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The main purpose of this paper is to generalize the theory of pure-injective

abelian groups (equivalently, algebraically compact groups) to the case of

modules over bounded Dedekind prime rings.

Throughout this paper, R denotes a bounded Dedekind prime ring with

an identity and every (right) i?-module is unitary.

In Section 1, we define the concepts of cocyclic and cofinitely generated

modules and give characterizations of these modules. Cocyclic modules are used

for a characterization of pure-injective modules in Section 2.

In Section 2, the concepts of pure-injective and algebraically compact

modules will be introduced by the analogy of that of abelian groups. We show

that these concepts are equivalent and that a pure-injective module is a direct

summand of direct product of cocyclic modules (see Theorem 2. 6).

In Section 3, we generalize a result [10] on modules over commutative

discrete valuation rings to the case of modules over non-commutative discrete

valuation rings. In Theorem 3. 6, we show that every module over non-

commutative discrete valuation rings has a basic submodule and that any basic

submodules of the module are isomorphic. Using basic submodules, we deter-

mine, in Section 4, the structure of reduced, algebraically compact modules.

In Theorem 4. 7, we show that the pure-injective envelope of an i?-module M

is isomorphic to the direct sum of the injective envelope of M1 and M, where

M* = Π MA (A ranges over non-zero ideals of R) and iW" is the completion of M

with respect to the i?-adic topology.

In Section 5, we establish that there is a one-to-one correspondence between

all divisible, torsion i?-modules and all reduced, torsion-free, algebraically

compact i?-modules. This extends a result of Harrison [8] to modules over

bounded Dedekind prime rings. "Submodule" and "homomorphism" without

modifier mean always "Λ-submodule" and '^-homomorphism" respectively.

This paper is a continuation of [11]. A number of concepts and results

are needed from [11].
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1. Cofinitely generated modules

In this paper, a ring R is always a bounded Dedekind prime ring unless
otherwise stated. Let P be a prime ideal of R. We denote, in this paper, the
local ring of R with respect to P by RP and its maximal ideal by P'. Further-
more, we denote the completion of RP with respect to P' by RP and its maximal
ideal by A Since R\Pn^RPjP'n by a natural correspondence, RP is isomorphic
to the completion of R with respect to P (see [7]). Let M be an i?-module and
let A be an ideal of R. We define M[A] = {meΞM\mA = 0}.

Let M be an i?-module. Following [6], we shall call M cocyclic if there is
an element m^M such that any homomorphism φ: M^>N with w φ K e r φ
implies that φ is a monomorphism. In this case, m may be called a cogeήerator
of M. This concept is naturally dual of cyclic modules. Since every submodule
is a kernel of a homomorphism, if M is cocyclic, then M is uniform and has a
unique simple submodule. Conversely, if M is uniform and has a unique simple
submodule *S, then M is cocyclic, and any element =t=0 in S is a cogenerator
ofM.

Proposition 1.1. A module M is cocyclic if and only if M is isomorphic to
eRPjePn or is of type P°°, where P is a prime ideal of R and e is a uniform
idempotent in RP.

Proof. If M = eRPjePn

y then M is uniform and has a unique simple module
ePn'λ\ePn by Lemma 2. 3 of [11], because ePn^\ePn^eRP\eP. If M is of type
P°°, then by Theorem 3. 17 of [11], M^l im ekP\ePn. Therefore M is uniform

and has a unique simple module eRPjeP. Conversely, if M is cocyclic, then M
has a unique simple module S. By Lemma 3. 15 of [11], S^eRP/eP, where P
is a prime ideal of R and e is a uniform idempotent in RP. Since M is uniform,
it is clear that M is P-primary. If M is divisible, then M is of type P°° by
Theorem 3. 17 of [11]. If M is reduced, then M is isomorphic to eRP/ePn by
Theorem 3. 24 of [11].

A module M is called cofinitely generated, if n Λ M Λ = 0 , where M Λ are
submodules of M, implies that there exist finitely many aly a2y •••, an such that
Γi;=1ilίΛ. = 0. This concept is naturally dual of finitely generated modules.
Cofinitely generated modules are characterized as follows:

Theorem 1. 2. For an R-module My the following conditions are equivalent:
( i ) M is cofinitely generated;
(ii) the socle S(M) of M is finitely generated and M is an essential extension

ofS(M);
(iii) M is an essential extension of a torsion, finitely generated R-module
(iv) M is a direct sum of a finite number of cocyclic modules
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(v) M is an artinίan R-module.

Proof. The equivalence of (i) and (ii) was proved for a module over a
general ring by Onodera [13].

(ii) ==> (iii): This is trivial.
(iii)=Φ (iv): Let N be the finitely generated torsion submodule of M.

Since M is an essential extension of iV, we obtain that M is also torsion and
dimM=dimiV=fl<°o. Now let M=DQ)C, wherefl isthe divisible part of M
and C is the reduced part of M. Then D is a direct sum of a finite number of
divisible cocyclic modules and C is an essential extension of C Π N. Hence, by
Theorem 3. 2 of [11], we may assume that M is a reduced P-primary module
and TV is a finitely generated P-primary module, where P is a prime ideal of R.
Since fl = dimM=dimiV, we have Λf[P]=JV[P] = S 1 0 — 0 S,,, where 5, are
simple /^-modules. Then the injective hull E(M) of M is isomorphic to 2?(*SΊ)
©••• ©£(£„). By Theorem 3. 17 of [11] the submodules of £(5 f ) are only
eRp/ePn, n=l, 2, •••, where e is a uniform idempotent in KP and thus E(S£) is
an artinian module. Hence M is also artinian module and so M=M1 0 0 Mn,
where M£ is an indecomposable i?-module. By Corollary 3. 26 of [11], M{ is a
cocyclic module.

(iv) =Φ (v): This is trivial.
(v) =̂> (ii): This is trivial.

2. Pure-injective and pure-projective modules

A short exact sequence O^L -» M -> iV->0 of i?-modules is said to be
pure-exact if Image a is a pure submodule of M.

A module P is pure-projective if for any pure-exact sequence 0->L-»M->
iV->0, the natural homomorphism

Horn (P, M) -* Horn (P, N)

is surjective. Similarly, a module G is pure-injective if for any such sequence,
the natural homomorphism

Horn (M, G) -> Horn (L, G)

is surjective.
In this section, we give characterizations of pure-projective and pure-

injective modules.
Since a projective module is a direct summand of a direct sum of cyclic

modules, by Corollary 3. 8, Theorem 3. 10 of [11] and Corollary 3 of [14],
we have

Proposition 2 l An R-module is pure-projective if and only if it is a direct
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summand of a direct sum of cyclic modules.

Lemma 2. 2. For a submodule S of an R-module M, the following conditions
are equivalent:

( i ) S is pure in M;
(ii) S/SA is a direct summand of M/SA for every non-zero ideal A of R;
(iii) if BQSy where B is a submodule of S, such that SjB is of bounded order,

then S/B is a direct summand of M\B.

Proof. (i)=>(ii): This follows from the same way as in Theorem 27. 10 of
[6].

(ii)=#>(iii): Asumme that S\B is of bounded order. Then there exists an
ideal AφO of R such that SA^B and so, by the assumption, MjSA =
K/SA, where K is a submodule of M. Then it immediately follows that

M/JB = S/B®(K+B)IB.

(iii)=#>( i ) : If xc = s, where x^M, s^S and c is regular in i?, then there
exists an ideal A=£θ of R such that Rc^A, because R is bounded. By the
assumption, M/SA = SISA®K/SA9 where if is a submodule of M. We denote
the image of an element m ( e M ) in MjSA by in. Now we write x=S1 + k,
where sxeS and k^K. Then s^=S and so ί ^ - ί G S A Q S c . Hence src—s = s2c
with $2^*5 and thus (s1-\-s2)c = s, as desired.

By the validity of Lemma 2. 2, the proof of the following lemma is proceeded
as in Theorem 29. 2 of [6].

Lemma 2. 3. A short exact sequence 0->L-+M->N->0 is pure-exact if
and only if for any bounded module G, the natural homomorphism Horn (M, G)->
Horn (L, G) is surjective.

Lemma 2. 4. (i) Let m be a non-zero element in an R-module M and let B
be a submodule of M that is maximal with respect to the property of excluding m.
Then M\B is cocyclic.

(ii) Let Na ( α e Λ ) be R-modules. Then Ί,Λ(BNa is pure in ΠΛ NΛ, where A
is an index set.

Proof, (i) follows from the same way as in Proposition 25. 2 of [6].
(ii) immediately follows from the definition of pure submodules.

Lemma 2. 5. Every R-module can be embedded as a pure submodule in a
direct product of cocyclic modules.

Proof. Let {Ga} be the family of cocyclic quotient modules and bounded
quotient modules of an i?-module M7 and let G ^ Π * G^. The natural epimor-
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phism θa: M->Ga induces a homomorphism θ: M-*G, where θ{m) = (θΛ{m)) for
every m^M. Then, by Lemma 2.4, θ is a monomorphism. To prove that
Θ(M) is pure in G, we let θ(m)=gc, where g^G, tn^M and c is regular in i?.
Then there exists a non-zero ideal A of R such that Rc^A. If MjMA = Q,
then M=Mc and so m = mxc for some m^M. Hence Θ(m) = θ(m1)c. If
M/MA^Oy then m + M 4̂ = (mα> + M^[)ί: for some ma^M> and so m—mac^
MAQMe. Hence m = m2c for some τn2^Mand thus 0(m) = θ(m2)c. If GΛ is of
bounded order, then Ga is a direct sum of cocyclic modules by Theorems 3. 7
and 3. 38 of [11] and thus Ga can be embedded as a pure submodule in a direct
product of cocyclic modules by Lemma 2.4. Therefore M can be embedded as
a pure submodule in a direct product of cocyclic modules.

Following [14], an i?-module M is compact if there is a compact Hausdorff
topology on M making it a topological group and such that the right multi-
plications by elements of R are continuous.

An i?-module M is algebraically compact if M is a direct summand in "every
i?-module G that contains M as a pure submodule (see [6]). Every divisible
module and every bounded module are algebraically compact (see [11]).

It follows at once that a direct summand of an algebraically compact module
is again algebraically compact, and a module is algebraically compact exactly if
its reduced part is algebraically compact.

Theorem 2. 6. The following conditions on an R-module M are equivalent:
( i ) M is pure-injective;
(ii) M is algebraically compact
(iii) M is a direct summand of a direct product of cocyclic modules',
(iv) M is a direct summand of a compact R-modules
(v) every finitely soluble family of linear equations over R in M has a simul-

taneous solution (cf. Theorem 38.1 of [6]).

Proof. By Theorem 3.10 of [11] and Theorem 2 of [14], (i), (iv) and (v) are
equivalent.

( i )=^(ii): This is trivial.
(ii )=#>(iii): This follows immediately from Lemma 2. 5.
(iii)==>( i ): Let G = Π Λ GΛy where GΛ are cocyclic, let M be a direct sum-

mand of G and let

where p is the injection and π is the projection.

Now let 0->H^K->L->0 be a pure-exact sequence and let φ: H-+M be any
homomorphism. Since GΛ is divisible or of bounded order, by Lemma 2. 3,
there exists ψa: K->GΛ such that ΨJ=πaρφ> where π#: G->GΛ is the projec-
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tion. We define a map ψ: K->G by ψ(k) = (ΛlrΛ(k))f where k^K, i.e., πaψ = ylr<Λ.
Then we can easily prove that φ=(π ψ)i, as desired.

By using (iii) in Theorem 2. 6, the proof of the following Corollary is pro-
ceeded as in Corollary 38. 2 of [6].

Corollary 2.7. Let Mbea reduced module. Then M is a pure-injectίve module
if and only if M is a direct summand of a direct product of reduced cocyclic modules.

3. Basic submodules over g-discrete valuation rings

We shall study, in sections 4, 5, the structure of algebraically compact
modules over bounded Dedekind prime rings. For this purpose, we shall
generalize, in this section, a result [10] on modules over commutative discrete
valuation rings to the case of modules over non-commutative discrete valuation
rings.

In commutative rings, a ring is a discrete valuation ring if it is a principal
ideal domain with unique maximal ideal. We now generalize, in a natural way,
the concept of this to the case of non-commutative rings. A ring R is called a
generalized discrete valuation ring (for short: ^-discrete valuation ring) if

( i ) R is a prime ring,
(ii) R is a right and left principal ideal ring,
(iii) J(R) is a unique maximal ideal of i?,
(iv) Idempotents modulo J(R) can be lifted.
Furthermore, if R is a domain and R/J(R) is a division ring, then we call

R a discrete valuation ring. Let P be a prime ideal of a bounded Dedekind prime
ring R. Then, by Lemmas 2. 2 and 2. 3 of [11], RP is a g-discrete valuation ring.

Throughout this section R will be a fixed g-discrete valuation ring with
unique maximal ideal P and Q will be the quotient ring of R. Furthermore we
denote the completion of R with respect to P by Jx, and its maximal ideal by A

Lemma 3.1. ( i ) R = (D)k, where D is a discrete valuation ring with unique
maximal ideal P0=p0D = Dp0 (po<=D).

(ii) R is a g-discrete valuation ring with maximal ideal P=p0R = Rp0 and
R = 0)k, where ρQ^D with P0=pQD = Dp0.

(iii) Let e, f be any uniform idempotents in R. Then eR~fR.
(iv) Let e be any idempotent in R. Then e is a uniform idempotent in R if and

only if eRjeP is a simple R-module.

Proof. Since idempotents modulo P can be lifted, it is clear that R = (D)k.
The other assertions follow from the same arguments as in Lemmas 2. 1, 2. 2
and 2. 3 of [11].

Let R=(D)k. Throughout this section, eίV will denote the matrix: with 1 in
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the (/, j) position and zeros elswehere.

Lemma 3. 2. Let R, P, D and p0 be as same as in Lemma 3. 1. Then
every proper R-submodule of enQ containing enR is of the form enRp^n for some
non-negative integer n.

Proof. Since PoR = Rpo for all n, it is clear that enRponis ani?-submodule
of enQ containing enR. Conversely, let K be an i?-submodule of enQ containing
enR. First we shall prove that if enrpόn^K> where enr<£P, then
We put

eur = ( ' " ' Q"1 Vlk) , where r

Since eur^P, there is a natural integer j (1 Ξg /<|β) such that ru- is a unit in D.
Then

/ r i y ί ό " , 0.--,0

e11rpr'eJ1 = \ ° °

I i
Since there is a unit u in D such that r1jpόn=pόnu, we have £n/>ό"w=
eurPόn(ejiU~1e11)^Ky as desired. Since any element eng in £nζ) has the form
enapόn, where enaφP, we may assume that K^e11pόn and ίΓ$β11>p5'cn+1) for
some natural integer n. Then it is clear that K^eλlRpόn. Suppose that
K=SenRpon, then there is an element k^K such that k$ΞenRpόn . We write
k = e11apόι, where ena<£P and l>n. Then we have KSenRpόι and thus
KSβnpo"'1, which is a contradiction. Hence K = enRpόn.

Let M be a torsion-free i?-module. Then we can prove that the mapping
m—>m®l, m^M, is an i?-monomorphism of M into the tensor product M®RQy

every element of MQ has the form me'1, where m^M and c is regular in R, and
M®RQ~MQ under the correspondence m®q—>mq, q^Q. As usual, we con-
sider M as a submodule of MQ and identify m^M with m 1. In similar fashion
if N is a submodule of M, we have NQN®RQ^NQ= {nc~1\n^N, c: regular
inR).

Lemma 3. 3. Let M be a torsion-free R-module with dimM=l. Then M
is either isomorphic to eQ or isomorphίc to eR, where e is a uniform idempotent in R.

Proof, (i) If M is divisible, then, by Lemma 3. 16 of [11], M^eQ for any
uniform idempotent e in R, because eQ is a minimal right ideal of Q.

(ii) If M is not divisible, then, clearly M is reduced and MenR = Mφ0.
Hence there exists an element x^M such that xenRφ0. By Theorem 2,4 of
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[3], we have enR^xenR and so, by Proposition 4. 4 of [4], MQ^eλlQ. So we
may assume that e^RQM^e^Q. By Lemma 3. 2, M=elλRpόn for some non-
negative integer n and thus M=e11Rpόn=e11p^nR^e11R, as desired.

Lemma 3. 4. If M is not a divisible R-module, then M contains a non-zero
pure cyclic uniform submodule.

Proof. By Theorem 3. 19 of [11], we may assume that M is reduced.
( i ) If M is torsion-free and if x is a non-zero element of M, then xQ =

*5Ί φ θ SnQMQ, where S{ is a simple g-module. Since MQ is an essential
extension of M a s an i?-module, N{ = £,-ΠMΦ0 for each i. Since NiQ = Si
and Ni = NiQ Π M, we have dim iVt = 1 and N{ is pure in M. By Lemma 3.3,
N^eR for any uniform idempotent e in i?.

(ii) If M is not torsion-free, then the torsion module T of M is non-zero.
By Theorems 3. 2 and 3. 24 of [11] T possesses a uniform cyclic direct summand
N. Since T is pure in M, iV is pure in M.

Lemma 3. 5. Let M be an R-module and let S be a pure submodule such
that MjS is not divisible. Then there exists an element y^M such that S Π yR = 0
and Sζ&yR is again pure.

Proof. By Lemma 3. 4, there exists an element yo^MjS such that yQR is a
pure uniform submodule. Let σ: M-^MjS be the canonical epimorphism and
let N be the inverse image in M of yjϋ. If y0R is torsion-free, then, by
Theorem 3. 1 of [11], j;07? is Λ-projective and so iV = 5 0 y R for some y^N with
cr(y)=yo If y0R is torsion, then, by Lemma 3. 5 of [11], N = S(ByR for some
y^N with σ(y)=y0. Next we shall show that N is pure in M. Suppose that
xc = s+yr, where x^M, s^S, r^R and c is regular in R. Then σ(x)c = yor.
By the purity of yQR, there exists an element yQr1 in y0R, where rx^R with
σ{x) c = (yort) c and thus #c—yrxc^ S. By the purity of S> there exists an element
ί jGS such that (Λ?— yr1)c=s1c and so #c = (s14- j ^ ) £ . Hence iV is pure in M,
as desired.

A submodule B of an i?-module M is called a £αM*£ submodule if it satisfies the
following conditions:

( i ) B is a direct sum of cyclic modules,
(ii) B is pure in M,
(iii) MjB is divisible.

Theorem 3. 6. L#£ R be a g-discrete valuation ring and let M be an R-
module. Then

( i ) M possesses a basic submodule,
(ii) Any two basic submodules of M are isomorphic,
(iii) Let S be a pure submodule of M and let B be a basic submodule of S.
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Then there exists a basic submodule of M which contains B as a direct summand.

Proof, (i) Let {xt) be a maximally pure independent subset of M, and let
B be the submodule generated by the x's. Then B is certainly a direct sum of
cyclic modules and, by Lemma 3. 5, MjB is divisible. Hence B is a basic sub-
module of M.

To prove (ii), let R = (D)ky J(R) = P and P=p0R = Rp0 be as in Lemma 3. 1.
Let B be any basic submodule of M. By Theorems 3. 1, 3. 38 of [11] and
Lemma 3. 3, B is a direct sum of uniform cyclic submodules and so B is a direct
sum of a torsion-free module C and a torsion module E. First we shall prove
that C is independent of the choice of B. By Lemma 3. 3, C ^ Σ φeR and
CjCP^Ί, ®eRjeP, where e is a uniform idempotent in R. By Lemma 3. 1,
eRjeP is a simple i?-module. Therefore by Lemma 3. 1 and Krull-Remak-
Schmidt-Azumaya's theorem, it is enough to show that C/CP is an invariant for
M. But this follows immediately from the same argument as in Lemma 21 of
[10].

Next, we shall prove that the torsion component E of B is a basic submodule
of Γ, where T is the torsion part of M. Suppose that TjE is not divisible.
Then, by Lemma 3. 5, there exists an element J G Ϊ 1 such that EΓ\yR = 0 and
E'=E®yR is pure in T. Since C(Ί Γ = 0 , the sum B'= E'+ C is direct. We
shall prove that B' is pure in M. If xc = t + z> where x e M, z e C, * e £', ίpS = 0
and c is regular in i?, then xcp\ = zpl^C. By the purity of C, there exists an
element z1^C such that zpl = zxcpl. Since C is torsion-free, z = ztc and thus
( x - ^ J ^ ί G ^ . By the putity of E\ there exists an element t^E' such that
(#—#!)£ = *!£ and thus xc = (t1-\-z1)cy as desired. The purity of B' implies that
B'\B is pure in M/B. Since B'jB is of bounded order, Br\B is a direct summand
of MjB by Theorem 3. 12 of [11] and thus B'\B is divisible, which is a contra-
diction. Hence £ is a basic submodule of T. To prove that the submodule
E is independent of the choice of JB, by Theorem 3. 39 of [11], it is enough to
show that the number of uniform cyclic summands of order Pn in E is an
invariant for M. For m>n, it is equal to the number of uniform cyclic sum-
mands of order Pn in EjEPm. Hence we may prove that E\ΈPm is an invariant
for M. Since E is a basic submodule of T, we have TPm + E = T and TPm f]E=
EPm. Hence EjEPm^{TPm^E)jTPm= T\TPm and thus E\EPm is an invariant
for M for every w.

(iii) This follows from the same way as in (iii) of Lemma 21 of [10].

By Lemma 3. 14 of [11], a primary module over a bounded Dedekind
prime ring is a module over a g-discrete valuation ring and so it has a basic sub-
module. Futhermore the concepts of quasi-basis and lower basic submodules
in modules over g-discrete valuation rings can also be introduced by the analogy
of that of abelian groups, and the results of Chapter V of [5] can be easily
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carried over to that of modules over bounded Dedekind prime rings.

4. Complete modules and algebraically compact modules

For an i?-module M we introduce two topologies as follows: The i?-adic
topology on M is defined by taking as neighborhoods of 0 the submodules MA
{A are non-zero ideals of R). And the P-adic topology on M is defined by
taking as neighborhoods of 0 the submodules MPk (k=l, 2, •••), where P is a
prime ideal of R. These topologies make M into a not necessarily Hausdorίϊ
topological i?-module. A module M is called complete in a given topology if it
is Hausdorff, and every Cauchy net in M has a limit in M. If M= ΠΛMΛ, then
M is complete in the i?-adic topology if and only if Ma is complete in the i?-adic
topology for each a, because R is noetherian.

If M is a pure submodule of an .R-module G, then G is a pure essential
extension of M if there are no non-zero submodules *S£G with SΓ\M=0 and
the image of M is pure in G/S. A pure extension G of M is a pure-injective
envelope if G is pure-injective and the extension is pure-essential. By Proposi-
tion 6 of [14], for any module, pure-injective envelopes exist and are unique up
to isomorphism. Furthermore, by the same arguments as in abelian groups
(see §41 of [6]), G is a pure-injective envelope of a module M if and only if G
is a maximal pure-essential extension of M. Let M be an jR-module. We
denote the submodule Π MA by M1, where A ranges over non-zero ideals of R.

Lemma 4.1. Let G be the pure-injective envelope of an R-module M and
let G = D®C, where D is divisible and C is reduced. Then M1 = Df]M. In
particular, if M1 = 0, then G is reduced.

Proof. Since R is bounded, it is clear that G1== (Ί Gc, where c ranges over
regular elements in R. From this fact and Corollary 3. 11 of [11], we have

M1 = ΓίMA= Π(GAΓ\M) = G1ΠM = Df)M.

If M 1 = 0, thtnDf]M=0. Clearly the image of M in G\Ό is pure and thus
D = 0. Hence G is reduced.

For an abelian group M, the following three conditions are equivalent: (i)
M is reduced, algebraically compact; (ii) M is complete in the Z-adic topology;
(iii) M=ΠpMpy where Mp is complete in the^>-adic topology, where Z is the
rational integers and p are prime numbers (cf. Theorem 39. 1 and Proposition
40. 1 of [6]).

For modules over bounded Dedekind prime rings, we have

Theorem 4. 2. The following conditions on an R-module M are equivalent'.
( i ) M is reduced, algebraically compact;
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(ii) M is complete in the R-adic topology

(iii) M=Iip MP, where P ranges over non-zero prime ideals of R and each

MP is complete in the P-adic topology.
In particular the MP are uniquely determined by M.

Proof. (i)=#>(ii): By Corollary 2.7, M is a direct summand of a direct
product of reduced cocyclic modules. Since a reduced cocyclic module is com-
plete in the i?-adic topology, M is complete in the i?-adic topology.

(ii)=#>(iii): Since M is Hausdorff, i.e., M1 = 0f M is reduced and 0=[)P
Π MPk (P ranges over non-zero prime ideals of R and k= 1, 2, •••) by the same
argument as in [1, p. 73, Proposition 6]. Let M P = lim M /MPn. Then the
following definition makes MP in a natural way into a module over the RP. Let
m = ( , 01, + MPV' ) be any element of M, where mi — mJ^MPi (j^i) and let
/=(•••, f j + P' , •••) be any element of RPy where r£—r^Pfi (/=*)• Since
RjPn^RPjP

/n by the natural correspondence and P/nf]R = Pn

> we may assume
that r , e R , r{ — rjeP' (j^i). We define mr = ( , m^ + MP\ ). It is easily
verified that with this definition MP becomes an /?F-module. It is clear that
MP is complete in the P-adic topology (equivalently, it is complete in the P-adic
topology). Let θ: M->Πp MP be the diagonal homomorphism. Then it is clear
that θ is a monomorphism. Using [1, p. 73, Proposition 6], we can prove that
θ maps continuosly onto a dense submodule of Π MP and that the induced
topology on Θ(M) as a submodule is the same as the jR-adic topology. Hence θ
is an isomorphism.

Since MPP~MP{Pi^FP) and 0=Γ\kMPP
k (k=l, 2, •••), we obtain that

MP= Γip.^pMPk (k=l, 2, •••). Hence the components MP are uniquely
determind by M

(iii)=#>( i ): Since MP is complete in the P-adic topology, it is in a natural
way an /cP-module, and so MPPi = MP for every non-zero prime ideal P, ( φ P )
of R. Hence MP is complete in the i?-adic topology. Thus M is complete in
the P-adic topoloty. Now let G be an i?-module such that G contain M as a
pure submodule.

(a) If G is complete in the i?-adic topology, then we may assume that
G = U GP, where GP is an/?P-module, and complete in the P-adic topology, and
that Gp^Mp. Let BP be a basic submodule of MP. By Theorem 3. 6, we
enlarge BP to a basic submodule BP' =Bpξ&CP of GP. Then we obtain that
Gp = βp = βp®CP and that MP = βP Thus we have G = MφU CP.

(b) If G is not necessarily complete and G1 = 0 Then, by Lemma 4. 1,
the pure-injective envelope G of G is also reduced, and hence G is complete.
By case (a), we obtain that G=M®K, and thus G = MξB(KΠG).

(c) Let G be an arbitrary P-module and let G=GjG\ Then clearly
G1Γ)M=0 and M=M®G1/G1 (^M) is pure in G. Hence by case (b), we
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obtain that G=MφK, where K is a submodule of G. Since G = M+K, and
MΠ K=(MΠ K)Γ\ G1=(MΠ G1)^K = 0, we have G=Λί0A:. Hence M is
reduced, algebraically compact.

Using (iii) in Theorem 4. 2, the proof of the following Corollary is proceeded
as in Corollaiy 40. 4 of [6].

Corollary 4. 3. Every non-zero reduced, algebraically compact R-module

contains a direct summand which is isomorphic to eRP or e\RP\ePn (n=ί, 2, •••)

for some P, where e is a uniform idempotent in &P.

Corollary 4. 4. Let R be a complete g-discrete valuation ring with quotient

ring Q and let M be an indecomposable R-module, Then M is isomorphic to one of

the following four modules: eR\ePn, eR, eQ, or type P°°, where e is a uniform idem-

potent in R and P is a unique maximal ideal of R.

Proof. If M is reduced, torsion-free, then, by Lemma 3. 4, M contains a
non-zero pure cyclic submodule which is isomorphic to eR. By Theorem 4. 2,
it is a direct summand of M and thus M^eR. Now the assertion immediately
follows from Corollary 3. 26 of [11].

Corollary 4. 5. Let R be a complete g-discrete valuation ring and let M be

a countably generated, torsion-free R-module. Then M is the direct sum of a divi-

sible module and a reduced module E, where if E is finitely generated, then E^eR

© (BeRfor some uniform idempotent e in R and if E is not finitely generated, then

E is a free R-module.

Proof. By Theorem 3. 9 of [11], M is the direct sum of a divisible module
and a reduced module E. If E is finitely generated, then, by Theorem 3. 1 of
[11] and Lemma 3. 3, E^eR(B~($eR. If E is not finitely generated, then it
is clear that M is expressed as the union of an ascending sequence of pure sub-
modules i V Ί C ^ C CiV^C , where άimNn — n. By induction, we assume
that Nn is a direct sum of n number of copies of eR. Hence Nn is algebraically
compact by Theorem 4. 2. Since 0->Nn-*Nn+1 is pure-exact and dim Nn+1 =
n+l, we have Nn+1 = Nn(BeR. Hence E is a direct sum of an infinite number
of copies of eR. Thus E is iί-free by Theorem 2. 4 of [2].

Let {A^i^I} be the set of all non-zero ideals of R. We put i^i for
to mean A^Aj. Thus the index set / is directed.

Now we put il2r= lim MjMAi and μ: M-^N[ is the natural homomorphism.

Since M\MA is isomorphic to Π, M/MP^ for each ideal A of R (A = Pt1-"P<tή,

we have ΛUΓ=ΠP MP, where MP = limM/MPn. It is clear that UP is complete

in the P-adic topology and thatMPA = MPP
Λ, where P* is the heighest power of

P dividing A. Hence MP is complete in the i?-adic topology, and thus M is
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complete in the i?-adic topology. Furthermore we obtain that μ{M) is pure in
M. To prove this, suppose that rhc= μ(m), where m = (•••, m£ + MAiy " ) G M ,
m^M and c is a regular element of R. Since R is bounded, there is a non-zero
ideal Ak such that Rc^Ak and thus M ^ M ^ . Then mkc + MAk = m + MAk

implies that mkc—m^MAkζZMc and so μ(m')c=μ(m) for some m'^M, as
desired. Hence we have

Proposition 4. 6. Le£ M be an R-module. Then M is the pure-injective
envelope of μ{M).

Theorem 4. 7. The pure-injective envelope of an R-module M is isomorphic
to the direct sum of the injective envelope of M1 and the completion M of M.

Proof. Let G be the pure-injective envelope of M. We write G =
where D is divisible and C is reduced. Then M1 = DΓ\ M by Lemma 4. 1. If
D 3 ^(M1), then we have D = E{Mι) ®D2 with D2 φ 0. Clearly D2 Π M=0 and
(D20M)/D2 is pure in G/Z>2. Hence G is not a pure-essential extension of My

which is a contradiction and thus D = E(M1). Let G=G/E(M1) and let
M=M/M1 (^[M-\-E(M1)]/E(M1)). Then G is a reduced pure-injective module

_ _ _ < ^ Λ —

and M is pure in G. Hence we may assume that MdM( = M) c G by Proposition

6 of [14] and Proposition 4. 6. If Mξ^G, then there exists a proper submodule
if of G such that K^E{M% K^M and if/^(M1) = M. Hence if ^ ( M 1 ) © ^ .
Thus if is a pure-injective module, which is a contradiction. Hence we have
ΛSr= Jϊ=G, and thus G^E(Mλ)®U.

Following [6], an i?-module M is a P-adic module if M is an j?p-module.

Lemma 4. 8. L^ i?P, MP be P-adic modules such that BPQMP. Let
B = Σ ®BP and let M=U MP. Then

( i ) BP is pure in MP for every P if and only if B is pure in M.
(ii) MpjBp is divisible for every P if and only if M\B is divisible.

Proof. ( i ) This is immediate.
(ii) The "if" part is clear. The "only if" part: Let m = {mp) be any

element of M and let c be any regular element of R. Since R is bounded, there
exists a non-zero ideal A such that Rc^A, where A = P*1"P*K For any prime
ideal P ( φ P x , •••, Pk), we have RPΏRPc^>RPA=RPy and hence c is a unit in
RP. Thus we obtain mp = mp'c for some mp^MP ( P φ P j , •••, Pk). For any
prime ideal P, (l^z'^S&), mPi = m/

p.c + bi (m'Pi^Mp.y b^Bp.), because MPJBP. is
divisible. Now let m/ = (mp)y b= Σ*~i ^ Then we have m=m'c + b, as
desired.

A submodule B of the i?-module M is called a basic submodule if it is satisfies
the following conditions:
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( i ) B is a direct sum of cyclic P-adic modules,
(ii) B is pure in M,
(iii) MjB is divisible.

Proposition 4. 9. Let M be an algebraically compact R-module. Then

( i ) M possesses a basic submodule.

(i i) Any two basic submodules of M are isormorphic.

Proof. ( i ) Clearly we may restrict ourselves to the case when M is
reduced. By Theorem 4. 2, we haveM=Π MPy where MP is a P-adic module.
By Theorem 3. 6, there exists a basic submodule BP of MP. Then B = Έ,(BBP

is a basic submodule of M by Lemma 4. 8.
(ii) Let B/ be another basic submodule of M and let B' = ΣQ)BP> where

BP is the direct sum of all direct summands belonging to the same prime ideal
P. Then, by Lemma 4. 8, M=£'^U &P'. By Theorem 4. 2, βP'^MP for
every prime ideal P. It is clear that BP is a basic submodule of βP and so
BP^BP by Theorem 3. 6. Hence B'^B as an i?-module.

Theorem 4. 10. TA^re is a one-to-one correspondence between the reduced

algebraically compact modules M and the direct sums B of cyclic P-adic modules (P

ranges over prime ideals of R): given M, we let its basic submodule B correspond to

M: to a given B, there corresponds its R-adic completion.

Proof. By Proposition 4. 9, the correspondence M-^>B, where M is a
reduced algebraically compact P-module and B is its basic submodule, is single-
valued and M=6. Conversely let B be a direct sum of cyclic P-adic modules.
Then it is clear that B1 = 0. Hence U is a pure-injective envelope of B by
Proposition 4. 6 and so ίϊ is unique up to isomorphism. Clearly β is a reduced,
algebraically compact module and B is a basic submodule of U.

Corollary 4.11. There is a one-to-one correspondence between the P-adic,

reduced, algebraically compact modules and the direct sums of cyclic P-adic modules.

Let M be a reduced, algebraically compact i?-module. M is called adjusted
if it has no non-zero torsion-free direct summannds. Let B be a basic sub-
module of a reduced, algbraically compact module M. We write .B = CφZ>,
where C is the direct sum of all torsion-free, cyclic summands of B and D is the
direct sum of all torsion, cyclic summsnds of B. Then M— U—CQ)D, C is a
torsionfree, algebraically compact i?-module and is an adjusted, algebraically
compact i?-module. Let T be the torsion submodule of M. Then clearly
t)^ T^D and f)\T is the maximal divisible submodule of M/Γ, because t)\T is
a homomorphic image of a divisible module t>\Ώ and M\T^C®Ό\T. Hence
we have



MODULES OVER BOUNDED DEDEKIND PRIME RINGS. II 441

Proposition 4.12. Let M be a reduced, algebraically compact R-module.

Then there is a direct decomposition

M = C&D ,

where C is torsion-free, algebraically compact and D is an adjusted, algebraically

compact module. D is a uniquely determined submodule of M.

By Theorem 4. 10 and the proof of Proposition 4. 12, we have

Corollary 4.13. The mapping B—>U gives a one-to-one correspondence

between the class of direct sums of torsion, cyclic modules and the class of adjusted,

algebraically compact modules.

5. The Harrison duality theorem

In this section we shall study a structure of reduced, torsion-free, algebraic-
ally compact i?-modules. Let R be a bounded Dedekind prime ring and let Q
be the quotient ring of R. If P is a prime ideal of R, then RP = (D)k, where D
is a local Dedekind prime domain with unique maximal ideal Po. Furthermore
we have P0 = p0D = DpQ, whereJ> oeD, P/=p0RP = RPp0 and P=p0RP = RPp0 (see

[11]). The sequence 0-*RP/P/n -4 Rp/P^+1 is exact, where Θn(x + P'n)=pox +
P/n+1 for every x in RP. The inductive limit lim RP/P/n of the ̂ -modules RP/P/n,

under the homomorphism θn, is divisible, P-primary. Since RPjP
fn is isomorphic

to RPIPn in a natural correspondence, we have lim RPjP
fn^lim RP\Pn. Hence

if dim RP=dP, then dim (lim RP/P/n) = dP. We~define QP =~{s<= Q \ qPn£R for

some non-negative integer n} for a fixed prime ideal P of R. The module QjR
will be denoted by K and QP/R will be denoted by KP. Then we have

Lemma 5. 1. ( i ) KP is isomorphic to QjRP as an (R, R)-bimodule.
(ii) K =ΣQ)KP, where P ranges over non-zero prime ideals of R. In par-

ticular, KP is divisible, the P-primary part of K as a right and left R-module.
(iii) KP is isomorphic to lim RPjP

fn.

(iv) HomR{KP, Kp)^RP as an RP-module.

Proof. Since R is a bounded Asano order in Q, we can easily obtain that
OP + RP=Q, QPnRP = R and (QPl+> +Qpk)ΓίQPk+ι = R9 where P, P, are
prime ideals of R. From these facts, (i) and (ii) are immediate.

(iii) The map θ: lim RPIP/n-*Q/RP (^KP) defined by q+P/n->pϊnq+RP,
q^:RP, is an P-monomorphism. Let q be any element of Q. Since Q = RP +
QP, we write q=q1 + q2> where qx^RP, q2^QP. Then q2P

nξ^R for some n and
so we have q2 = spon (s<=RP). Since pόnRP = RPpόn, q2=pό\ (^ei?P). Then
θ(s1-\-P'n) = pons1 + RP=q + RP, and thus θ is an isomorphism.
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(iv) By (i), we may prove that HomR(QIRP, QIRP)^RP. It is clear that
HomR(QIRPf QIRp) = ΐlomRF(Q/RPy Q/Rp). Let a be any element of
HomR(QIRPy Q/Rp) and let a{pόn + RP) = rnpon + Rp> where rn<=RP. Then rn

is unique up to mod P'w. Since a(pon + RP) = α ( ^ c w + υ + RP)p0 = 'n+ipό" + ΛP,
we have rn—rn+1^P/n. Let ί =(••••, sn + P'n, •••) be any element of RP. Then
α ί (pi" + ΛP) = a(snpόn + i?P) = a(pϊnsH' + ΛP) = r, *„/>?" + i?P, where sH' e # P

with snpόn = pόnsn'. Hence the map α-»r = ( , rH-\-P'n, •••) is an isomorphism
as an /cP-module.

Let M be an (R, i?)-bimodule. We define Mι[Pn]={x^M\Pnx = ϋ).

Lemma 5. 2. Let M be an (i?, R)-bitnodule such that M is torsion as a left
R-module, let N be a right R-module and let H = HotnR(M, N). Then

( i ) H is a reduced, algebraically compact R-module,
(ii) If M is divisible as a left R-module, then H is torsion-free. Furthermore,

if M is P-primary as a left R-module, then H is a P-adic module and a^HPn if
and only if a annihilates Mι\Pn'\.

Proof. ( i ) follows from the same argument as in Theorem 46. 1 of [6].
(ii) If ac=0, where a e H, c is a regular element in R, then 0 = ac(M) =

a(cM) = cc(M) and thus a = 0. Hence H is torsion-free. If M is P-primary,
then clearly H is a P-adic module, because M is in a natural way a P-adic
module by Lemma 3. 14 of [11]. If a^HPn = Hpo, then clearly a annihilates
Mι[P"\. Conversely, assume that α^M^P"]) = 0. Let m be any element of M.
Since poM=M, there exists an element m'feM such that m=p1mr. Now define
a map β: M—>N by β(m) = a(m'). Then β is well-defined, because m! is unique
up to mod M 7[Pn]. Clearly β is additive. Let reJR. Then mr=p%mfr and so
β(mr) = a(m'r) = β(m)r, i.e., β^H. Since pom=pom, we have (p%my = m. So

(m) = β(pom) = a(m) and hence a = βpo, as desired.

Let M be an i?-module. Then by Zorn's lemma there exist maximally
independent sets of uniform submodules of M. By Theorem 1. 10 of [12], the
cardinal number of these sets is an invariant for M. We call it the dimension of
M, and denote it by dim^M ( = dimM). Let H be a torsion-free i?-module.
We define the P-rank of H to be the άiτaRHjHP and denote it by P-rank H.

Lemma 5. 3. Let H, K be reduced, torsion-free, algebraically compact R-
modules. Then

( i ) P-rank H=dim^p{BP), where BP is a basic submodule of P-adic
component HP of H (see Theorem 4. 2).

(ii) H^K if and only if P-rank H=P-rank Kfor every prime ideal P of R.

Proof. ( i ) By Theorem 4.2, H = ΐlHP, where HP is a P-adic com-
ponent of H. Let BP be a basic submodule of HP and let B = Σ®BP. Then,
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by Lemma 4. 8, B is a basic submodule of H. Hence we have HP+B=H and
H/HP=(HP+B)IHP^BI(HPnB) = BIBP. Because BP=BPP®^P^ BP\ we
have HjHP^BpjBpP and thus P-rank H=άim BP.

(ii) Since HP=£P, HP is a pure-injective envelope of BP. So (ii) follows
immediately from (i).

Let M be a torsion i?-module. We define the P-dimension of M as
dimRM[P], and denote it by P-dim M. Clearly P-dim M=dim MPy where MP

is the P-primary submodule of M.

Lemma 5. 4. Let Glf G2 be torsion, divisible R-modules. Then GX^G2 if
and only if P-dim Gλ = P-dim G2 for every prime ideal P of R.

Proof. This is trivial.

For a convenience, we denote the i?-module of type P°° by R(P°°) and the
cardinal number of a set S by | S\.

Lemma 5.5. Let M be a torsion, divisible R-module and let H=
HomR(K, M). Then P-rank H=P-dim M for every prime ideal P of R.

Proof. Let K = Ί,(BKP and let M=Έ,(BMP be the primary decomposition
of M. Then we have

H^U HomR(KPfM)^n UomR(KPy MP),

as an i?-module. By Lemma 5.1, dimRp[IlomP(KP, KP)] = dP> where dP =
dim &P. Hence dim^p[Hom/e(ί:p,JR(P00))] = 1 and Hom^ϋΓp, R(P°°)) is reduced
by Lemma 5. 2. Thus we have HomR(KP, R(P°°))^eRP by Lemma 3. 3, where
e is a uniform idempotent in KP. Now we put HP = HomR(KP, MP) and put

where | / | = : d i m M p and E^RiP00). Let BP = ̂  ©
We shall prove that BP is a basic submodule ofHP. It is clear

that BP is a direct sum of cyclic P-adic modules. If ac = a1(B- ζBakj where
fp, ai^HomR(KP, Et) and c is a regular element of R. Then a(KP) =

= ac(KP)QE1(B --(BEkandthusa<^BP. HenceBp is pure in HP. To
prove that HPjBP is divisible, we let a be any element of HP and let S = SX

θ θ*SrfP be the socle of KP. Then there are a finite number i19 , in e / such
that ^ S j g ^ e θ ^ . Thus the restricted map a' = a\S: S-*Eh® — (BEiu

can be extended to a map /S: KP-+Eh®-~®Ein. Since (α — /S)(S) = 0, we
have α- j8e f l> 0 by Lemma 5. 2 and /?eB P . So "(HPIBP)p0 = HP\BP. Let £
be any regular element of KP. Then /? P £2P Λ for some /z, because RP is bounded.
Hence we have {HPIBP)c^(HPIBP)Pn = (HPIBP)pl = HPIBP, and thus BP is a
basic submodule of HP. By Lemma 5. 3, we obtain that P-rank H=άimRpBP =
P-dim My as desired
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Theorem 5. 6. The correspondence

(*) M^H = HomR(K, M)

is one-to-one between all divisible, torsion R-modules M and all reduced, torsion-free,
algebraically compact R-modules H. The inverse of (*) is given by the correspon-
dence: H-+H®R K (cf. Proposition 2. 1 of [8]).

Proof. By Lemmas 5. 2, 5. 3, 5. 4 and 5. 5, the correspondence (*) is a
monomorphism. Let H be any reduced, torsion-free, algebraically compact R-
module and let H = ΠHP be as in Theorem 4.2. Furthermore let BP be a
basic submodule of HP and let 2? = ΣΘ2?P. By Lemma 4. 8, the short exact
sequence §^B^>H->HjB-^0 is pure-exact and thus we obtain that Q->B®R

K^H®RK->(H/B)®RK->0 is exact by Proposition 3 of [14]. Since HjB is
divisible and K is torsion, H/B®RK = 0 and so B®RK^H®RK. Since
B = Σ(BBP and K = Ί<@KP, we have B®R K^Σ(B(BP®R KP). Now we denote
BP = Σ(BeRP, where e is a uniform idempotent in RP. Then BP®R i £ P ^ Σ Θ
(eKP®RKP). Since RP®RKP^KP and dim KP = dP, where dP = άim&p{RP),
we obtain that eκP®R KP is a P-primary, uniform, divisible Λ-module. Hence
H®RK is a torsion, divisible i?-module, and clearly P-dim (H®R K) =
dimRp(BP)=P~rank H for every prime ideal P of i?. By Lemmas 5. 3, 5. 5,
H^ΐlomR(K, H®RK). This completes the proof.

Corollary 5.7. A torsion-free R-module H is a reduced, algebraically compact
R-module if and only if it is isomorphic to a direct summand of a direct product
of copies of the modules ePRP, where eP is a uniform idempotent in RP and P ranges
over non-zero prime ideals of R (cf. Propositions 2. 1 and 3. 6 of [8]).

Proof. The "if" part is clear. The "only if" part: By Theorem 5. 6,
H = HomR(K, M), where M=2 P 020i?(P° ° ) . Since M i s divisible, it is a
direct summand of UP Π R(P°°). Hence if is a direct summand of
Hom^J^, UPnR(P°°)) = UPUHomR(K, R(P°°)), and HomR(K, R(P°°)) is iso-
morphic to ePRP, where eP is a uniform idempotent in RP (see the proof of
Lemma 5. 5).

OSAKA UNIVERSITY

References

[1] N. Bourbaki: Algebre Commutative, (ch. 1 and 2) Hermann, Paris, 1961.
[2] D. Eisenbud and J.C. Robson: Modules over Dedekind prime rings, J. Algebra

16 (1970), 86-104.
[3] E.H. Feller and E.W. Swokowski: Prime modules, Canad. J. Math. 17 (1965),

1041-1052.



MODULES OVER BOUNDED DEDEKIND PRIME RINGS. II 445

[4] E.H. Feller and E.W. Swokowski: Semi-prime modules, Canad. J. Math. 18
(1966), 823-831.

[5] L. Fuchs: Abelian Groups, Budapest, 1958.
[6] L. Fuchs: Infinite Abelian Groups Vol. 1, Pure and Applied Math, Academic

Press, New York, 1970.
[7] A.W. Goldie: Localization in non-commutative noetherian rings, J. Algebra 5

(1967), 89-105.
[8] D.K. Harrison: Infinite abelian groups and homological methods, Ann. of Math.

69(1959), 336-391.
[9] I. Kaplansky: Modules over Dedekind rings and valuation rings, Trans. Amer.

Math. Soc. 72 (1952), 327-340.
[10] I. Kaplansky: Infinite Abelian Groups, Ann Arbor, 1969.
[11] H. Marubayashi: Modules over bounded Dedekind prime rings, Osaka J. Math. 9

(1972), 95-110.
[12] Y, Miyashita: On quasi-injective modules, J. Fac. Sci. Hokkaido Univ. 18 (1965),

158-187.
[13] T. Onodera: Koenlich erzeugte Moduln und Kogeneratoren, to appear.
[14] R.B. Warfield: Purity and algebraic compactness for modules, Pacific J. Math.

28 (1969), 699-719.






