ON QUASI-INJECTIVE MODULES WITH A CHAIN CONDITION OVER A COMMUTATIVE RING

Manabu HARADA

(Received November 25, 1971)

In the previous paper [4] the author and T. Ishii studied the endomorphism rings of noetherian quasi-injective modules. As an application of it, we consider, in this paper, quasi-injective modules over a commutative ring R. If R is noetherian, E. Matlis decided every indecomposable injective modules in [6].

Greatly making use of those results in [6], we shall decide all quasi-injective (resp. injective) modules which are either artinian or noetherian in \$\$2 and 3. Especially, we shall give necessary and sufficient conditions of R for existence of quasi-injective (resp. injective) modules which are either artinian or noetherian (cf. [7], Theorem 5).

In this paper, a ring R is always commutative unless otherwise stated and every R-module is unitary.

1. Preliminaries

Let K be any ring (not necessarily commutative) and M a right K-module. Put $S = \operatorname{Hom}_{K}(M, M)$, then we assume that M is a left S-module. Let N be a subset of M. Then we denote the annihilator ideal of N in S and in K by l(N)and ann N, respectively. Similarly, by r(A) we denote the annihilator submodule of M for a left ideal A in S.

We call M a weakly distinguished K-module if for any K-submodules $N_1 \supset N_2$ in M such that N_1/N_2 is K-irreducible, $\operatorname{Hom}_K(N_1/N_2, M) \neq 0$. If M is K-quasiinjective, then M is weakly distinguished if and only if rl(N) = N for any Ksubmodule N in M, (see [1], Proposition 6).

Finally, we shall add here some direct consequences of [4]. From now on we shall assume that a ring R is commutative.

Proposition 1. Let R be a commutative ring and M a quasi-injective module. If M is noetherian as an R-module, then $S = \operatorname{Hom}_{R}(M, M)$ is left and right artinian, (see Theorem 1 below).

Proof. Since R is commutative, S is an R-submodule of a finite directsum of copies of M. Therefore, S is artinian by [4], Theorem 1.

M. HARADA

Propostion 2, Let R and M be as above. We assume further that M is weakly distinguished. Put $S = \operatorname{Hom}_{R}(M, M)$. Then M is R-noetherian if and only if S is left artinian. In this case, M is R-artinian, S-injective and R/A is artinian, where $A = \operatorname{ann} M$.

Proof. If M is R-noetherian, S is artinian by Proposition 1. Hence, M is S-injective by [4], Theorem 2 and M is R-artinian from the above remark, since S is noetherian. Further, R/A is an R-submodule of finite directsum of copies of M. Hence, R/A is artinian. If S is (left) artinian, then M is R-noetherian as above.

2. Noetherian quasi-injective modules

We shall decide quasi-injective noetherian modules in this section.

Lemma 1. Let K be any ring and M a quasi-injective and weakly distinguished right K-module. Put $S = \operatorname{Hom}_{K}(M, M)$ and $T = \operatorname{Hom}_{S}(M, M)$. Then every K-submodule of M is a T-submodule of M.

Proof. Let N be a K-module of M. Then rl(N) = N by the remark in §1. Hence, N is a T-module.

Let R be a commutative noetherian ring and P a prime ideal in R. Let E(R/P) = E be an injective hull of R/P. Then Matlis showed in [6] that $E = \bigcup_{i} A_i$ and $\operatorname{Hom}_R(E, E)$ is a complete local noetherian ring, where $A_i = \{x \mid \in E, xP^i = 0\}$.

Lemma 2. Let R be a commutative noetherian ring and $\{P_i\}$ a finite set of distinct maximal ideals in R. Then every R-submodule N of $\Sigma \oplus E(R/P_i)$ is weakly distinguished and quasi-injective.

Proof. We may assume that N is an essential submodule of $E = \Sigma \oplus E_i$, where $E_i = E(R/P_i)$. Then ann $x \supset \prod P_i^n$ for any x in N. Let N_1, N_2 be Rsubmodules of N such that N_1/N_2 is R-irreducible, then $N_1/N_2 \approx R/P_i$ for some P_i . Since $N \cap R/P_i \neq (0)$, $\operatorname{Hom}_R(N_1/N_2, N) \neq (0)$, which means that N is weakly distinguished. Hence, E is an R-weakly distinguished injective module. Moreover, if we put $S = \operatorname{Hom}_R(E, E), S = \operatorname{Hom}_S(E, E)$. Hence, every Rsubmodule M is an S-submodule by Lemma 1. Let E' be an injective hull of M contained in E. Then $E = E' \oplus E''$ and $E' \supset M$. $S' = \operatorname{Hom}_R(E', E')$ may be regarded as a subring of S. Hence, M is also an S'-module. Therefore, M is R-quasi-injective by [5], Theorem 1. 1.

We are interested in a noetherian or artinian quasi-injective module M and hence, we may assume that M is directly indecomposable.

Theorem 1. Let M be a directly indecomposable module over a commutative ring R. Then M is quasi-injective and noetherian if and only if there exist an ideal

422

I such that R|I is noetherian and a maximal ideal P containing I and M is contained in a submodule A_n of $E_{R/I}(R|P)$. In this case, M is R-artinian, and hence R|I is artinian¹.

Proof. We assume that M is R-noetherian and quasi-injective. Put $I = \operatorname{ann} M$. Then $\overline{R} = R/I$ is noetherian as the proof of Proposition 2. Hence, we may assume that R is noetherian. Let E be an injective hull of M. Then $E = E_R(R/P)$ with P prime by [6], Proposition 3. 1. Put $S = \operatorname{Hom}_R(E, E)$. We know from [6], Theorem 3. 4 and its proof that $A_1 = S(R/P) \approx Sa \approx K$ for any non-zero element a in A_1 , where K is the quotient field of R/P. Since $M \cap A_1 \neq (0)$ and M is quasi-injective, M contains a submodule which is isomorphic to K by [5], Theorem 1. 1. Hence, P is a maximal ideal in R, and M is contained in some A_n , since M is R-finitely generated and each A_n has a composition length by [6], Theorem 3. 9. The remaining part is clear from the above and Lemma 2.

Corollary. Let R be a commutative ring. Then there exists a noetherian injective module if and only if R contains a maximal ideal P such that R_P is artinian, (cf. [6], Theorem 3. 11).

Proof. It is an immediate consequence of Theorem 1 and [7], Theorem 5,

3. Artinian, quasi-injective modules

We shall decide quasi-injective, (resp. injective) artinian modules in this section.

Theorem 2. Let R be a commutative ring and M a directly indecomposable R-module and $S = \text{Hom}_R(M, M)$. If M is quasi-injective and artinian, then

i. There exists a maximal ideal P in R such that $M = \bigcup A_i$, where $A_i = \{x \mid \in M, xP^i = 0\}$, and M may be regarded as an R_P -module and R_P -quasi-injective.

ii. M is S-injective and S is a commutative \mathfrak{P} -adic complete local noetherian ring, where \mathfrak{P} is a unique maximal ideal of S. Furthermore, the set of the S-submodules of M coincides with that of R-submodules of M.

iii. R is dense in S with repect to \mathfrak{P} -adic topology and hence, for any finite elements m_i in M and an element s in S, there exists an element r in R such that $m_i s = m_i r$ for all i.

Conversely, if S satisfies the first parts of ii and iii, then M is a quasi-injective and artinian R-module.

Proof. We assume that M is a quasi-injective and artinian R-module. Let $m \neq 0$ be an element in M, then $mR \approx R/\text{ann } m$ is an artinian ring. Hence, there

Added in proof: 1) In this case M is R/Ann M-injective by Theorem 1 of C. Faith Modules finite over endomorphism ring, Lecture Notes in Math., Springer, Heidelberg, 246.

M. HARADA

exists a unique maximal ideal P such that $P \supset \operatorname{ann} m$ and $P^n \subset \operatorname{ann} m$, since M is indecomposable and quasi-injective. Therefore, M contains a unique minimal R-module R/P and P does not depend on a choice of m. Let s be in R-P and $x \in l(s) \cap R/P$. Since P is maximal, there exist $p \in P$, $r \in R$ such that 1 = p + rs. Hence, x = xp + xrs = 0. Therefore, l(s) = (0). Since M is artinian, s gives an automorphism of M. Hence, M may be regarded as an R_P -module. It is clear that M is R_P -quasi-injective.

ii. Put $S = \operatorname{Hom}_{R}(M, M)$. Then S is left noetherian by [3], Proposition 1. Furthermore, we know from [3], Theorem 2 that M is S-injective, since M is R-weakly distinguished (cf. the proof of Lemma 2 and i). On the other hand, we put $S' = \operatorname{Hom}_{S}(M, M)$. Then $S' \subset S$ and hence, S' is the center of S. Moreover, since M is an artinian S-injective, S' is noetherian as above. Let N be the radical of S then S/N is a division ring by [2], Theorem 1 in p. 44 and Theorem 6 in p. 48, and $R/P \approx S/N$ as S-modules. Hence, M is S-weakly distinguished. Thus, M is also S'-injective as above. Since $S = \operatorname{Hom}_{S'}(M, M)$, S = S' is a complete local ring with respect to a \mathfrak{P} -adic topology by [6], Theorem 3. 7, where \mathfrak{P} is a unique maximal ideal in S' and $\mathfrak{P} \cap R = P$. The last part of ii is clear from the above and Lemma 1.

iii. The following argument is analogous to [6], Theorem 3. 7. Put $\bar{A}_i = \{x \mid \in M, x\mathfrak{P}^i = 0\}$. We shall show for s in S that there exists r_i in R for each \bar{A}_i such that $l(s-r_i) \supset \bar{A}_i$, Since $\bar{A}_1 = R/P = S/\mathfrak{P}$, we have r_1 . We assume that there exists r_i in R such that $l(s-r_i) \supset \bar{A}_i$. Let $\{m_1, m_2, \dots, m_t\}$ be a system of minimal generators of \bar{A}_{i+1} as an S-module (see Theorem 1), then we obtain elements b_i in R such that $m_i b_i \neq 0, m_j b_i = 0$ if $i \neq j$ by [5], Theorem 2. 3. Put $g=s-r_i, g(\bar{A}_i)=0$ and hence, $g(m_i)\mathfrak{P}=g(m_i \mathfrak{P})=0$, which means $g(m_i)\subset \bar{A}_1$. Since \bar{A}_1 is essential in M as an R-module and R/P is irreducible, there exists c_i in R such that $m_i b_i c_i = g(m_i)$ for each i. Put $r'_{i+1} = \Sigma \ b_j c_j$, then $g(m_j) = m_j b_j c_j = m_j r'_{i+1}$ for all j. Hence, $(s-(r_i+r'_{i+1}))\overline{A}_{i+1}=(0)$. Since $r(\overline{A}_{j+1})=\mathfrak{P}^{j+1}$ by [6], Theorem 3. 4, $s = \lim r_j, r_j \in R$. Let $\{m_i\}$ be a finite elements in M, then there exists an \overline{A}_n containing all m_i . Hence, if we take an element r in R such that $s-r \in \mathfrak{P}^n, m_i r = m_i s$ for all i.

Conversely, we assume that S satisfies the first parts of ii and iii. Then every R-submodule N of M is an S-module and every R-homomorphism of Nto M is an S-homomorphism. Hence, M is a quasi-injective and artinian by Lemma 2, since M is S-artinan.

Corollary. Let M, R and S be as above. If M is a quasi-injective, artinian R-module, then for any intermediate ring T between R and S, M is T-quasi-injective.

REMARK. In Theorem 2 we have shown that S is noetherian, however R/A is not noetherian in general, where $A = \operatorname{ann} M$. For example, let Z be the ring of integers and P a prime. $Z_{P^{\infty}}$ is Z_{P} -artinian, injective and indecomposable.

We can obtain a non-noetherian intermediate local ring T between Z_P and $\hat{Z}_P = \text{Hom}_{Z_P}(Z_{P^{\infty}}, Z_{P^{\infty}})$ (see [3], Lemma 1) and M is T-quasi-injective and T-artinian.

Next, we shall consider a case of injective modules.

Theorem 3. Let R be a commutative ring and M an R-artinian, injective module. Then there exists a finite set of maximal ideals P_1, P_2, \dots, P_n such that R_T is noetherian, where $T = R - (P_1 \cup P_2 \cup \dots \cup P_n)$ and n is the number of nonisomorphic indecomposable direct summands of M. Conversely, if R_T is noetherian, there exists an R-artinian, injective module which is a direct sum of n non isomorphic indecomposable modules.

Proof. Let $M = \sum_{i=1}^{n} \bigoplus M_i$ and the M_i be directly indecomposable. We may assume $M_i \approx M_j$ if $i \neq j$. Each M_i corresponds to a maximal ideal P_i and M_i may be regraded as R_{P_i} -module by Theorem 2. Further, M_i is an injective hull of R/P_i as an R-module. Put $T = R - (P_1 \cup \cdots \cup P_n)$, then $R_T/P_i R_T \approx R/P$. Hence, M is an R_T -cogenerator. Therefore, R_T is noetherian by [8], Lemma 2. Conversely, we assume R_T is notherian and put $M_i = E_R(R/P_i)$. Since R/P_i is a unique minimal sub-module of M_i , $M_i = \mathbb{E}_{R_{P_i}}(R/P_i)$. Let φ_i ; $R \to R_{P_i}$ be the canonical homomorphism. Then the operation of elements r in R on $M_i = E_{R_{P_i}}(R/P_i)$ is given via φ_i . Hence, $M_i = E_{R_T}(R_T/P_iR_T)$ and Hom $_{R_{P_i}}(M_i,$ M_i = Hom_R (M_i, M_i) by the standard argument. Furthermore, since R_{P_i} is noetherian, for any element x in M_i and $R_{P_i} \times \supseteq P_i^{n_i} R_{P_i} \supseteq \varphi_i(P_i^{n_i})$ for some n_i and hence, $xP_i^{n_i} = (0)$. Put $M = \Sigma \bigoplus M_i$, then M is an R-weakly distinguished module from the above, (cf. the proof of Lemma 2). Since R_T is noetherian, $\operatorname{Hom}_{R_{T}}(M, M) = \Sigma \oplus \operatorname{Hom}_{R_{P_{i}}}(M_{i}, M_{i}) = \operatorname{Hom}_{R}(M, M)$ is noetherian by [6], Theorem 3.9. Therefore, M is R-artinian, since M is R-weakly distinguished.

Lemma 3. Let R be a local noetherian ring with maximal ideal P and $M = E_R(R/P)$. Let $S = \operatorname{Hom}_R(M, M)$ and T be an intermediate ring between R and S. If for any element x in $E_T(M)$, $xP^n = (0)$ for some n, then M is T-injective.

Proof. $E_T(M) = M \oplus K$ as *R*-modules. If $K \neq (0)$, for any $k \neq 0$ in K, $kP^n = (0)$ by the assumption. Hence, and k' = P for some $k' \in K$. Since $E_T(M)$ is indecomposable, it contains a unique minimal *T*-module *R*/*P*. Which is a contradiction.

Proposition 3. Let R, M and S be as in Lemma 3. Then for any intermediate local ring T between R and S, M is T-injective if and only if T is noetherian and $\mathfrak{P} \cap T = P'$, where \mathfrak{P} and P' are maximal ideals in S and T, respectively.

Proof. "Only if part" is an immediate consequence of Theorem 3. We assume that T is noetherian as in the proposition. Since $M = E_R(R/P)$ and

 $(R/P)S = R/P, R/P \approx T/P'$ and $P' \cap R = P$. Let $M' = E_T(T/P')$, then for any x in $M' x P' \subset x P'' = (0)$ for some n. Hence, M = M' by Lemma 3.

REMARK. Let Z, P be as in the previous remark. Then there exists a tower of noetherian local rings $Z_P \subset R_1 \subset R_2 \subset \cdots$ such that R_i dominates R_{i-1} and $T = \bigcup R_i$ is not noetherian. Then M is R_i -injective for each i, but not T-injective.

OSAKA CITY UNIVERSITY

References

- G. Azumaya: A duality theory for injective modules, Amer. J. Math. 81 (1959), 249– 278.
- [2] C. Faith: Lectures on Injective Modules and Quotient Rings, Springer, Heidelberg, 1967.
- [3] M. Harada: On homological theorems of algebras, J. Inst. Polyt. Osaka City Univ. 10 (1959), 123-127.
- [4] —— and T. Ishii: On endomorphism rings of noetherian quasi-injective modules, Osaka J. Math. 9 (1972), 217-223.
- [5] R.E. Johnson and E. Wong: Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
- [6] E. Matlis: Injective modules over noetherian rings, Pacific J. Math. 8 (1958), 511-528.
- [7] A. Rosenberg and D. Zelinsky: On the finiteness of the injective hull, Math. Z. 70 (1959), 372-380.
- [8] K. Sugano: A note on Azumaya's theorem, Osaka J. Math. 4 (1967), 157-160.