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l Introduction. There are, in general, two main approaches to
the introduction of strong infinity assertions to the Zermelo-Fraenkel
set theory. The arithmetical approach starts with the regular ordinal
numbers, continues with the weakly inaccessible numbers and goes on
to the ^-numbers of Mahlo [4], etc. The model-theoretic approach, with
which we shall be concerned, introduces the strongly inaccessible numbers
and leads to Tarski's axioms of [14] and [15]. As we shall see, even
in the model-theoretic approach we can use methods for expressing strong
assertions of infinity which are mainly arithmetical. Therefore we shall
introduce strong axiom schemata of infinity by following Mahlo [4,5,6,].
Using the ideas of Montague in [7] we shall give those axiom schemata
a purely model-theoretic form. Also the axiom schemata of replacement
in conjunction with the axiom of infinity will be given a similar form,
and thus the new axiom schemata will be seen to be natural continuations
of the axiom schema of replacement and infinity.

A provisional notion of a standard model, introduced in § 2, will be
basic for our discussion. However, in § 5 it is shown that this definition
cannot serve as a general definition for the notion of a standard model.

2. Standard models of set theories. For the forthcoming discussion
we need the notion of a standard model of a set theory. A general
principle which distinguishes between standard and non-standard models
of set theory is not yet known. Nevertheless, a notion of a standard
model for various set theories will be given here, but this will serve
only as an ad-hoc principle and we shall see later that its general
application is not justified.

The Zermelo-Fraenkel set theory is generally formalized in the
simple applied first-order functional calculus, since this is the most
natural language for a set theory. In that formulation the Zermelo-
Fraenkel set theory has an infinite number of axioms. From that formu-
lation one passes directly to a formulation of the Zermelo-Fraenkel
set theory by a finite number of axioms in the non-simple applied
first-order functional calculus (we shall denote functional variables with
PfPifPn )* The axioms of extensionality, pairing, sum-set, power-
set and infinity are as in [2]. The changed axioms are

The axiom of subsets (x) (3 y) (z) (z e y= : z e x . p(z))

Received February 20, 1959. This paper was written while the author was a Sloan
Fellow of the School for Advanced Study at M.I.T.

223



224 AZRIEL LEVY

The axiom of replacement
) (3 y) (z) (z e y=(3 u) (u e x . p(u, z))).

The axiom of foundation (3 a;) p(x) z) (3 a;) (p(x). (y) (y ex Z)^p(y))).
If we regard as mathematical theorems of a theory Q formulated

in the non-simple applied first order functional calulus only those theorems
of Q which do not contain functional variables then it can be shown,
by the method of Ruckverlegung der Einsetzungen (compare [3],
pp. 248-249) that the set of all the mathematical theorems of Q coin-
cides with the set of all the theorems of the corresponding theory Qr

formulated in the simple applied first order functional calculus (whose
axioms are the axioms and the axiom schemata corresponding to the
axioms of Q). Therefore Q and Q' could be regarded, from the mathe-
matical point of view as the same theory. Nevertheless, we shall see
that Q' is not obtained uniquely from Q if we disregard the actual
axiomatic representation of Q.

We are interested in passing to set theories based on a finite set of
axioms in the non-simple applied first-order functional calculus, since
in this case we can define the notion of standard models for these
theories in the sense of Henkin. A standard model of such a theory Q
will be a model where the functional variables range over all the
subsets of the universe set of the model. The statement that the
universe u and the membership relation e (which are both taken to be
sets) determine a standard model of Q can be easily formulated in set
theory. This is done as follows : We take the conjunction of the axioms
of Q and effect the following replacements1

(x) ( by (x) (x 6 u ZD (3 x) ( by (3 x) (x e u.

x e y by <xy> e e p^x,, , xn.) by < xλ, , xn, > e /,

and

then we close the resulting formula with respect to the variables /*
by the prefix {fλ, , f3) (fx c u . . f5 c u : 3 . Thus we obtain a
formula which we shall denote with SmQ(u, e).

Standard models for set theories for which (xyyee^iyeu.
x e y and yeu.xeyiiDxeu are called standard complete models:
ScmQ(u)= : (y)(yeuz)y^u).(e)((xyyee= :y e u.x e y : . S m Q ( u , e)).

We denote by S the set theory which consists of the axioms of ex-
tensionality, pairing, sum-set, power-set, subsets and foundation. SF wτill
denote the theory obtained from S by adding to it the axiom of
replacement. Z (resp. ZF) will denote the theory obtained from S (resp.
SF) by the addition of the axiom of infinity (axiom VII* of [2]). We
shall assume that these theories are formulated in the simple first-order

1 Alphabetic change of bound variables may also be needed.
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functional calculus unless we are dealing with standard models of these
theories, in which case we shall assume that we have passed to corre-
sponding formalizations in the non-simple first-order functional calculus.

By the methods of Shepherdson [12] 1.5 and Mostowski [9] it is
easy to prove (in SF) that each standard model of a set theory Q which
includes the axioms of extensionality and foundation is isomorphic to
some standard complete model of Q.

The function R(a) is defined by R(a) == Σβ«* Φ(R(β)) (Φ(&) i s t h e

power-set of x). The rank of an element x of R(a) is defined to be the
first β such that x e R(β). We shall assume in the following that
the properties of these functions are known.2

We can prove, in the same way as Shepherdson [12] 3.14 and 3.3 3

that if Q contains the axioms and the axiom schemata oί SF then each
standard complete model of Q is of the form R{a)y where a is some
limit number. Thus we can conclude that each standard model of a
theory Q which contains the axioms and axiom schemata of SF is
isomorphic to some standard complete model of Q of the form R(a). If
we regard as assertions of infinity those statements which assert the
existence of standard models for strong set theories, we see now why
all assertions of infinity reduce to statements about the existence of
ordinal numbers with appropriate properties.

The (strongly) inaccessible numbers a are usually defined as regular
initial numbers greater than ω which satisfy (λ) (λ < a z> 2 k<a). This
definition leads to the expected consequence only if the axiom of choice
is assumed, since, for example, if the cardinal of the continum is not
an aleph then according to this definition no ordinal is inaccesible.
Shepherdson [12] established the close connection between the inaccessi-
ble numbers and what we call the standard complete models of ZF.
These results of Shepherdson can serve to give a new definition of
inaccessible numbers which will have a satisfactory meaning even if
the axiom of choice is not assumed.

DEFINITION 1. a is called inaccessible if R(a) is a standard com-
plete model of ZF.

In(a) Ξ= ScmZF(R{a))
Shepherdson [12] proves, in effect, that this definition is equivalent

to the usual definition if the axiom of choice is assumed. Without using
the axiom of choice it can be proved that a is inaccessible if and only if

(1) a > ω

(2) a is regular

(3) (z)(z 6 R(a) ID ~ z > α ) 4

2 See, for example, Shepherdson [12] 3.2- he denotes the function R by G.
3 Shepherdson's super-complete models are our standard complete models of ZF.
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We shall widely use in the following the fact that every inaccessible
number is regular (this is proved by Shepherdson [12] 3.42).

Definition 1 shows clearly why such a number is called inaccessible,
i.e., unobtainable from the smaller ordinal numbers by means of the
set theory ZF. Following Specker [13] we can generalize this definition
as follows:

DEFINITION 2. Let Q be a set theory formulated by a finite number
of axioms in the non-simple applied first-order functional calculus. An
ordinal number a is called inaccessible with respect to Q if R{a) is a
standard complete model of Q.

InQ(a) == ScmQ(R(a)).

3 A strong axiom schema of infinity. The numbers inaccessible
with respect to ZF are the inaccessible numbers. The numbers inacces-
sible with respect to the theory obtained from ZF by addition of the
axiom (3 σ) In(σ) are all the inaccessible numbers except the first one.
Thus we can go on and observe numbers inaccessible with respect to
systems which require the existence of more and more inaccessible num-
bers. We can also observe the numbers inaccessible with respect to the
extension of ZF which is obtained by adding (μ) (3 σ) (σ > μ . In(σ))
to its axioms, etc. But if we want to have a really fast trip into the
realm of infinity we shall use the means provided by the arithmetical
approach to assertions of infinity.

Mahlo [4] defined a function πUtβ such that πΛt0 counts the regular
ordinal numbers, πaΛ counts the weakly inaccessible number and for
increasing β πΛiβ, regarded as a function of a, counts ordinals which
satisfy higher and higher requirements of weak inaccessibility. The
whole hierarchy of Mahlo [4] is based on the class5 of the regular
numbers —the range of πΛt0. If we replace πa>0 by a function πi i0 whose
range is a subclass of the class of the regular numbers we can define
analogously functions π'ΛtΎI and π'ΛtV£ and prove theorems corresponding
to Mahlo's theorems in [4,5,6,]. We shall take for the range of π'Λt0

the class of the inaccessible numbers.

Our exposition will differ from Mahlo's also in a technical point:
Whereas Mahlo uses any strictly increasing functions to count the
members of given classes of ordinal numbers we shall use for this pur-
pose normal functions (Normalfunktionen)6 which are much easier to
handle. A normal function at limit-number arguments may take values

4 Since we do not assume that the cardinal numbers are formally defined — z ^ a is
an abbreviation of a statement about equivalence of sets.

5 We shall use the word 'class' instead of the word ' property \ e.g., instead of 'the
property of being a regular number1 we shall say 'the class of the regular numbers'.
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outside the class whose members it counts, since the normal function
counts the members of the closure (in the order topology) of the given
class.

DEFINITION 3. The functions PΎt{oc)7 are defined by transfinite induc-
tion as follows: P0(0) is the first inaccessible number PQ(β + 1) is the
first inaccessible number greater than P0(β) for limit-number a PQ(a) =
limβ<Λ P0(β). Pv(β + 1) (resp. Pv(0)) is the first inaccessible number σ
greater than Pv(β) (resp. the first inaccessible number) such that for
each rf < η σ = Pr/(j) for some limit number γ.

The functions Pv(a) are not assumed to be defined for evey η and a.

DEFINITION 4. Q(β + 1) (resp. Q(0)) is the first inaccessible number
a greater than Q{β) (resp. the first inaccessible number) such that
Pα(0) = a. For a limit-number a Q(a) = limβ<QJ Q(β).

We can also define functions Qη(a) such that Q0(a) = Q(a), Qβ+1 is
related to Qβ as Qo is related to Po and for limit-ordinal η Qη counts
the inaccessible numbers which are in the intersection of the ranges of
all the functions QΨ, rf < η. The numbers a for which QΛ{ϋ) = a we
call Q*-numbers.

We shall now consider the following axiom schema
M Every normal function defined for all ordinals {d.f.a.o.) has at

least one inaccessible number in its range8

THEOREM 1. M is equivalent to each of the following schemata

Mr Every normal function d.f.a.o. has at least one fixed point which

is inaccessible

M" Every normal function d.f.a.o. has arbitrarily great fixed points
which are inaccessible.

Proof. Obviously M" implies Mr and Mf implies M. We shall
prove that M implies M".

Let F b e a normal function d.f.a.o. Let G be the derivative of F, i.e.,
the normal function which counts the fixed points of F. Since F is
d.f.a.o. then by [1] § 8 G is also d.f.a.o. For any given γ let Hy(ξ) =

6 A function F(a) on the ordinal numbers into the ordinal numbers is called normal if :
(1) It is strictly increasing: a < β 3 F(a) <F(β)
(2) It is continous: For limit-number a F(a) = \imβ<aF(β).
7 These are the functions analogous to the functions %a,-η of Mohlo [4].
8 This schema is written formally as

(a,β,γ) (φ(a,β) . φ(a,γ) : D β = γ) . (a) ( 3 β) φ (a,β) . (a,β,γ,δ) (« < ΐ - <p(«,β) . φ(γ>d) - => #<#) («,
β) (— (3 a) (<r + 1 = a) . a * 0 . φ(a,β) : C (r) (γ < β D (3 δ,η) (δ < a. <P (δ,v) V > ΐ))) : =>
(3 a,β) (φ(a,β). ln(β)) where φ is a formula of set theory such that there is no confusion of
variables in the corresponding instance of the schema.
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G(y+ξ). Hy is a normal function d.f.a.o. and hence by M there is an
ordinal ξ such that β = Hy(ξ) is inaccessible. Since β = G(y + ξ), F{β)
= β. By a well-known theorem the value of a normal function is not
less than the argument and hence β > γ + ξ > γ.

In order to see how near M is to a purely arithmetical assertion
it is interesting to note that M is equivalent to the conjunction of

(1) There exist arbitrarily great inaccessible numbers
(2) Every normal function df.a.o. has at least one regular number

in its range
The proof of this makes use of the fact that every regular ordinal which
is the limit of a set of inaccessible numbers is inaccessible (since an ordinal
is inaccessible if and only if it is regular, greater than ω and (z) (z e
R(a) ZD ~z> a)). Let F be any normal function df.a.o. If there
exist arbitrarily great inaccessible numbers then the function PQ(a)) is
d.f.a.o. and also the normal function F(P0(a)) is df.a.o. By (2), using
the same reasoning as in Theorem 1, there is a regular ordinal β such
that F(P0(β)) = β, i.e., P0(β) = β and F(β) = β. Since β is a limit
number and Pύ{β)—β, β is the limit of a sequence of inaccessible numbers
and since β is regular it is inaccessible.

ZM will denote the set theory obtained from ZF by the ad-
dition of M.

We shall now introduce a principle of reflection over ZF. This
will be an axiom schema which will assert the existence of standard
complete models of ZF which reflect in some sense the situation of the
universe.

Let φ be a formula of set theory. We denote by Rel (u, φ) the
formula obtained from φ by relativizing all the quantifiers in it to u,
i.e., by replacing each occurrence (z) χ or(g z) χ by (z) (z e u ZD χ) or (3 z)
(z e u . χ), respectively.9

The principle of complete reflection over ZF

N (3 u) (ScmZF (u) . {xx , , xn) {xx, xn e u 3 . φ = Rel (u, φ)))
where φ is any formula which has no free variables except xx , xn.

As seen from the formulation of N, it is closely connected with the
notion of an arithmetical extension of Tarski and Vaught [17]. In the
proofs of Theorems 2,3,5 and 6 we shall use the methods used by
Montague and Vaught [8] for arithmetical extensions.

We shall see now that another principle of reflection, which seems
at first sight to be stronger than N is equivalent to N.

THEOREM 2. N is equivalent in S to the following schema

9 If φ contains u bounded then u is replaced in φ before the relativization by the
first variable, in alphabetic order, which does not occur in φ.
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N' (3u)(z G u . ScmZF (u). (xx, , xn) (x±, , xn € u ID :
9>! ΞΞ Rel {u,φύ. . ψm = Rel (u, φm)))
where m is any natural number and φif 1 < i < m, is a formula
which has no free variables except xx, , xn.

Proof. Obviously N' implies N. Now we assume N and we shall
prove first the schema N" which is like N', only that it does not con-
tain the part z e u. Let 0 be the formula VΓ=i£ = i . <Pi- Since the
natural numbers 1,2, •••, m are absolute with respect to standard
complete models (see, e.g., [12] 2.320) we have Scm(u) D : . Rel(w, 0 ) Ξ=:
Viί-i t = i . Rel(%, ̂ i) We use now N with respect to 0 and we obtain
the existence of a set u such that ScmZF (u) and

(ί) (a?i, , a?n) (ί, Xι, ,xn e u ID .*. VΓ=i ί = i . Ψ%

From ScmZF (u) we can prove easily by induction that ω c w, and
therefore, substituting j for ί in the above formula, 1 < j < m, we get
#!, , xn e u Z) . ^ Ξ Rel (^, ^ ) , and thus we have proved N". Now
we shall prove N' from N".

Given φx, >φm we denote

e u . ScmZF (u) . (xx, , xn) (xx, , xn e u Z) .

We use now N" for 9>!, ,<pm+2 Thus we have the existence of u
such that ScmZF (u) and

(3) &!, , xn e u 3 . φt = Rel (%, 9>4) 1 <i <m
(4) z e u ID . φm+1 = Rel (w, ̂ >m+1)

(5) ^TO+2 = Rel (u, φm+2).

By ScmZF (u) and (3) we have (z) (z e u ID <pm+1), and hence, by (4),
also (z) (z e uz) Rel (u, φm+1)) but the latter formula is Rel (u, φm+2) and
hence, by (5), we have φm+2> which is the instance of N' corresponding
to φ19 •••, φm.

We note that Theorem 2 will remain valid if ZF is replaced in
both N and N' by S or by any extension of S.

THEOREM 3. In ZF the schema M is equivalent to the schema N
and to the following schema
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N"r (3 a) (In(a) . (x19 . . . , xn) (x19 . . . , xn e R(a) ID . φ = Rel (β(α), ?>)))

wfeere φ is any formula which has no free variables except

xί9 ---,%n.

Proof. As we have already mentioned in § 2 all the standard
complete models of ZF are of the form R{ά). Hence, by Definition 1,
N and N"' are equivalent.

We shall now prove M from N'". Let φ(x, y x19 , xn) be any
formula. Let χ(x19 •••,#„) be the formula asserting that if φ(ξ9 rj: χ19

•••»#«) gives a function η — F(ξ) which is normal and d.f.a.o. then
F(ξ) has at least one inaccessible number in its range. From Nnt we
shall pass, as in Theorem 2, to a schema which is like N"' only that
φ == Rel (R(a), φ) is replaced by Λl=i Ψ% = Rel (•#(#)> <pt). We shall take

ψ l ==φ, <p2 = (ξ) ( 3 η) φ (£, η), <p3 = χ, ^ 4 = (χlf ••-,»„)%. By the cor-
responding instance of that schema there exists an inaccessible number
a such that

(6) x19 , xn9 x, y e R (a) ID . φ == Rel (jB(α), ̂ )
(7) a?,, , a?Λ e R (a) Z) . {ξ) (3 rj) φ (ξ, rj) ̂  Rel (R(ά), (ξ) (3 η) φ {ξ, rj))
(8) x, -, xn e R(a) ID . χ = Rel (Λ(α), χ)
(9) fo, , xn) χ = Rel (R(ά), (x19 , a?»)χ).

We shall now assume that for certain x19 * ,xn e R(a) φ(ξ,rj) gives a
function rj = F{ξ) which is normal and d.f.a.o. The relativization of
an ordinal-number-variable μ to the set R(a) is μ < a (see Shepherdson
[12] 2.316) and thus, since we assume the left-hand side of (7), we get

(ξ) (ξ<a^^η){7]<a. Rel (R(a), ψ(ξ ,η))))

and by (6) we have (ξ) (ξ < a ID (3 η) (rj < a . ψ (ξ9 η))). Since F is
normal and a is a limit number we have F(a) = a, thus proving
x19 , xn e i?(a) 3 χ (a?i, , α?n). By (8) we have x1* ,xn e R{a) D
Rel (-R(α), χ(a?!, , »„)) which is Rel (R(ά)f(x19 , xn) χ) and hence, by
(9), we have (x19 •• ,xn)Xt thus proving M.

Now we shall prove N from M. In this we shall make use of
ideas of Montague in [7]. Let φ be any formula of set theory. We
write φ in prenex normal form. Let φ be of the form (y) (3 z) (u) (3 t) φ*
where φ* does not contain any quantifiers, and let φ have the two free
variables xlf x2. For formulae φ of any other structure the treatment
is analogous to the treatment of this case.

Given any x19 x2, y let Fτ{x1} x2, y) be the set of all the sets z which
satisfy (u) (3 t)φ* and which are of minimal rank among the sets satisfy-
ing this requirement. If there are z'& satisfying (u) (3 ί) φ% then by the



AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY 231

axiom of foundation they have certain ranks and hence Ft(xl9 x2, y) Φ 0,
otherwise Fτ(xu x2, y) = 0. Fλ{xlf x2, y) is a set since it is the subset
of some set R(a) or it is the void set. Given any xlf x2, y, z, u we denote
by F2(x19 x2, y, z, u) the set of all the sets t which satisfy φ* and which
are of the least rank among the sets t satisfying φ*. ~ φ = (g y) (z)
(3 ^) (t) ~ Ψ* We define for this formula corresponding functions
F2(xly x2) and FA(x19 x21 y, z).

H(x) = x + Σ Fx(xlf x2, y) + Σ F&i* v*> 2/, *> *0
χι, χz> y β x a?i, ^2 y, z, u 6 x

+ Σ Ήfai, »2) + Σ ^4(^1, a?a,!/,«)
Xi, cc2 6 a? xi, X2> y, z 6 x

Let I be the rank of the set x, then x c i?( | — 1) ( | cannot be a
limit-number). Let us define

J(x) = Λ( | - 1), ΛΓ(aj) = J(H(x)), P(x) =

It follows immediately from the definition of P(x) that

x19 x2, y,zyue P(x) z> : Fx(x19 x2, y) c P(a?). ί 7 ^ , x2, y, z, u) c P(χ)
. F3(xlf x2) e P(χ) . J P 4 ( ^ , fl.a, y > 2) c P(a?) .

Denote
0(8) = (Xu %2, V, z> u) (Xif x2,V,z,u e S 3 : Fτ{xlf x2, y) c s

. 2^(0?!, a?2,2/, «, u) c s . 1^(0?!, a?2) c s . F 4(χ x, χ2, y, z) c s).

Assume 0(s). We shall see that x19 x2 e s ID . φ = Rel(s, 90). We have

Rel (s, φ) = (y)(y e siD (3 z)(z e s . (w) (% 6 s ID (3 ί) (ί e s . φ*))))

and by definition of Fλ — F4

(10) (x19 x 2 , y , z , u 9 1 ) (x19 x 2 f y e s . z e Fx(x19 x 2 , y ) . u e s

. t e F 2 ( x l y x2y y , z , u ) : 3 φ*)

(11) (x29 x2, y9 z, u91) (x19 x2 e s .y e F3 (x19 x2) . z e s
. u e F 4(^i, x2,y,z).tes:z)~ φ*)

If )̂ holds for x19 x2 e s then -FΊ(a?i, xi9 y) Φ 0 and i * ^ , a?a, ?/, «, w) Φ 0
for 2/ € 8, z e F^Xu x2, y) and u e s and hence by (10) Rel (s, ?>) holds
for x19 x2. If ~ φ holds for α?x, x2 then we have by (11), in the same
way, that Rel (s9 ^ φ) holds, i.e., ~ Rel (s, φ) holds.

Since we have always Σv<μ R(<**) = Λ(supv < μ αv) and by the definition
of the function K Kn(x) is of the form R(β) also P(x) = Σ « e ω ^ w ( ^ ) is
equal to iϋ(#) for some α. Since 0(P(»)) we have 0(R(α)). If we
want α to be greater than μ it is enough to take x = {//} and by
a? Q P(«) we have μ e P(a?) = R(α), i.e., μ < α. Now let F be the



232 AZRIEL LEVY

normal function counting, in the order of their magnitude, the ordinals
a which satisfy 0(R(a)). Since we have arbitrarily great ordinals a
satisfying 0(R(ά)) F is d.f.a.o. For ξ which is not a limit-number we
have 0(R(F(ξ))). Let η be a limit-number, and let x19 x29 y,z,u e
R(F{Ύ])). Let γ be the maximum of the ranks of x19 x2, y, z, u. Since η is
a limit-number F(rj) is also a limit-number and therefore γ < F(η). Since

= lime<r? F{ξ) there is an ordinal ξ, ξ + 1 < η, such that γ < F(ξ + 1)
), and hence xlf x2, y, z,u e R(F(ξ + 1)). But, as we have already

mentioned, 0(R(F(ξ + 1))) holds and therefore Fx{x19 x2, y) c R(F(ξ + 1))
c R{F(rj)) and the same holds for F2 — JP4. Thus we have proved
0(R(F(η))) also for limit-number η, hence 0?) 0 (R{F(η))).

By Λf the function F(ή) has in its range an inaccessible number a.
Therefore we have 0(R(a)) and hence

(x19 x2) (x19 x2 6 R(a) Z) . ^ = Rel (R(a), φ)).

N follows from Definition 1.

THEOREM 4. In ZM it is provable that all the functions Pv are
d.f.a.o. as well as the function Q.

Proof. Let η be the least ordinal such that Pv is not d.f.a.o. and
let a be the least ordinal for which Pv (a) is not defined, a cannot be
a limit-number, since in that case Pv (a) = limβ<Λ Pv(β). Let us "define"
Pv(a) to be the class of all the ordinal numbers. By exactly the same
arguments as those in the proof of Theorem 2 of Mahlo [4] (for the
case a = π^μ, v < a) we can define a normal function " converging to
Pη(aY' which does not have inaccessible values at limit-number arguments,
i.e., we have a normal function d.f.a.o. which does not satisfy M'.
Now that we proved that for each η Pv is d.f.a.o. Let Q(0) be unde-
fined. As in the former case we "define" Q(0) to be the class of all
ordinals and use the arguments in the proof of Theorem 2 of Mahlo [4]
(for the case of the least ξ such that ξ = 7Γα) to construct a normal
function df.a.o. which does not satisfy Mr. In the same way we prove,
by transfinite induction, the existence of Q(a) for each a.

Arguments which are very similar to those of Theorem 4 can be
used in order to prove in ZM that all the functions Qη are d.f.a.o. as
well as the normal function counting the Q*-numbers, and so on.

4. An hierarchy of set theories* In analogy with Mahlo [4] we can
give axioms of infinity stronger than M.

DEFINITION 5. a is call a hyper-inaccessible number of type 1 if
it is inaccessible with respect to ZM, i.e., if it is inaccessible and each
normal function whose domain is a and whose range is included in a
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has at least one inaccessible number in its range, a is hyper-inaccessible
of type μ + 1 if it is inaccessible and each normal function whose
domain is a and whose range is included in a has at least one hyper-
inaccessible number of type μ in its range. For a limit-number μ a is
hyper-inaccessible of type μ if it is hyper-inaccessible of type λ for
every λ < μ.10

It follows immediately from Definition 5 that if a is hyper-
inaccessible of type μ it is also hyper-inaccessible of type λ for every
\<μ.

Let A be a definite ordinal number. To avoid going into details
we assume that existence and uniqueness of A are provable in ZF and
also that it is provable in ZF that the definition of A is absolute with
respect to standard complete models of ZF. Observe the following
axiom schema:
MΛ (for A > 2) Every normal function d.f.a.o. has for every μ < A at

least one hyper-inaccessible number of type μ in its range.
Obviously we have that if ZF \- A < M then MM implies MΛ. Let ZMΛ

denote the theory obtained from ZF by addition of MΛ. By Definition
5 a is a hyper-inaccessible number of type A if and only if R(a) is a
standard complete model of MΛ (here we use the absoluteness of A with
respect to standard complete models of ZF).

In complete analogy to Theorem 3 we have:

THEOREM 5. MΛ is equivalent in ZF to the schemata
N'A" (μ) (μ < A D (3 a) (a is hyper-inaccessible of type μ . (xu •••,#»)

(x19 -, xn e R(a) ID . φ = Rel (R(a), φ))))
where φ is any formula which has no free variables except

and

NΛ (μ)(μ <A-D &u){ScmZM»{u) .

(xu , xn)(%i, * , %n β UZD # φ ΞΞΞ Rel (u, φ)))) where φ is any formula
which has no free variables except xlf * ,xn.

By ScmZMμ(u) we mean that u is a standard complete model of an
axiom system like ZMΛ only that in ZMμ μ is taken as a parameter.
Thus ScmZMv(u) is a formula with the two free variables μ and u.

By replacing A by A + 1 in Theorem 5 we obtain easily that MΛ+1

is equivalent to the schemata

(3 a) {a is hyper-inaccessible of type A .

(x19 •••,&«) (xlf - *,xn e R(a) ID . ψ ΞΞ Rel(α),

1 0 The hyper-inaccessible numbers of type 1 correspond to the βo-numbers of Mahlo
[4]. The hyper-inaccessible numbers of type λ correspond to the members of the range of
πΛ)o,λ of Mahlo [4].
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a n d

( 3 u) (ScmZMΛ(u) . (x19 •••,&„) (x19 -- ,xn e uz) . φ = Re\(R(a), φ))).

Now we shall see that the same relation which holds between ZF
and ZM, and between ZMΛ and ZMΛ+1 holds also between S and ZF.

THEOREM 6. In S the axiom schema of replacement in conjunction
with the axiom of infinity is equivalent to the schema

NQ (3 u) (Scms (u) . (x19 , a?n) (xlf •••,&„ e u z> .φ = Re\(u, φ)))

where φ is a formula which does not contain free variables

except xlf •••, xn.

Proof. That No is provable in ZF is Montague's theorem proved
in [7] and it is proved by the same method as the corresponding part
of Theorem 3.

Now we assume No and prove the axioms of infinity and replace-
ment. ByJV0, taking any φ, we obtain (3%) Scms(u). This u obviously
satisfies the requirements of the axiom of infinity. Now, given φ(v, w)
with the only free variables v, w,x19 , xn let χ denote the formula

(r, s, t) (φ(r, s) . <p(r, t): Z) s = ί) 3 (3 y) (w) (w e y =
(JV)(V 6 X . φ (v, W)))

By iVo we have, as in Theorem 2, that there exists a set u such that
Scms(u) and

(12) X19 , Xn, V, W 6 U ZD . φ = Rel (u, φ)

(13) Xlf , Xn9 V 6 U Z) . (jw)φ = Rel (%, (3 w) φ)

(14) a?χ, , xn, x e u D . χ = Rel (u9 χ)

(15) (a?!, , xn) (x) χ = Rel (u9 (x19 •••,»„) (a?) χ)

Since Rel (^,(3 w) 9>) is (3 w) (w e u . Rel (w, ^)) we have by (12) and
(13) x19 , xn9 v e u Z) . (3w)(w e u . φ) = ( 3 w) φ h e n c e if ( r , s9 t9)

(φ(r9 s) . φ(r, t): Z) s = ί) then for a? e w, since Scms(u) implies that
then x cz ^, the function represented by ^(^, w) maps the members of
x on members of u9 and therefore, by the axiom of subsets, that
function maps x on some set y. Thus we have x19 , xn9 x e u ZD χ and
by (14) x19 •••, xnfx 6 u Z) Rel(w, χ); but the closure of the latter
formula is Rel(u,(x19 , &n) (&)z) a n ( i hence, by (15), we have χ.

By Theorem 6 we can view the axiom schemata M and MΛ as
natural continuations of the axioms of infinity and replacement. There-
fore, although the consistency of ZF does not imply, even in ZM (if ZM
is consistent), the consistency of ZM, it seems likely that if in the
sequence S, ZF9 ZM, ZM2J no inconsistency is introduced in the
first step, from S to ZF, also no inconsistency is introduced in the
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further steps.
In the following definitions and statements we essentially follow

Montague in [7].
Let the theory Q be an extension of the theory P. Let φ be any

sentence of Q. P + {ψ} denotes the theory obtained from P by adding
to it φ as a new axiom. Con (P + {φ}) is the arithmetic sentence which
asserts the consistency of P + {φ}. Q is called essentially reflexive
over P if for every sentence φ of Q ψ ZD Con (P + {φ}) is a theorem of
Q. Q is called an essentially infinite extension of P if no consistent
extension of Q without new symbols is obtained from P by adding to
it a finite number of axioms. If Q is essentially reflexive over P then
Q is an essentially infinite extension of P. By the same argument as
that of Montague in [7] each of the theories S. ZF, ZM, is essenti-
ally reflexive over the preceding ones.

L e t E R ( a ) = {<xy} xey . x , y e R ( a ) } , A Λ = ζ R ( a ) , E E ( Λ ) > . M o n t a g u e
and Vaught proved in [8] that if β < a and R(a) is an arithmetical
extension of R(β) (i.e., for any formula φ with no free variables except
xu •••,#„

(x19 . . , xn) (x19 , an e R(β) D . Rel (β(α), Ψ) = Rel (R(β), Ψ)))

then both AΛ and Aβ are models of ZF (in the sense of models of the
type S4 of Tarski [16]). n

THEOREM 7. If AΛ and Aβ are as mentioned above and β is
inaccessible then both AΛ and AB are models of ZM. If β is hyper-
inaccessible of type A then both AΛ and Aβ are models of ZMΛ+1.

The proof that Aa is a model as required is exactly like the second
part of the proof of Theorem 3. Aβ is also a model as required since
if ψ holds in Aa it holds in Aβ.

Another aspect of the phenomena discovered by Montague and
Vaught in [7] and [8] is the following theorem:

THEOREM 8. Let Sb be a theory with the same language and axioms
as S with the additional set-constant b and the additional axioms

(16) Scms(b)
(17) (xlf •••, xn)(x19 •••, xn 6 ί ) D . φ ΞΞΞ Rel (6, φ)) where ψ is any

formula of S without free variables except x19 •••, xn.
The theorems of Sb which do not contain the constant b are exactly the

1 1 This and the following Theorem 7 can be read in two different ways. Either we
take the theorems and proofs informally, in which case all the notions retain their verbal
meaning; or that the theorems are taken to be formal theorems of S and then the notions
of model and arithmetical extension are formal notions defined by means of the formal
notion of satisfaction, which is given,, for example, in Mostowski [11].
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theorems of ZF the theorems of Sb + {ScmZF(b)} which do not contain
b are exactly the theorems of ZM and the theorems of Sb + {(μ){μ <
A D ScmZMμ-(b))} which do not contain b are exactly the theorems of
ZMΛ {the theorems of Sb + {ScmZMΛ (&)} which do not contain b are
exactly the theorems of ZMA+1).

Proof. Every theorem of ZF is provable in Sb since Sb contains
the axioms of S and all the instances of No are obviously provable in
Sb. Now let the sentence χ be a theorem of Sb which dees not contain
b. Let 0(6) be the conjunction of all the instances of (16) and (17) used
in the proof of χ. By the deduction theorem 0(6) ID χ is provable from
the axioms of S, hence (3 u) 0 (u) z> χ is provable in S. But Montague's
theorem (Theorem 6) (3 u) 0 (u) is a theorem of ZF, hence χ is provable
in ZF.

The other statements of Theorem 8 follow in the same way from
Theorems 3 and 5.

We see, by Theorem 8, that even though in the sequence ZF, ZM,
ZM2, each theory is an essentially infinite extension of all the
preceding ones we can get a corresponding sequence Sb, Sb + {ScmZF

(6)}, Sb + {ScmZM (b)}, in which the theories which are ' ' almost the
same" as the respective theories in the former sequence, and in which
all the theories are obtained from the first one by the addition of
respective single axioms.

5. Peculiar behavior of models* We shall now see examples illus-
trating the inadequacy for general use of the notion of standard model
introduced in § 2. In our examples we shall use a formal satisfaction
definition. The idea of using the formalized notion of satisfaction in
these problems and the special way in which that notion is given here
are due to Mostowski.12 Our notations will be those of Mostowski [10].

Our first example will be an axiomatic representation ZF* of ZF
which has no standard model.

Let Φn be the wth formula in a given Gόdelization of ZF. Given
the functional variable p(i,f) we shall construct a formula Ψ(p) which
asserts that p(i,f) is a satisfaction definition.

p(i,f) is a satisfaction definition if the following holds for every
finite number i and every finite sequence of sets / :

(a) If Φt is the formula xk = x3 or xk e x3 then p{i,f) if and only
if D(f) = {k, j} and f(k) =f(j) or f(k) e f(j), respectively.

(b) If Φi=ΦJ\ Φh then
p{i,f) = : D(f) = 8t.~ P(j,flsj) V - P(h,flsh).

(c) If Φt = (3 xJΦj and xm is free in Φ5 then p(i,f) = : D(f) = st

.(3β)3>(ί»/+ {<™α>}) I f %™ is not free in Φ5 then p(i,/) = p(j,f).

I2 By oral communication,
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This inductive definition can be replaced by an explicit one in the
usual method and thus we get the required formula Ψ(p) which asserts
that p is a definition of satisfaction.

Now substitute for p in Ψ(p) any formula φ of ZF. Assume Ψ{φ),
then by the usual methods, e,g., those of Mostowski [10] pp. 114-115,
we obtain a truth definition for ZF in ZF and we arrive at the Tarski
contradiction. Thus we have proved in ZF ~ Ψ{φ) for any φ of ZF.
Therefore we can add the axiom schema

~ Ψ(φ) for any φ

to ZF without changing the theory and we call the new array of
axioms ZF*. The sets u and e form a standard model of ZF* if
SmZF (u,e) and there exists no subset v of u of ordered pairs <i/> such
that the formula obtained from the relativization of Ψ{p) to the model
by substituting <i/> ε v for p(i,f) holds. But form SmZF (u, e) it is
easy to prove (in S) the existence of such a subset v of u, e.g., by
the methods of Mostowski [11]. Hence ZF* has no standard model.
In other words, ~ Ψ(p) is a true statement of set theory if p varies
over the relations expressible in the set theory itself, but ~ Ψ(p) is not
a true statement if p varies over all the relations.

We shall now sketch briefly a second example. This will be a theory
T which contains all the theorems of ZF, but has more standard com-
plete models than ZF.

Mostowski defines in [10] when a class F of ordered pairs <i/> is
called an S-sequence for the formula Φ5. This definition can be formulated
without class variables, except F. Therefore, using the analogy between
classes and functional variables, we can define, using only set variables
beside py when the functional variable p{ί,f) is an S-sequence for Φj.
Let Stf(u,i,f) be a formula which asserts that the finite sequence of
sets / satisfies Φ% in the complete model u (for the existence of such a
formula cf. Mostowski [11]). We consider the following formula Ω(p)
p is an S-sequence for Φ% ID (3 u) (Scms (u) # (/) (/ is a finite sequence
of sets whose range is in u 3 # p(i,f) = Stf(u, i,f))). If we add to S
the schema Ω(φ) where φ is any formula of S then we get a theory
T which is an extension of ZF since all the instance of No are provable
in T (to prove the instance of No corresponding to the formula φ with
Gόdel-number % we write down an S-sequence χ for Φt — this can be done
by Mostowski [10] Σ4 — and Ω(χ) implies xlf , xn e WD .<p = Rel (u, <p)).
We shall now see that every standard complete model of ZF is a stand-
ard complete model of T but there are standard complete models of T
with universes of smaller cardinality than that of and standard complete
model of ZF. That every standard complete model of ZF is a standard
complete model of T is the formal counterpart of Montague's theorem
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(that the axioms of infinity and replacement imply No). Now let τ be
the first inaccessible number. By Montague and Vaught [8] there exists
an ordinal number a < τ such that R(a) is the union of the sets defin-
able in the model AT and in conseqence Aτ is an arithmetical extension
of Aa. In exactly the same way we can prove that there exists an
ordinal β a < β < τ such that R(β) is the union of all the sets definable
in the model AT by means of the new constant a, and in consequence
Aτ is also an arithmetical extension of Aβ. Hence, by Theorem 1.8 of
[17], Aβ is an arithmetical extension of AΛ. It is easily seen that Aβ

is a standard model of T, where u required in the schema Ω{φ) is
always taken to be R(a).
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