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On Quotient Rings

By Yuzo UTUMI

An extension ring S of a ring T is called a left quotient ring of
T if for any two elements ΛH=0 and y of S there exists an element a
of T such that ax^rO and ay belongs to T. Let R be a ring without
total right zero divisors. Then R has always a unique maximal left
quotient ring, and moreover the maximal left quotient ring of a total
matrix ring of finite degree over R is a total matrix ring of the same
degree over the maximal left quotient ring of R.

A left ideal I of R is called an M-ideal if it contains every element
x for which there exists a left ideal m of R satisfying the condition
that (1) ttu C i and (2) R is a left quotient ring of m. When S is a
left quotient ring of R, Λf-ideals of R and those of S correspond one-
one in a definite way. A left ideal ϊ of R is said to be complemented
if there exists a left ideal Γ such that I is a maximal one among left
ideals which have zero intersection with Γ. Every complemented left
ideal is an M-ideal, but the converse is not true in general. In a ring
without total right zero divisors, every M-ideal is complemented if and
only if the ring has the zero left singular ideal. Another example of
M-ideals is the annihilator left ideals. A sufficient condition for that
every M-ideal of a ring with zero left singular ideal is an annihilator
left ideal, is that the maximal left quotient ring coincides with the
maximal right quotient ring.

Every semisimple /-ring has zero singular ideals and hence it has
the left and the right maximal quotient rings. We discuss especially
two types of semisimple /-rings, i.e., primitive rings with nonzero socle,
and semisimple weakly reducible rings. Let P be a primitive ring with
nonzero socle. Then the maximal left quotient ring of P is right com-
pletely primitive. Thus, the left and the right maximal quotient rings
of P coincide if and only if P satisfies the minimum condition. Let W
be a semisimple weakly reducible ring. The left and the right maximal
quotient rings of W always coincide and is also semisimple weakly
reducible. In particular, if W is plain then its maximal quotient ring
is strongly regular. This implies that the (nilpotency) index of a total
matrix ring of degree m over a semisimple /-ring of index n is mn.
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1. For any subset A of a ring S and any family B of right operators
of S the set of all the elements in S satisfying xB^A is denoted by
(A/B)S. In particular, when B consists of the right multiplications of
all elements in a subset C of S we write it as (A/C)S.

(1. 1) Let R be a subring of a ring S. We say that S is a (left)
quotient ring of R if for any pair of elements #ΦO and y in S there
exists an element a in R such that ay^R and ax=\=Q. Notation: S>/?.

We may also define a similar concept by a slightly weaker condi-
tion : We write S(>) R if any nonzero x £ S there is an element a £ R
such that OφflΛ e R. Of course, S>R implies S(>)R. But the following
example shows that the converse is false. Let K be a field and S the
ring K[x^\/(x*). We denote the subring of S generated by ϊ, x2 and x3

as R. Then S(>) R, while no a G # satisfies axe R and fl#3Φθ simul-
taneously.

Our main object is the quotient ring in the sense of (1. 1).

(1.2) Let S>/?. The only homomorphism of S into itself which
leaves R invariant is the identity mapping.

If xθ^-x for some x 6 S, there would exist an element a G R such
that ax£R and a(χθ-χ)=^Q. But then a(χθ) = (aθ)(χθ) = (ax)θ=ax. This
contradiction shows that χθ=x for every x G S.

(1.3) L0ί S>/?. ^4τz element x belongs to the center of S if it is
commutative with every element in R.

Assume xy^yx. Then ay^R and a(xy— yx)ΦO for some a£R.
axy=xay=ayx. This is a contradiction.

(1. 4) Let S~>R. For any finite number of elements ^ΦO, x2y ••• , xn

in S there exists an element a^R such that axly ax2y ••• , <ZΛ;MG R and α^φO.
The assertion is evidently true if w=l. Let w^>l. We assume

that bx19 bx2, ~ ^bXn^^R, δj^ΦO for some b^R. Since S># there is
c^R such that cbxn^R and c^φO. Therefore cδ, cft^, ••• ,cbxn£R and

(1.5) Lef S ̂ /OT. Tfew S>R>T if and only if S>T.
The "if" part is clear from the definition. To prove the "only if"

part let S3Λ:(ΦO), y. Then ax, ay^ R and tfjt φO for some a£R. Hence
ca, cay£ T and cax^O for some c£ T. This implies S>T.

We denote by SA the set of all left ideals I satisfying S>ϊ.
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(1. 6) Let I be a left ideal of S. Then I e SA if (and only if) for
any elements #ΦO and y in S there exists an element a in S such that
ay^l and ax=\=Q.

In fact, it follows from the assumption that there is moreover an
element b G S such that ba£ ϊ and bax^Q. Since (ba)y=b(ay) e ί we have
S A 9l .

(1.7) // S>R and tneS A , then S>Rr\my Rm.
Let S3Λ:(ΦO), jy. Then tf#φO, ay£m for some # G m . Hence

foz, bayξ. R and fozΛ φO for some b G /?. We see that 6<z, fojy€ (j?nm) r\Rιn.
Therefore S>Rr\m and

(1. 8) Let S>R and let m^e SA be preassigned to each x^R. Then

Let S3#(ΦO), .y. Then αje/? and <2*ΦO for some ^e/?. We set
m=mar\may. By (1.7), meS^. Hence bax^Q for some 6 em and then
ba 6 mΛ#

(1.9) Lβί S^^Ry T. If θ is an S-left homomorphism of R into S
then (T/0)*eS\

Let S3#(ΦO), y. Then ay^R, ax^Q for some βG.ff . Moreover,
b(aθ), b((ay)θ)eT and δ^φO for some beT. Hence 6α, baye(T/θ)R.
Thus (T/0)*eS\

This proof shows also the following

(1. 10) Let S>R. If θ is an R-left homomorphism of R into S, then

(1. 11) Let S be a ring. The following conditions are equivalent :
(1) There exists a ring T such that S>T or T>S.
(2) S>S.
(3) S has no total right zero divisors, that is, Sx=Q implies x=Q.
This is evident from the definition and (1.5).
By virtue of the above lemmas the R. E. Johnson's method1} for con-

structing the extended centralizer is verbatim applicable to our case.

Construction of S. Let S be a ring such that S>S. Then Sk is
non-vaid. We denote by Sίs the set of all S-left homomorphisms each
of which is defined on a left ideal in S k and has values in S. The
definition domain of θ£ 2ίs is denoted as Mθ. When MΘ = MΘ'9 we define
the addition by x(θ + θ')=xθ + xθ'. When Mβ0CMβ', the multiplication
is defined by x(θθ') = (xθ)θ' . For θy 6>'e3Is if there exists IeS* such

that ICM0/ΛM0' and θ, θ' coincide on ϊ, we say that θ and θ' are

1) See [8].



4 Yuzo UTUMI

equivalent. Then this relation is reflexive, symmetric and transitive.
We denote the equivalence class containing Θ as θ and the set of all
the classes as S. By (1. 7), (1. 9) it is easy to see that S^ forms a ring
in a natural way. For any x 6 S the right multiplication xr belongs to
§IS, We identify x with xr and regard S as an extension ring of S.

(1. 12) // x e Mθy then xθ=xθ.
This follows easily from that y(xθ)=(yx)θ for every y£S.

(1.13) S>S.

In fact, let θyφ£S and <?ΦO. By (1. 7), Mθr\Mφ e S\ Hence α^φO
for some aeMθr\Mφ. Then aθ=aθeS and aφ=aφ^Q by (1.12). This
implies S>S.

Theorem 1. L£/ T>S. 77z£W T is isomorphic, over S, fa S i/
// T satisfies either the following condition (1) or (2).

In this case, we say that T is the (left) maximal quotient ring of S.

CONDITION (1). For any <9eSIs there are x£T and m e S 1 such that
^Mθ and yθ=yx for every jE m.

CONDITION (2). // 7?>S, then there exists an isomorphism, over S, of
R into T.

Proof. To see the "only i f" part it is sufficient to prove that S
satisfies these conditions. (1) is evident from (1. 12). Let R>S. By
(1.10), (S/x)s£S^ for every x^R. Hence the right multiplication θx of
x on (S/x)s belongs to 2ίs. Associating each x£R with Θ X £ S we obtain
an isomorphism, over S, of R into S. Therefore S satisfies (2). If R
satisfies the condition (1), this isomorphism is onto. This proves the
first half of the "if" part of Theorem. Finally, let T satisfy (2).
Then, since S>S by (1. 13), S is isomorphic, over S, into T. On the
other hand, since T>S and S satisfies the condition (2), T is isomor-
phic, over S, into S. Then product of these isomorphisms is the identity
mapping of S by (1.2). It follows from this that S and T are isomor-
phic over S. This completes the proof.

The following (1. 14)-(1. 17) are easily proved by Theorem 1 and we
omit their proofs.

(1. 14) If T>S, then T^S over S.

(1.15) 1 = S.

(1. 16) // T>S and T=T, then T^S over S.
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(1. 17) Every automorphism of S can be extended uniquely to that of S.

2. (2. 1) Let {Sa} be a family of rings with the property Sa~>SΛ for
every a. Then 2® S* is the maximal quotient ring of 20S*, where 2®
denotes the complete direct sum, while Σe the (restricted) direct sum.

(1) First we note that if ^C@TΛ>R and TΛ>TΛ then Ta>Rr\TΛ.
In fact, let TΛ9:r(φO), y. By the assumption, fo φO for some b£TΛ.
Hence aby aby G R and abxφQ for some a G R. Then άby aby G Rr\ TΛ .
Therefore TΛ>Rr\Ta. (2) Let Ta>RΛ for every a. Then it is easy

to see that 2^ TΛ>ΣΘPΛ. (3) We set P^2^SΛ. Let 0eSIP and denote
its restriction to Mθr\Sa as 0Λ. Then 0Λe3lsΛ since Mβ A SΛ € Si by (1).
By Theorem 1 there is XΛ G S* such that yxΛ=yθΛ for every y G Mθ A SΛ .
Hence y?&xΛ=yθ for every y G Σ (M^AS*). By (2), 2(M«,ASJGP\
Therefore it follows from Theorem 1 that P=P because of P>P. By

(2), P>ΣSΛ. Thus we see that P^ΣS* over Σ S* by (1.16).
As a corollary of (2. 1),

(2.2) If S^αQα7 where o and αx are two-sided ideals of S, then α
is the maximal quotient ring of αnS.

From (1) of the proof of (2.1) we get α>αnS. Now S^S^

Hence α — α. Owing to (1.16) this implies α^αrλS over αnS.
We use the notation Rn for the total matrix ring of degree n over

a ring R.

(2.3) // S>S, then (S)n is the maximal quotient ring of Sn.
First, we assume that S has a unit element. (1) S>T implies

Snl>Tn. In fact, let Sn3 Ak = Z dffaj for fe = 0, 1 and let <CΦO. Then
there is α e T such that α^φO and aa$€ T (^ = 1, ••• , w). Hence
β ,̂ aeppAi^Tn and α^ΛΦO. This shows SW>TM. (2) If (SJ^3J?,
then τnw^/? for some tnGS*. In fact, we denote by mk the set of
all the elements of S each of which is a coefficient of a matrix
in Rr\Snekk. This is evidently a left ideal of S. Let 83 x (ΦO), y. By
the assumption there is a matrix A~2 a^e^ G P such that ^ ,̂ A(yekk) G /?
and A(^βΛΛ)ΦO. Hence aikx=\=Q for some /. Since aik> aiky£mk, this
implies m^GS*. By (1.7), m^y^tn^G Sk. For any element y G m there
exists a matrix Del? A SneΛΛ whose (1, ̂ -coefficient is y. yeJk = ejiD£R.
Therefore mwCP. (3) Let 6>G§IS w. By (2), mwCM for some m € S \
For any r G m we denote (ΛΓ^Jίs^^nίΛ:^)^ as ^j(xθkj)e^. Then ^ are
S-left homomorphisms of m into S so that they belong to §ίs. Hence
there are akj£S such that xθkj = xakj for every #Gtn. Therefore,
for every 2 xikeik G mM , (2 Λrfj^ίΛ) θ = 2/Af ^ft (ΛΓ^IΛ) θ = ̂ ikje^(xikθkj) e,j
= Zij(Zkxikakj)eij = (Zxikeik)(Σίatkeik). This shows that (S)W^(SJ over SM
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since (S)M>Sn by (1). For S without unit element we denote by S' the
subring of S generated by S and the unit element of S. Then S^S'
over S by (1.14). Moreover, (S7)^(SJ over Sn since SW'>SW by (1).
From these facts it follows that (S)n^(Sn) over Sn as required.

3. In this section we shall consider some correspondence between
ideals of a ring and those of its quotient ring.

Let R<S and I be an R-left submodule of S. We denote by Δ|ϊ
the set of all elements x£S satisfying (l/x)Re R*.

(3. 1) Δ| I is a left ideal of S containing I.
For, let Δf 13* and S^y. Since ( l / x ) R £ R * we see that ((l/x)R/y)R

eR* by (1.10). Now ((l/x)R/y)Ryx^(l/x)Rx^l. Hence (l/yx)ReR*9 or
yx 6 Δ| I.

(3.2) Δ
This is easy to verify by (1.5), (1.7).

(3.3) Δ
If Λ Γ G Ϊ , then (R/x)ReR* by (1.10). This means xeΔs

R(lr\R) since
(R/χ)*=(Rr\l/x)*.

(3. 4) Δ| (lχ) ̂  (Δ| ϊ) x for every x£S.

(3.5) Let R<S<T and I be an S-left submodule of T. Then

(3. 6) Let R<S< T. If I is an R-left submodule of S then Δ J (Δ| I)
= ΔSI.

Since Δ| I is a left ideal of S containing I, we see that ΔJ(Δ|Ϊ)
=Δ£(Δ|I);>Δ£I by (3.2), (3.5). On the other hand, let jceΔJ(Δ|I)
or (Δ|I/jc)Λe/e\ If y£(Δ%llx)*9 then ^GΔ|I; hence (l/yx)*£R\
It follows from (1.8) that 2 (l/yx)Ry€ R*, where 2 denotes the sum for
all ye(Δ%l/x)R. Since (Σ (L/yx)*y)xς:i, this implies that
Therefore ΔJ(Δ|I)CΔ|I and the equality holds.

Let R<R. A left ideal I is called a (left) M-ideal if Δ£

(3. 7) T/z£ intersection of any collection of M-ίdeals in a ring is also
an M-ideal.

Let ϊ* be M-ideals. By (3.2), Δg(/^UCΔj£ϊΛ = ϊΛ. Hence
by (3.1). Thus Δg(AU=ΛI-

(3.8) Let R<S. Then Δ| I is an M-ideal of S for every R-left
submodule I of S.
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In fact, Δf(Δ|I) = Δ|I by (3.6).

Theorem 2. Let R<S. The Mappings I-*Δ|I and 8->8A# are
mutually receiprocal and give a 1-1 correspondence between M-ideals I of
R and 8 of S.

Proof. If I is an M-ideal of R then Δ| I is an M-ideal of S by
(3.8). Clearly Δ| lA£=ΔJ|I = I by the definition. On the other hand,
if 8 is an M-ideal of S, then S = Δ|S = Δ|S^Δ|(SA|?)^» according
to (3.5), (3.2) and (3.3). Hence % = Δs

R(ZrλR). Moreover, 8 r\R is an
M-ideal of R since Δ*(8A#) = Δ|(8A#) r\R=

(3. 9) Lβί R<S. If Us an M-ideal of R, then Δ| ϊ is fAe maximal
left ideal of S of which intersection with S is I.

From (3.3) we see that Δs

Rl = Δs

R(Zr\R)^Z if £A# = I.
In the following we make mention of two special types of M-ideals,

i. e., the left annihilator ideals and the complemented left ideals.
By 1R(A) (rR(A))9 we mean the left (right) annihilator ideal of A

in R.

(3. 10) // #</?, then every left annihilator ideal in R is an M-ideal.
By (3.4), (Δ$l(x)) *<:,&% (l(x)x)=Q for every x£R. Since Δg /(*)

^/(α:), we have Δg /(#) = /(#). According to (3.7), every left annihi-
lator ideal is an M-ideal.

(3. 11) Let /?<S. // I is a left annihilator ideal in /?, then Δ| I is
also a left annihilator ideal in S.

We assume 1 = 1R(A). Then ls(A) is an M-ideal in S. Hence ls(A)
Δs

R(ls(A)r\R) = Δs

RlR(A) = Δs

Rl by Theorem 2.
We may define a π£/zί quotient ring in an obvious way.

(3. 12) Let S be a left and right quotient ring of R. If S is a left
annihilator ideal in S, then 2r\R is also a left annihilator ideal in R.

Let xer R(Άr\R). Then 0==Δ|((SAφ#);^(Δ|(SA/?))jO8* by
(3. 4) , (3. 3) . Hence x 6 rR($>) . Therefore rR(Z r\R) = rR(%) . Similarly we
see that lR(rs (8) r\R) = lR (rs(8)). Thus 1R (rR(Άr\R)) = 1R (rR(2))
= lR(rR(%)r\R) = lR(rs(£)) = ls(rs(£))r\R=&r\R and our assertion is proved.

For given left ideal I of R a left ideal of R is called a complement
of I if it is the maximal one among the left ideals having the zero
intersections with I. We denote it by Γ. Of course, Γ is not uniquely
determined by I. A left ideal which is a complement of some left ideal
is called a complemented left ideal. We use the notation Γc for (Γ)c

containing I.
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(3.13) Let R<R. Any complemented left ideal of R is an M-ideaL
In fact, Δj|(r) = Γ since Δ*(Γ) AΪCΔ*(Γ) AΔ* I = Δg(I c Al) =0 and

(3. 14) Let J?<S. // I is a complemented left ideal in R, then Δf,I
is also a complemented left ideal in S.

We may assume that 1 = 1". Clearly Δ|lAΔ|(I e) = A|(lAl c ) = 0.
On the other hand, if £' is a left ideal of S such that SOΔ!ϊ> then
%'r\R^>Δs

Rlr\R = l by (3.9) since I is an M-ideal in R by (3.13). Thus
SΆΔf (Γ)^(SΆ7?)AΓΦO since Γ is also an M-ideal in R. Therefore
we have Δ|I=(Δ|(Γ))C.

(3. 15) Let R<S. If & is a complemented left ideal in S, then %r\R
is also a complemented left ideal in R.

We assume that & = %cc. Let Γ be a left ideal of R such that
£A#CΓ and Γ A (Sc A /?) = (). Then Δ| IΆSC = Δ| IΆΔ|(ScAl?)=0 and
Δ|I/^Δ|(8A/?)=S. Hence Δ|I' = S. Thus Sn/OI' by (3.1).
Therefore &r\R=l' and SA^— (Άcr\R)c.

4. In this section we discuss from our point of view the cose con-
sidered by R. E. Johnson [8].

A ring R is called a (left) C-ring if R<R and every M-ideal of R
is a complemented left ideal.

From (3.13), (3.14), (3.15) and Theorem 2 we obtain immediately
the following proposition.

(4. 1) Let R<S. R is a C-ring if and only if S is a C-ring.
We denote by #A the set of all left ideals of R each of which has

a nonzero intersection with every nonzero left ideal.

(4. 2) Let S be an extension ring of R. If every nonzero R-left sub-
module has a nonzero intersection with R, then (R/x)^£R* for every x£S.

Let I be a nonzero left ideal of R. If /#(#) AΪΦO, then evidently
(#/*)* A ΪΦO. And if lR(x)r\l = Q we see that Ϊ*ΦO and hence I*n#Φθ.
This implies (R/x)Rr\lφQ again. Therefore (R/x)ReR*.

(4.3) Let I be a left ideal of a ring R. If x£lcc, then (l/x)ReR*.
To see this let Γ be any nonzero left ideal of R. First we assume

that (IC+I'*)AΪ=0. Then l'x^Γr\Γc = 0. Hence (ΪΛ)*nΓφO. Next
let (Γ + I'*)AΪ3*ΦO and z = a + b, a£lc, bzl'x. Then a = z-b
6ΓA(ϊ + I'*)CΓA]r = 0. Thus Oφ* = δ e l A Γ * so that (I/*)*Al'ΦO.

Therefore we see that (l/x)R£RΔ.

Theorem 3. // /?</?, the following conditions are equivalent:
(1) R is a C-ring.
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(2) // ϊe#A and I* = 0
(3) R* = R^.
In this case, Γc is uniquely determined for every left ideal I, and is

in fact the smallest M-ideal Δ| I containing I.

Proof. (1)=>(2): If *ΦO, then /*(*) is an M-ideal by (3.10), hence
it is a complemented left ideal. Clearly lR(x)φR. Hence lR(x)£R-.
(2):>(3) : It follows immediately from the definition that #*C#Δ. Let
ί?A3Ϊ and let m be a nonzero ϊ-left submodule of R. Then Im is a
nonzero left ideal by the assumption. Hence ϊntiOΪAΪmφO, which
shows that the assumption of (4. 2) is satisfied by R and ϊ. Thus
(ΐ/x)l£ϊ* for every x£R. It follows easily from this that (l/x)leR*.
If Q=\=y£R, then (l/x)lyΦQ. This shows that there exists # el such that
0yΦO, axel. Therefore leR* and hence RΔ^R\ Thus R* = R*.
(3) ι> (1) : Let I be a left ideal of R and let * e Γe. By (4. 3) we see
that (l/x)*£RΔ = R* or * 6 Δ* I. This implies ΓCCΔ|I. Since Γe is
an M-ideal by (3.13), Δ* ICΔf Γc = Γc^Δg I and whence ΓC = Δ|I.
In particular, if I itself is an M-ideal, then ΓC = I and ϊ is a comple-
mented left ideal. Therefore R is a C-ring as required.

Here we note that (1) the assumption R<R follows directly from
the condition (2), and (2) means that R is a ring with zero singular
ideal by the terminology of R. E. Johnson [8].

(4.4) Let R be a C-ring. Then S(>)R if and only if S>R.
The "if" part is trivial. To see the "only if" part let S3*(ΦO),;y.

Then OΦaxeR for some a£R. By (4.2), (R/ay)ReR*. Since R is a
C-ring, (R/ay)*axφQ by (2) of Theorem 3. It follows from this that
there is c£R such that cay cay^R and caxφQ. Therefore S>R.

A unitary left module over a ring with a unit element is ίnjectίve
if it is a direct summand of every unitary extension module.2) A neces-
sary and sufficient condition for a unitary left 7?-module M to be injec-
tive is that any l?-left homomorphism defined on a left ideal of R and
having the values in M is obtained by the right multiplication of some
element of M.3) When a ring R is injective as an l?-lef t module, we call
it a (left) ίnjectiυ ring.

(4. 5) (See R. E. Johnson [8]) // 1 is a left ideal of R, then ϊ-f Γ G R-.

(4. 6) Let R be a C-ring with a unit element. If ϊ is an M-ideal of
Ry then the R-left module I is injective.

2) See [2] Proposition 3.4.
3) See [2] Theorem 3. 2.
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Let V be a left ideal of R and θ an IP-left homomorphism of Γ into
I. We extend θ to an IP-left homomorphism of Γ-fΓ c into I by making
it vanish on Vc. Then the extended θ belongs to 21* since I + Γe R*=R*.
By (1.12) there is a£R such that xθ=xa for every x£l + Γ. From

we see that a£l since I is an M-ideal.

Theorem 4. // R is a C-ring the following conditions are equivalent :

(1) R = R.
(2) R is an injective ring.
(3) R is a regular ring^ with unit element and has the property that

if a family {xa + eaR} of cosets of principal right ideals has the finite
intersection property then the total intersection is non-void.

Proof. (l)φ(2) is a special case of (4.6). (2)=>(3) The regularity
of R is a result of R. E. Johnson.5) This is easily shown by (4. 5) and
Theorem 3. Next, we assume that a family {xa + eΛR} has the finite
intersection property. We set α = 2/?(l— ea) and consider the cor-
respondence θ : 2 uΛ.(l — ea{) ( € α) -> 2 uΛ.(l — e»t) xΛί = 2 uΛ.(l — eΛ.) AΛ. . If
2wΛ|.(l — 0Λf.) — 0, then 2 uΛ.(l — eΛ) A». — 2 uΛ.(l — ̂  .) ΛΓ = 0 where x is an
element in Γ\AΛr It is easy to see that θ is an IP-left homomorphism.
By (2) there is an element u such that zθ — zu for every z£a. Since
(l—eΛ)xΛ=(l—eΛ)u we know that uex^ + e^R or uep\AΛ. (3)=>(1) Let
α be a left ideal of R and # an IP-left homomorphism of α into IP.
We set AΛ = eaθ+ (ί—ea)R for every idempotent ^ Λ € α . For each finite
subfamily {A»f } of the family {ΛΛ} there exists an idempotent eβ such
that ^RΛi = Reβ. eβθ-eoύiθ = (l-eaίί)eβθ e (l-e*t) R and hence 'ββθeA*.
for every Λ»f ^ {A»t} . Thus {^4Λ} has the finite intersection property.
Therefore there is x£f\AΛ by our assumption. eaf)£x+(ί—eΛ)R and
eΛθ = eΛx. From α = 2 I? Λ̂ we see that yθ=yx for any y£ α. This implies

|?=ί> by Theorem 1.
The following (4. 7) -(4. 9) are corollaries of this Theorem.

(4.7) Let R be a C-ring such that R — R. Then a left ideal of R
is a complemented left ideal if and only if it is a principal left ideal.

The "only if" part is evident by (4.6) Since R is regular, every
principal left ideal is a direct summand and hence it is a complemented
left ideal.

(4. 8) // I? is a C-ring, then the set of all complemented left ideals

4) See [13].
5) See [8] Theorem 2.
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of R forms a complete complemented modular latticed
In fact, by Theorem 2 and (4. 7) the set of complemented left ideals

of R forms a lattice isomorphic to that of principal left ideals of a
regular ring with unit element. The completeness follows from (3.7).

In an obvious way, we may also define the notions of right C-ring
and right maximal quotient ring.

(4. 9) Let R be a left and right C-ring and the left maximal quotient

ring R be simultaneously the right maximal quotient rϊngP Then a left
ideal of R is a complemented left ideal if and only if it is a left anni-
hilator ideal. The set of all left annihilator ideals and the set of all
right annihilator ideals form the mutually dual isomorphic lattices.

This follows easily from Theorem 2, (3.10)-(3.15) and (4.7).
An example of C-rings. Levitzki [10] called a ring to be a semi-

simple I-ring if every nonzero right ideal contains a nonzero idempotent.
It is well known that this concept is right-left symmetric.

(4.10) Every semisimple I-ring is a C-ring.
Let x 6 R and lR(x) € R*. If e is an idempotent in xR, then Q — lR(x)e

^lR(x)r\Re. Hence Re = 0 and e = 0. This shows x = 0.

5. The left maximal quotient ring R of a ring R is not always the
right maximal quotient ring even if R is a both right and left C-ring.
In the following we shall show this by treating a primitive with non-
zero socle.

Let R be a primitive ring with nonzero socle and eR be its minimal
right ideal. Then R may be regarded as a dence ring of linear trans-
formations of the eRe-leίt module eR. We denote by L the ring of all
linear transformations of eR.

(5.1) L is the left maximal quotient ring of R.
Indeed, since eR is a faithful J?-right module, we see easily that

eR<R. Hence eR is the (left) maximal quotient ring of R by (1.14).
In eR every eRe-leίt submodule is a left ideal. Since eRe is a division
ring we see that eR is completely reducible for left ideals. Hence (eR)*
consists of eR alone. Thus eR satisfies the condition (2) of Theorem 3
and this implies that eR is a C-ring. Therefore (eR)* = (eR)*. It follows

6) This lattice is meet-homomorphic to that of all left ideals of R by (3. 2) and Theorem
3. See [14].

7) On account of (1. 5) and Theorem 1, this second assumption is, of course, equivalent
to the condition that every left quotient ring of R is a right quotient ring of R and vice
versa.
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from this that eR is the ring of all endomorphisms of the eR- (or eRe-)
left module eR and hence equal to L.

As an immediate corollary of (5.1) we obtain the following

(5. 2) Let R be a primitive ring with nonzero socle. Then R is also
the right maximal quotient ring if and only if R is a simple ring with
minimum condition.

Next, we regard the minimal right ideal eR of R as a topological
vecter space over eRe of which open base is the set of left annihilaters
leR(x) for all x in the socle S(R) of R.^ Then the right multiplication
of any element in R is a continuous linear transformation of the space
eR. We denote by R the ring of all continuous transformations of eR.
Then R is also a primitive ring with nonzero socle and has the property
that the socle of S^S(#)C#C#CL. This shows the part (3) of the
following proposition.

(5. 3) (1) R is the greatest one among the right quotient ring of R
which is a subring of L.

(2) (S(R)/S(R))L = R. In other words, R is the left idealizer of
S(R) in L.

(3) R is the greatest subring of L such that its intersection with
the socle of L is S(R).

In fact, if (S(R)/S(R))L 3*ΦO, then GφxS(R)^S(R). Since S(R) is
a C-ring, it follows from this by (4.3) that (S(R)/S(R))L is a right
quotient ring of S(R). Clearly R<(S(R)/S(R))L. Hence (S(R)/S(R))L is
a right quotient ring of R. Now let A be any right quotient ring of
R contained in L. Then A is, of course, that of S(R). The right ideal
of SCR), which has S(R) as its right quetient ring, is S(R) itself alone
since S(R) is completely reducible for right ideals. Hence A^(S(R)/S(R))L

by (1.10). Therefore (S(R)/S(R))L is the greatest right quotient ring of
R contained in L. Next, let x£ (S(R)/S(R))L and y£S(R). Then

teR(xy)xy=Q', hence leR(xy)x£ leR(y). This shows that xeR. Thus
(S(R)/S(R))L^R. The converse inclusion is evident since S(R) is the
socle of R. This completes the proof.

6. First we prepare a certain number of terms we need. If the
nilpotency indeces of nilpotent elements in a ring is bounded, the ring
is called to be of bounded index and its least upper bound is called the
index of the ring.9) A (semisimple) /-ring is said to be plain if it is of

8) See [3], [7]. This topology is the weak topology.
9) See [6].
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index 1.10) It is well known that every idempotent in a ring of index
1 is central.115 Thus,

(6.1) A ring is plain if and only if every nonzero right ideal of R
contains a nonzero central idempotent.

The "only i f" part follows immediately from the definition. If a
ring R satisfies the condition, then R is evidently a semisimple /-ring.
Let Oφ r 6 R. Then there is a nonzero central idempotent e = xy. Now
xnyne = xn-1eyn-1e = xn-1yn-le = ••• =χye = e=£Q. This shows *WΦO and
that R is plain.

If a two-sided ideal of a ring R is the total matrix ring, of finite
degree, over a plain ring with unit element, then it is called a matrix
ideal of R.12) Of course, the unit element of any matrix ideal is central
in R and hence every matrix ideal is a direct summand of R. A ring
is called semisimple weakly reducible if every nonzero two-sided ideal
contains a nonzero matrix ideal.150 Levitzki [12] has proved the follow-
ing facts :

(1) Every semisimple weakly reducible ring is a semisimpl /-ring
[12, Theorem 3.1]

(2) Every semisimple /-ring of bounded index is semisimple weakly
reducible [12, Theorem 3. 3]

(3) Every semisimple /-ring, of which each primitive image is a

simple ring with minimum condition, is semisimple weakly reducible
[12, Theorem 3. 4]. We note teat this assumption is satisfied by every
semisimple /-ring with a polynomial identity.10

To investigate the maximal quotient ring of a semisimple weakly
reducible ring it seems pertinent to re-construct it by a special manner.

A family B of central idempotents in a ring R is called a B-family
if the following conditions are satisfied:

(Bl) Let / be a central idempotent in R. If ef=f for some e£B,
then feB.

(B2) For every nonzero central idempotent / in R there exists a
nonzero idempotent e in B such that ef=f.

We say that a mapping θ of a /2-family B into the ring R is an
H-mapping if θ satisfies the condition (//) that if e, f£B and ef=f
then (eθ)f=fθ.

The totality of //-mappings defined on a 5-family B forms a ring
HB by the operations e(θ + φ)=eθ + eφ and e(θφ) = (eθ)(eφ). It is easy to

10) See [12].
11) See [4], Lemma 1.
12), 13) See [12].
14) See [10] and [11].
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see that the intersection of any pair of /^-families is also a 5-family.
Now we say that two //-mapping are equivalent if their restrictions to
some 5-family coincide. Then this relation is reflexive, symmetric and
transitive, and the set of equivalence classes forms evidently a ring R°.
We note that for every x G R and every B-f amily B the mapping
XB: e^ex (e^B) belongs to HB.

(6. 2) Let R be a semisimple weakly reducible ring. Identifying each
x^R with the class XB G R° containing XB we can regard R° as an exten-
sion ring of R. Then R°^R over R.

( 1 ) Let B be a B-f amily. If x G R is nonzero, then BxφO. In fact,
we assume A«6sO-~~ e)R^Q. Then f~\(l—e)R would contain a nonzero
matrix ideal and hence a nonzero central idempotent. By (B2) some
nonzero g£B would be contained in f\(L—e)R. Then gR<^f\(l—e)R
<^(L—g)R and £ = 0, which is a contradiction. This shows that
f\(l—e)R=Q. If *ΦO, then x£(l — e)R or exφO for some eeB.

From (1) it is easy to see that the identification in (6. 2) is allowable.
(2) Let mG/? 1 . Then the set Bm of central idempo tents contained

in m forms a B-f amily. In fact, Bm satisfies evidently (Bl). Let e be
a nonzero central idempotent. The Re contains a nonzero matrix ideal
Tn over a plain ring T. Since Tn is a direct summand of R it follows
from (1) of the proof of (2.1) thatT M Am6T*. By (2) of the proof of
(2.3) there is m'eT* such that mM

/CTMnm. By (6.1) m' contains a
noozero central idempotent /. By (1. 3) / is central in T and hence in
R. Now /GmM 'c;TwAmC#0r\m. This implies fe=f and /€m.
Therefore Bm satisfies (B2) and it is a /Mamily.

(3) Let eeB and θeHB. Then eθ=eθ where θ is the class e/?°
containing θ. In fact, if e, /€#, then e(eθ)=eθ and (fe)(eθ) = (fe)θ by
(//) . Hence f(eθ) = (fe) (eθ) = (fe)θ = (ef) (fθ) = (feB) (fθ) .

(4) The extension R° of R satisfies the condition (1) of Theorem 1.
In fact, we let m e R* and let φ be an R-leίt homomorphism of m into
R. Then the restriction θ of φ to Bm is clearly an //-mapping. On the
other hand, R is a C-ring since it is a semisimple /-ring. Hence R* = R*
by Theorem 3. From (1), (2) it is easy to see that 2*m9, Re£ #Δ = /?*.

For any element Σ #, ef in 2 Re, (Σ #/ef ) ̂ > = 2 Xi(e&) — 2 ^f (β, ί) =2 Λr/(^)
= (2 *,«,-)£

(5) Let OΦ^G/?° and let 6>G//B be a representative of θ. Since
5/9ΦO, we see that eθ=eθ=^=0 for some e£B. This shows R<R° by
(4.4). Therefore tf0-^ over /? by (4) and Theorem 1.

Theorem 5. Let R be a semisimple weakly reducible ring.
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( 1 ) The left maximal quotient ring R of R is also the right maximal
quotient ring of R;

(2) If R is of index n, then so is R;

(3) If R satisfies a polynomial identity, then R satisfies the same
polynomial identity]

(4) R is also semisimple weakly reducible.

Proof. By the left-right symmetry of our method in (5. 2) we see

that R° is also the right maximal quotient ring. (2) Let θeR° be
nilpotent and θ e HB be its representative. Then θ is nilpotent and

hence so is eθ for every e£B. eθ
n=(eθ)n = Q. Thus έΓ = 0 and 0" = 0.

This shows that the index of R° (or R) is at most n and hence is equal
to n. (3) HB may be regarded as a subdirect sum of Re for all e € B.
The identity holds in each Re. Hence it holds in HB and in its limit
R°. (4) Let α be a nonzero two-sided ideal of R. Then an R is nonzero
and contains a nonzero matrix ideal Re = Tn over a plain ring T. Since

e is central in R it follows by (1. 3) that e is central also in R.

R=eR®(l-e)R. By (2.2), eR^eRr\R=^R=Ίj\). Hence eR^(T)n by
(2. 3). Now T is regular (Theorem 4) and of index 1 ((2) of this

Theorem), and hence plain. Thus eϊt is a nonzero matrix ideal of R

and is contained in α. This shows that R is semisimple weakly reducible.

7. In this section we consider some matrix rings as an application
of Theorem 5.

A ring is called strongly regular if for any element x there is an
element y such that x2y=x. A necessary and sufficient condition for a
ring to be strongly regular is that it is regular ring of index 1.15)

(7. 1) Every plain ring R is embedded isomorphίcally into a strongly
regular ring.

In fact, the regular ring R is of index 1 by Theorem 5.

(7. 2) // R is a nonzero plain ring, then Rn is of index n.
Every strongly regular ring is a subdirect sum of division rings.16)

Thus #C2&PCfl0, PCα° divisiom rings. Then #MC(2| PCα°)w~2| P^\
Since P^ is of index n the index of Rn is at most n. On the other
hand, for any nonzero idempotent e E R, Σ?lϊ eeii+l is of index n. There-
fore Rn is of index n.

(7. 3) Let R be a semisimple I-ring. Then R is of index n if and

14) See [10]. and [11].
15) See [4], Lemma 3.
16) See [4], Theorem 3.
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only if R is a subdirect sum of its matrix ideals T^ over plain rings
TU) and Max nΛ=n.

"If" part: The index of R is evidently at most n. And some T^
contains a nilpotent element of index n by (7.2). "Only if" part:
From the assumtion we see that R is a semisimple weakly reducible
ring. Hence it follows from a result of Levitski [12, Theorem 3.1]
that R is a subdirect sum of its matrix ideals T%£. By (7.2), Max nΛ=n.

Theorem 6. A ring R is semisimple I-rίng if and only if so is the
total matrix ring Rn. In this case, R is of index m if and only if Rn

is of index mn.

Proof. (1) Let R be a semisimple /-ring. We assume that ARn con-
tains no nonzero idempotent where A='Σaijeij£Rn. Then (xa^ye^)
Rn=(xeli) A(ye^Rn contains no nonzero idempotent for any x, y£R. Let
e = xafjyz be an idempotent. Then eelί = (xaijye11)(ze11) is also an idem-
potent. Hence eeu = 0 and e = 0. This implies xa^y — Q. Therefore
## = 0 and A = 0. It follows from this that Sn is a semisimple /-ring.

(2) Let Rn be a semisimple /-ring and I a nonzero left ideal of R.
The 2I0tι is a nonzero left ideal of Rn. Hence it contains a nonzero
idempotent 2 x^e^. 2 Λ:;10Λ — (2 Jt^/i)2 = 2 x^x^e^. Therefore ΛΓU is a
nonzero idempotent in I which shows that R is a semisimple /-ring.

(3) Let R be a semisimple /-ring of index m. Then by (7.3) R
is a subdirect sum of its matrix ideals T^ and MaxwΛ = w. Hence J?w

is a subdirect sum of its matrix ideal T^J, and Max?vz —mw. By (7.3)
this means that ,fi?m is a semisimple /-ring of index mn.

(4) Let J?M be a semisimple /-ring of index mn. Then .R is also a
semisimple /-ring by (2). Since ΛM contains a subring isomorphic to Ry

we see that R is of bounded index. Hence the index of R is m by (3).
As a corollary of this Theorem, we have

(7.4) Let R be a ring with a unit element and assume that some
homomorphic image of some two-sided ideal of R is a nonzero semisimple
I-ϊing of bounded index. Then Rn^Rm implies n = m.

The minimum of the indeces of those rings, each of which is a
nonzero semisimple /-ring of bounded index and is a homomorphic
image of some two-sided ideal of R, is denoted by p(R)y p(Rn) and p(Rm)
are similarly defined. Then p(Rn) = np(R) and p(Rm)=mp(R). Therefore
n = m if Rn=Rm.

(7.5) Assume that a ring R satisfies the condition of (7.4). Let M
be a unitary R-module with a basis consisting of k elements. Then any
other basis is also finite and consists of k elements.
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This is evident from (7. 4) since the 7?-endomorphism ring of M is Rk.
We note that every ring with a unit element, which is semisimple

weakly reducible modulo its radical, satisfies the assumption in (7.4)
and (7.5).

8. In this supplementary section we take a glance at the extended
centralizer defined in [8]. We denote the extended centralizer over a
module M as E(M) and the family of submodules of M each of which
has a nonzero intersection with every nonzero submodule of M as MA.

Theorem 7. E(N)^E(M) for every submodule N of M.
We omit the detailed proof. It is easy to see that (1) E(N)=E(M)

if NeMΔ and (2) E(N)<E(M) if N is a direct summand of M. Now
let TV be an arbitrary submodule of M. Then N+ Nc G MΔ, where Nc is
a maximal one among submodules having zero intersections with N.
Hence E(M) = E(N®NC}^E(N}.

(8.1) Let K be a module and M the direct sum of n isomorphic copies
{Kt} of K. Then E(M) ^(E(K))n.

Let Θi be an isomorphism of K onto K{. For any submodule H of
K we denote the sum 2 Hθf as //*. Then we know that fl* 6 MA and
that for any NeM* there is a submodule H of K such that #*CN.
From these facts we can prove the Theorem by the usual method.

Finally we add a simple application:

(8.2) Let R be a semisimple 1-ring of bounded index and have a
unit element. We assume that a unitary R-module M has a basis consist-
ing of n elements. Then any basis of any free submedule N of M con-
sists of at most n elements.

Owing to (8.1) we have E(M)^(E(R))n. Moreover, E(R)=R since
R is a C-ring by (4.10). Let r be the index of R. Then the index of
E(R) is also r by Theorem 5. Hence that of E(M) is rn by Theorem 6.
Let t be a natural number which is not greater than the cardinal
number of the given basis elements of N. Then N contains a submodule
L which has a basis consisting of t elements. Now Theorem 7 assures
that £(L)C£(M). Since E(L)^(E(R))t=(R)ty we know that the index
of E(L) is rt. Therefore rt<^rn whence t<^n. This proves the pro-
position.

(Received March 19, 1956)



18 Yuzo UTUMI

References

[ 1 ] K. Asano : Ueber die Quotientenbildung von Schief ringen, J. Math. Soc. Japan
1, 73-78 (1949).

[ 2 ] H. Cartan and S. Eilenberg : Homological algebra (1955), Princeton.
[ 3 ] J. Dieudonne : Sur le socle d'un anneau et les anneux simples infinis, Bull. Soc.

Math. France 71, 46-75 (1943).
[ 4 ] A. Forsythe and N. [H. McCoy: The commutativity of certain rings, Bull.

Amer. Math. Soc. 52, 523-526 (1946).
[ 5 ] N. Jacobson: The radical and semisimplicity for arbitrary rings, Amer. J.

Math. 67, 300-320 (1946).
[ 6 ] : Structure theory for algebras of bounded degree, Ann. of Math.

46, 695-707 (1945).
[7] : On the theory of primitive rings, Ann. of Math. 48, 8-21 (1947).
[ 8 ] R. E. Johnson : The extended centralizer of a ring over a module, Proc. Amer.

Math. Soc. 2, 891-895 (1951).
[9] . prime rings> Duke Math. J. 18, 799-809 (1951).
[10] I. Kaplansky: Rings with a polynomial identity, Bull. Amer. Math. Soc. 54,

575-580 (1948).
[11] J. Levitzki: A theorem on polynomial identities, Proc. Amer. Math. Soc. 1,

334-341 (1950).
[12] : On the structure of algebras and related rings, Trans. Amer.

Math. Soc. 74, 384-409 (1953).
[13] J. von Neumann: Continuous geometry, II, Princeton (1937).
[14] Y. Utumi: On complemented modular lattices meet-homomorphic to a modular

lattice, Kodai Math. Sem. Rep. No. 4, 99-100 (1952).




