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l Introduction. A complete mapping of a group, loop, or quasigroup G is a

biunique mapping x—> θ{x) of G upon G such that x X θ(x) = Ύ] (x) is a biunique

mapping of G upon G This concept was introduced by H.B.Mann L3J other

applications have been indicated by R.H. Bruck [2] , and Paige [6] However,

the determination of all groups which possess a complete mapping is still an

open question. For abelian groups and groups of infinite order the problem has

been answered in [ l ] and L5]

The first part of the present paper considers the question of complete map-

pings for finite non-abelian groups; the latter part is devoted to an application of

complete mappings in the construction of orthogonal Latin squares.

2. Complete mappings. We shall consider finite groups G written multiplica-

tively, the identity element being gx = 1. A group G will be called an admissible

group if there exists a complete mapping for G; otherwise G is said to be non-

admissible.

It should be noted that all groups of odd order are admissible by letting

θ(x) = x.

THEOREM I* A necessary condition that G be an admissible group is that

there exist an ordering of the elements of G such that gι X g2 ^ # " * ̂  gn = l

COROLLARY. If G is an admissible group9 the product of the elements of G

in any order is an element of the commutator subgroup of G.

Proof. Assume that x —> θ{x) is a complete mapping for G. Without loss of

generality we can take θ(l) — η ( l ) = 1. Now consider g2 X Θ{g2)\ here g2

l

Φ ^(g2)> s o t n a t @(g2J~l occurs among the remaining elements of G. Then let

^ Q ^ ) " 1 ~ g3 a n d form the product g2 X $(#2) * #3 * &(&$)• ^ e continue in this

manner and ultimately reach a product

(l) g 2 xθ(g2) x g 3 x # ( g 3 ) x ••• x g s xθ(gs) = 1,
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where Θigi-J = gjι{i = 3, , 5) and θ(gs) = g2

ι.

If s < n, we repeat the process beginning with g s+1 X $(gs+i) and finally we

arrive at a series of cycles similar to (1) whose product is the identity. Thus,

7?(gi) X 7?(#2) X* X v(gn) ~ 1> completing the proof and yielding the corollary

as a consequence.

We note that in the cycle represented by (1), the elements

g 2 X # ( g 2 ) X ••• Xgi X 0 ( g i ) = η ( g 2 ) X •••

are all distinct; for the equality of two such products would imply θ(gι) = θ(gj )

or i — . Hence, we have the following result.

THEOREM 2 A necessary condition that G be admissible is that there exist

an ordering of the elements of G into subsets, such that in each subset, the

elements

(2) gi2, gi2 X g i 3 , •••, gi2 Xgi3 X ••• X g i s = 1

are all distinct.

In the most favorable case where G possesses a single subset of n — 1 non-

identity elements which satisfy condition (2), we may prove that G is an admissi-

ble group To do this, let g2 be the element that is not represented in the set of

elements (2). Construct the mapping θ(χ) as follows: (9(1) = 1, θ(g2) is the

solution of the equation g2 X x — gi2f and successively let gi+x = θ(gι) *, and

let 0(gι+i) be the solution of the equation gi+χ X x — Si{+i ^Π the θ(x)'s are

are distinct and different from 1; for if <9(g&) = θ(gs), k ψ s9 we would have

g2 Xθ(gk) =gi2 X ••• X g π =Zi2

 X ••' XZis =82

the inner equality being contrary to hypothesis for k ψ s. Moreover if #(gfc) = 1,

we would have g2 — gi2 X X gik, contrary to the selection of g2 Thus, we

have proved the following theorem.

THEOREM 3. A sufficient condition that G be an admissible group is that

there exist an ordering of the nonidentity elements of G, such that the elements

g 2 X ••• X g i f o r ( i = 2, •••, n)

are all distinct and g2 X X gn = 1.

For abelian groups, Theorem 1 is also a sufficient condition that G be admis-

sible and we conjecture that this is likewise the case for non-abelian groups.



COMPLETE MAPPINGS OF FINITE GROUPS 1 1 3

However, the best we have been able to prove are theorems of the following type.

THEOREM 4. Let H be a normal subgroup of G. If G/H admits a complete

mapping θγ, H a complete mapping θ2, then G is an admissible group.

Proof. Let G/H = K, the elements of K being e, p, q9 . Let Up be an

element of G that maps upon p C K. Every element of G has the form up X h or

h X Up, where p £ ! K, h C H. The equality of Up X λ and UqX h' implies

p — q and h = h'.

Define <9(wp X A) = #2(W w#t(p) Obviously this mapping is biunique of G

upon G. Consider

(3) up Xh X (92(/ ι)u5 l ( p) = ug/ι'<92(/ι')u<9l((j) .

This implies

XH OΓ Up^θ^p) X # = "gX0i(g) X # »

whence p X ^i(p) = ^ X 6^ (g) or p = q, since 0 t is a complete mapping for K. It

then follows from (3) that h — h' and θ is a complete mapping for G.

THEOREM 5. If G is a group containing a subgroup H of odd order such that

G/H is a nonadmissible abelian group, then G is nonadmissible.

Proof. If G/H is a nonadmissible abelian group, G/H possesses a single

element of order 2 [6; p . 4 9 ] . Let this coset be g2 X H. Considering the product

of the elements of G modulo H9 we have H?=igι — g2 m°d H Since g2 is not in

H9 the product of the elements of G in any order is not in H. However, H contains

the commutator subgroup of G and it follows from Corollary 1 of Theorem 1 that G

is not admissible.

The two preceding theorems may be used to establish the admissibility or

nonadmissibility of many groups. Often it is necessary to develop other tech-

niques, as for example in groups of order 2". Here we are able to argue modulo

the commutator subgroup and establish by mathematical induction the admissi-

bility of those groups whose commutator subgroups are not cyclic. The remaining

cases have been analyzed by Bruck and found to be admissible except in the

obvious case where G is cyclic of order 2n.

3. Orthogonal Latin squares. Recalling the definition of a Latin square [ 3,

p.418] ,we see that the multiplication table of a quasigroup, loop, or group G is
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a Latin square. Indeed, any Latin square of order m may be used to define a

quasigroup of order m. Mann L3, 4j has shown how Latin squares, orthogonal to

a group G, may be constructed by means of complete mappings. (A Latin square L

is said to be orthogonal to a group G if L is orthogonal to the multiplication table

of G.) We may extend these results in the following manner.

For convenience we shall assume henceforth that the elements of a group or

quasigroup G are 1,2, , n.

THEOREM 6. Let G be a quasigroup. Let θi, θ2, * * * , θn be n complete

mappings of G with the following property*

( 4 > *i(g)M (s), for i ϊ j , all g € G.

Construct a Latin square S by placing j in the kth row and θj (k)th column. Then

S is orthogonal to G.

Moreover, all Latin squares S, orthogonal to G, may be represented in this

manner.

Proof. Obviously the square S is a Latin square and it is orthogonal to G

since the number pairs [k X θj (k)9 /] assume n2 distinct values.

Conversely, let S be any Latin square orthogonal to G. Let / occupy the row

and column positions (1, ijt\)y * * * > (n9 ijfn) i*1 5, where (ij9\i * * # > ι/,n) is> °f

necessity, some permutation of (1,2, , n) Let θj (k) be defined by θj (k)

— ijtk The assumption that k X θj {k) "= h X θj (h) ~ m for k φ h leads to a con-

tradiction, in that the number pair (m, j) would occur twice in the orthogonal Latin

squares G and S. Since iτ^ ψ iSi\i for r ψ s, property (4) is satisfied, and this

completes the proof.

Although anticipated in part by Theorem 2 of [3] , we may improve upon the

previous result for a group G.

THEOREM 7. A necessary and sufficient condition that there exist a Latin

square orthogonal to a group G is that there exist a complete mapping θ(x) for G.

Proof. The necessity follows trivially from Theorem 6. The sufficiency is

evident from the fact that, given one complete mapping θ(x) of G, we may define n

complete mappings of G satisfying (4)by letting θ(x) X i = #i(%), i ~ 1,2, , n.

A more convenient method of obtaining a Latin square orthogonal to a group G

is to apply the following theorem.

THEOREM 8. Let G be a group, θ(x) a complete mapping for G. Construct a



COMPLETE MAPPINGS OF FINITE GROUPS 1 1 5

Latin square S as follows: In the ith row and kth column place i X k X θ(k) Then

5 is a Latin square orthogonal to G,

Proof, Trivially, S is a Latin square. In the orthogonal squares the number

pairs are [i X k, i X k X θ(k)] and every pair (r, s), (r,s = 1,2, , n), exists

since the equations i X k — r, i X k X θ(k) — s have a unique solution. Thus the

Latin square S is orthogonal to G.

Theorem 8 is a variation of the method employed by Mann [4, p. 253] and is

simpler to compute.

The problem of finding more than two mutually orthogonal Latin squares has

its basis in investigations of finite plane geometries [4] and nets [2] . Theorem

6 yields easily formulated but involved results in this connection. The repre-

sentation of Theorem 8 yields more interesting results. Consider the case of two

Latin squares Sι and S2 represented in the manner of Theorem 8 and orthogonal

to a group G. Then 5 t will be orthogonal to 52 if and only if the number pairs

[ι Xk X0i(ft), i Xk X 0 2 ( Ό ] (i.fe = 1.2, ••• , π )

take on every value (r, s), (r, s — 1,2, , n). Hence, we can conclude immedi-

ately that a necessary and sufficient condition for Sι to be orthogonal to S2 is that

the equation

(5) r XfliOO"1 - s Xθ2(k)~1

have a unique solution k for all pairs (r, s). The generalization to any number of

mutually orthogonal Latin squares of this type should be apparent.

We note from (5) that if θ2 (x) — θ\ (x) X % is a complete mapping, our condition

is trivially satisfied. In the case that G is abelian of order 2n(n > 1) and every

element of order 2, Θ2(x) ~ θγ (x) X x is a complete mapping. Thus for this group

it is always possible to find at least two Latin squares mutually orthogonal to

G. This brings us to an interesting question that we have been unable to answer:

For a given group G, what is the maximum number of mutually orthogonal Latin

squares orthogonal to G?

In conclusion, we would like to conjecture that there exist no Latin squares

orthogonal to a symmetric group.
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