0. Throughout this paper we shall be concerned with unitary
left A -modules and so we shall call them simply modules. We recall
some definitions. Let f:L—>M be a homomorphism of modules. If
JTΠ iw / = 0 implies H = 0, where H is a submodule of M, f is called
an essential homomorphism; moreover, if / is a monomorphism and M is
an injective module, then M is called the injective envelope of L and
is denoted by E(L). If, however, K + Ker f — L implies K = L, where
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K is a submodule of L, / is called a minimal homomorphism; moreover,
if / is an epimorphism and L is a projective module, then L is called
a projective cover of M and is denoted by P(M). The ring A is said
to be perfect if every J-module possesses a projective cover. A module
is said to be perfect if it possesses a projective cover.

Let ^ be a category of modules which satisfies the following axioms:

Axiom I. If L, Me <& and /: L —> M, then / e if.

Axiom II. If M e g 7 and RcM, then i2e <if.

Axiom III. If Jlίe'g7, there exists a projective module P e ^ and
an epimorphism h:P-^M.

Axiom IV. If g: M —» M is an epimorphism without being an
automorphism, then there exists a proper submodule R of M such that
R + g~\R) = ΛΓ.

Axiom V. If /: L —• M is an epimorphism in ^ then L possesses
a submodule S which is minimal for the relation f(S) = Λf.

PROPOSITION 1. If Me ^ , then M is perfect.

Proof. Let h:P—*M be an epimorphism where P is a projective
module in <£*. Then P possesses a submodule P which is minimal for
the relation h(P) = M. Let h: P—> M be the restriction of h on P.
Then fc is a minimal epimorphism. We shall swow that P is a direct
summand of P and so projective. Let i:P—»P be the inclusion map,
so that ^ = hi. Since P is projective, there exists a homomorphism
j : P-+P such that ^i = h9 and so /yΐ = hi = h. We have the sequence
of homomorphisms

Since hji is an epimorphism and h is minimal, i i is an epimorphism. We
shall show that ji is an automorphism. For, if ji is not an automorphism,
there exists a proper submodule Q of P such that Q + 0'i)"1Q = P. Then
ΛjiQ + KjUjiym = /yίP = M. Since feiΐ = fe and jiiJi^Q c Q, we have
/ϊQ = ikf, which is impossible as P is minimal for the relation hP = M.
Hence (ii)~V is an epimorphism such that (ji^ji is the identity map
and so P is a direct summand of P.

PROPOSITION 2. Let A be a Noetherian ring and let M be a finitely
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generated module. Then M is perfect if and only if the following con-
dition is satisfied:

(C) If / : L —* M is an epimorphism, then, L possesses a submodule
S which is minimal for the relation f(S) = M.

Proof. Suppose M is perfect and has P as protective cover together
with a minimal epimorphism j: P—+M. Since / is an epimorphism, there
exists a homomorphism g: P—+L such that fg = j. Take S = Im g; then
S is a submodule of L which is minimal for the relation f(S) = M, since
the induced map / : S —> M is a minimal epimorphism. Note that this
part of the proposition does not require A to be Noetherian. The other
part of the proposition results from the proof of the Proposition 1 and
the following.

LEMMA. If M is a finitely generated module over a Noetherian
ring, then every epimorphism g: M—> M is an automorphism.

Proof. Suppose Ker g Φ 0. If we write Ker g — R, then the
complete inverse image of R in M under g properly contains R. Again,
the complete inverse of g~\R) by g properly contains g~\R)) for if
9~\9~\R)) = 9~\R), then g~\R) = R. Proceeding in this way and writing
g~p~ι(R) = g~1(g~p(R))f we get a strictly ascending sequence of submodules
of M:

R C g-i(B) C . . . £ g-^R) g g-v-\R) £ . . .

which is impossible since M is a Noetherian module.
Proposition 1 has been formulated after a theorem of Rainwater [7],

2. Essential monomorphism and minimal epimorphism^ The fol-
lowing proposition relates the essential monomorphism and the minimal
epimorphism.

PROPOSITION 3. In the exact sequence of modules

0 >L-t->M-^N >0 (LΦO, NΦO)

( i ) if L is simple and / is essential, then g is minimal; and
(ii) if N is simple and g is minimal, then / is essential.

Proof, (i) Let us identify L with its image in M. Suppose K is a
submodule of M such that K + L = M. Since K Π L Φ 0 (otherwise
K = 0) and since L is simple, we have Kz) L and so M—K + L — K.

(ii) Let H be a submodule of M such that Hf}L = 0. Since N is
simple, L is a maximal submodule of M. If H Φ 0, then we shall have
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H + L = M, which would mean that H = M; but this is impossible as
HΓiL = 0.

PROPOSITION 4. In the exact sequence of modules

0 >L-^M-^N >0 (LΦO, NΦO)

let M be indecomposable. Then
( i ) if L is simple, g is minimal; and
(ii) is N is simple, / is essential.

Proof. ( i ) Let K be a submodule of such that K + L = M. Since
M is indecomposable, K f] L Φ 0; and so as in Prop. 3, K = M.

(ii) Let H be a submodule of M such that iff! 1/ = 0. If HΦ 0,
we shall have if + L = M, as L is a maximal submodule of M; but
this would mean that M is a direct sum of the submodules H and L,
which is impossible.

3. Modules over perfect rings. The following proposition is dual
to [5, Prop. 2.2].

PROPOSITION 5. Let A be a perfect ring and let P be a projective
module. Then the following conditions are equivalent:

( a ) the natural epimorphism P—>P/Λf is minimal for every proper
submodule Λf of P;

( b) P is indecomposable.

Proof. (a)=>(b). If P=Q®R, Q Φ 0, R φ 0, then the natural
epimorphism P—>P/R cannot be minimal.

( b ) Φ ( a ) . Let If be a proper submodule of P. Let P ' be the
projective cover of P\M and let / : P' —> P/M be the minimal epimorphism.
Since P is projective the natural epimorphism P-^PjM can be factorized

into P > P' >PjM, where g is an epimorphism since / is minimal.
Since P' is projective, there exists a module S such that P = Pr (B S;
but since P is indecomposable, S = 0 and P = Pf'.

PROPOSITION 6. If A is a perfect ring, then a finitely generated
projective module which is indecomposable is generated by one element.

Proof. Let {ml9 , mn}, (n > 1) be a minimal system of generators
of a projective module P which is indecomposable. Let Q be the sub-
module of P generated by the elements {m2, , mn} and let R be the
submodule generated by mx. Then, by Prop. 5, the natural epimorphism
P-+P/R is minimal. Since Q + R = P, it follows that Q = P; but this
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is impossible. This proves the proposition.

COROLLARY. In an Artinian ring, every indecomposable projective
ideal is principal.

Proof. For an Artinian ring is perfect [1] as well as Noetherian.

4» Applications. Let N be a two-sided ideal of the ring A and let
Γ = AjN be the factor ring. Let M be a module and let S(M) and T(M)
be respectively a submodule and a quotient module of M given by

S(M) = {m I Nm = 0, m e l } ^ Horn,(Γ, Λf)

and

T(M) = Λf/JVΛf^Γ0,I.

PROPOSITION 7. The following conditions are equivalent:
( i) S(M) = 0 implies M = 0;
(ii) the inclusion map S(M) —> M is an essential monomorphism for

every module M.

Proof. (i)=Φ(ii). Let ί ί be a submodule of Λf such that
HΠ S(M) = 0. Then S(H) f] S(M) = 0; also S(H) c S(M). This means

= 0, which implies H = 0.
). Evident.

PROPOSITION 8. The following conditions are equivalent:
( i ' ) T(M) = 0 implies M = 0;
(ii') the natural epimorphism ikf —» T(M) is minimal for every

module M.

Proof. ( i ' )=Φ(ii r ). Let K be a submodule of M such that
K+ NM= M. Then N(M/K) = M/iΓ, which implies ΛΓ/15Γ - 0, that
is, JSΓ = ilf.

( i i ' ) = ^ ( i ' ) . Evident.
The Prop. 8 remains true if we confine ourselves to finitely gen-

erated modules only, since the quotient module of a finitely generated
module is finitely generated.

PROPOSITION 9. If N is nilpotent, then the conditions ( i ) and ( i ' )
of the Prop. 7 and 8 respectively are satisfied. Moreover, if S(M) is
simple, either M is simple or S(M) c NM.

Proof. S{M) = 0 means that if Nm = 0, me M, then m = 0. Let



714 U. SHUKLA

m be any element of M. Since N is nilpotent, there exists an integer
P(;Ξ> 0) which is minimal for the relation Npm = 0, it being understood
that N° = A. If p > 0, then the relation Npm = N.Np-χm = 0 implies
that Np~λm = 0, which contradicts the minimality of p for the relation
Npm = 0. Therefore p = 0 and so m = 0.

Again T(ikf) = 0 means M = NM. Since iV is nilpotent, Np = 0 for
some positive integer p, and so ikf = iVikf = iNPikf = = NPM = 0.

If S(M) is simple, consider the submodule S(M) Π iVikf. There are
then two possibilities:

(a) S(M) Π NM = 0 which implies iVikf = 0, since the inclusion map
S(M) —> ikf is essential. The relation NM = 0 means S(M) = ikf and so
M is simple.

(b) S(M) Π iVM ^ 0 which meansS(M) c iVM, since S(M) is simple.
From now onwards we suppose that A is a semi-primary ring and

that N is the radical of A. This means that N is nilpotent and that
the factor ring Γ = AjN is semi-simple. Then A is perfect [1]. The
submodule S(M) and the quotient module T(M) are semi-simple modules.
We shall call them the "semi-simple part" and the "semi-simple quotient"
of M respectively. S(M) is also called the "socle" of M.

PROPOSITION 10. A monomorphism f: L—>M is essential if and only
if the restriction of / over S(L) is an isomorphism of S(L) onto S(M).

Proof. We identify L with its image in ikf. Suppose S(L) =
S(M) = R. Then the natural monomorphism R—> ikf is essential; but

this map can be f actorized into R > L > M where i is the inclusion
map, and so / is essential.

Conversely, suppose / is essential. Then the following diagram is
commutative:

S(L) — S(M)

L > ikf

where the vertical maps are essential monomorphisms. Therefore
/ : S(L) —> S(ikf) is an essential monomorphism. Since S(ikf) is semi-
simple, S(M) = S(L) 0 G, where G is a submodule of S(M). Since
G n S(L) = 0, G = 0.

COROLLARY. An injective module I is the injective envelope of all
its submodules which have S(I) as their semi-simple part.

The following results due to Morita, Kawada and Tachikawa [6] can
now be very easily prove:

(1) Let ikf be an injective module and let R be a semi-simple
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submodule of M. Then a submodule L of M which is maximal for the
relation S(L) = R is injective.

For the inclusion map R —> L is essential and since L is maximal
for this property, L is the injective envelope of R.

(2) If R is a semi-simple module, there exists an injective module
I such that S(I) = R.

Take I to be the injective envelope of R.
(3) Let M be a module and let I be an injective module. If

S(M) f& S(I), then there exists a monomorphism / : M-+1; if M is also
injective, / is an isomorphism. Thus an injective module is uniquely
determined upto an isomorphism by its semi-simple part.

The first part follows at once from the properties an essential
monomorphism [2]. Moreover, by Prop. 10, / is essential. If M is also
injective, then M is a direct summand of / and so M ^ I.

(4) An injective module is indecomposable if and only if its semi-
simple part is simple.

Let I be an indecomposable injective module. Then I is the injective
envelope of everyone of its sumbodules [5, Prop. 2.2], Hence S(I) is
simple. For, if J is a nonzero proper submodule of S(I), then the
inclusion map J—>S(I) is essential, which is impossible since S(I) is
semi-simple.

Conversely, suppose S(I) is simple. Let I = L®M, LΦO, MΦO.
Then S(I) = S(L) 0 S(M), S(L) Φ 0, S(M) Φ 0; but this contradicts the
simplicity of S(I).

We state without proofs the duals of the Prop. 10 and its corollary.

PROPOSITION 11. An epimorphism /: L —• M is minimal if and only
if the induced epimorphism / : T(L) —> T(M) is an isomorphism.

COROLLARY. A projective module P is the protective cover of all
its quotients which have T(P) as their semi-simple quotient.

The following results are the duals of the results (2), (3) and (4)
given above and can be proved easily:

( 2') If R is a semi-simple module, there exists a projective module
P such that T{P) = R.

(3') Let M be a module and let P be a projective module. If
T(M) p& T(P), then there exists an epimorphism /: P—»M; if M is also
projective, / is an isomorphism. Thus a projective module is determined
uniquely up to an isomorphism by its semi-simple quotient.

(4') A projective module is indecomposable if and only if its semi-
simple quotient is simple.

Morita, Kawada and Tachikawa [6] have also proved:
(5) If A is an Artinian ring, then every injective module can be
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expressed as the direct sum of indecomposable injective modules.
Matlis [5, Prop. 2.5] has generalized this result to the case when A

is a Noetherian ring. The following result which is dual to (5) is true
when A is only a semi-primary ring:

(5') Every projective module can be expressed as the direct sum
of indecomposable projective modules.

Let P be a projective module. Let A, B, C, be the projective covers
of the simple factors of T(P). Then T(P) = T(A) © T(B) 0 T(C) 0 .
Also

= (r®ΛA)e(r®ΛB)e(r®,c)e

Thus T(P) = T ( A 0 £ 0 C 0 . •). Then (3') shows that P™ A 0 £ 0 C 0 • ,
since A 0 5 0 C 0 is projective. Moreover, since T{A)f T(B), T(C),
are simple, A, B, C, are indecomposable.

Eilenberg [3] has shown that every projective module in a perfect
category is the direct sum of singly generated projective modules.

We now give simple proofs of three lemmas proved by Eilenberg and
Nakayama [4].

Let a be a subset of A. The orthogonality relation a J_ A is defined
by the condition aP = 0, where P is the projective cover of the module A.

LEMMA 1. If BcNA, then the relations a 1_ A and a J_ A\B are
equivalent.

Since the natural epimorphism A—>AjNA is minimal and BaNA,
the two maps in A —> AjB —* AjNA are minimal. Hence A, AjB and
AjNA have the same projective cover and so the relations a _|_ A, a J_ AjB
and a J_ A/NA are equivalent.

LEMMA 2. If BaNA and A\B is projective, then B = 0.

For, then the map A —• A\B is an isomorphism and so B = 0.

LEMMA 3. Let a be a two-sided ideal of A, A a A-module and B
a submodule of A such that (i) a Ac BaNA, (ii) A\B is A[a-projective.
Then aA = B.

The minimal epimorphism A —> A/NA can be f actorized into

A -> Ala A — AjB -> AjNA

in which each map is a minimal epimorphism. Since the map A/a A —> A\B
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is minimal as a J-epimorphism, it is also minimal as a Λ/α-epimorphism.
Since A\B is J/α-projective, the map AjaA —>A/B is a Λ/α-isomorphism
and so the kernel B\aA = 0, that is, aA — B.
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