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The main purpose of this paper is to generalize the theory of pure-injective
abelian groups (equivalently, algebraically compact groups) to the case of
modules over bounded Dedekind prime rings.

Throughout this paper, R denotes a bounded Dedekind prime ring with
an identity and every (right) R-module is unitary.

In Section 1, we define the concepts of cocyclic and cofinitely generated
modules and give characterizations of these modules. Cocyclic modules are used
for a characterization of pure-injective modules in Section 2.

In Section 2, the concepts of pure-injective and algebraically compact
modules will be introduced by the analogy of that of abelian groups. We show
that these concepts are equivalent and that a pure-injective module is a direct
summand of direct product of cocyclic modules (see Theorem 2. 6).

In Section 3, we generalize a result [10] on modules over commutative
discrete valuation rings to the case of modules over non-commutative discrete
valuation rings. In Theorem 3.6, we show that every module over non-
commutative discrete valuation rings has a basic submodule and that any basic
submodules of the module are isomorphic. Using basic submodules, we deter-
mine, in Section 4, the structure of reduced, algebraically compact modules.
In Theorem 4.7, we show that the pure-injective envelope of an R-module M
is isomorphic to the direct sum of the injective envelope of M* and M, where
M'=NMA (A ranges over non-zero ideals of R) and M is the completion of M
with respect to the R-adic topology.

In Section 5, we establish that there is a one-to-one correspondence between
all divisible, torsion R-modules and all reduced, torsion-free, algebraically
compact R-modules. This extends a result of Harrison [8] to modules over
bounded Dedekind prime rings. ‘“Submodule” and “homomorphism” without
modifier mean always ‘“‘R-submodule” and ‘“‘R-homomorphism’ respectively.

This paper is a continuation of [11]. A number of concepts and results
are needed from [11].
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1. Cofinitely generated modules

In this paper, a ring R is always a bounded Dedekind prime ring unless
otherwise stated. Let P be a prime ideal of R. We denote, in this paper, the
local ring of R with respect to P by Rp and its maximal ideal by P’. Further-
more, we denote the completion of Rp with respect to P’ by R and its maximal
ideal by P. Since R|P"==Rp|P’" by a natural correspondence, Ry is isomorphic
to the completion of R with respect to P (see [7]). Let M be an R-module and
let 4 be an ideal of R. We define M[A]= {meM|mA=0}.

Let M be an R-module. Following [6], we shall call M cocyclic if there is
an element meM such that any homomorphism ¢: M—N with meKer ¢
implies that ¢ is a monomorphism. In this case, m may be called a cogenerator
of M. 'This concept is naturally dual of cyclic modules. Since every submodule
is a kernel of a homomorphism, if M is cocyclic, then M is uniform and has a
unique simple submodule. Conversely, if M is uniform and has a unique simple
submodule S, then M is cocyclic, and any element =0 in S is a cogenerator

of M.

. Proposition 1. 1. A module M is cocyclic if and only if M is isomorphic to
eRP/eIS” or is of type P™, where P is a prime ideal of R and e is a uniform
idempotent in Re.

Proof. If M=~cR, /els”, then M is uniform and has a unique simple module
els”"/els” by Lemma 2. 3 of [11], because ep"‘l/els"zeRp/elﬁ. If M is of type
P>, then by Theorem 3. 17 of [11], M ==lim ekp/ep”. Therefore M is uniform

and has a unique simple module eﬁp/ep. Conversely, if M is cocyclic, then M
has a unique simple module S. By Lemma 3. 15 of [11], Sgeép/eﬁ, where P
is a prime ideal of R and e is a uniform idempotent in Rp. Since M is uniform,
it is clear that M is P-primary. If M is divisible, then M is of type P~ by
Theorem 3. 17 of [11]. If M is reduced, then M is isomorphic to eﬁp/els” by
Theorem 3. 24 of [11].

A module M is called cofinitely generated, if N ,M,=0, where M, are

submodules of M, implies that there exist finitely many «,, «,, -+, a, such that

i1 M,,=0. This concept is naturally dual of finitely generated modules.
Cofinitely generated modules are characterized as follows:

Theorem 1.2. For an R-module M, the following conditions are equivalent:

(1) M is cofinitely generated,;

(i1) the socle S(M) of M is finitely generated and M is an essential extension
of S(M);

(ii1) M is an essential extension of a torsion, finitely generated R-module;

(iv) M is a direct sum of a finite number of cocyclic modules;
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(v) M is an artinian R-module.

Proof. The equivalence of (i) and (ii) was proved for a module over a
general ring by Onodera [13].

(ii) = (iii): This is trivial.

(iii) = (iv): Let N be the finitely generated torsion submodule of M.
Since M is an essential extension of N, we obtain that M is also torsion and
dim M=dim N=n<co. Now let M =D@C, where D is the divisible part of M
and C is the reduced part of M. Then D is a direct sum of a finite number of
divisible cocyclic modules and C is an essential extension of CNN. Hence, by
Theorem 3. 2 of [11], we may assume that M is a reduced P-primary module
and N is a finitely generated P-primary module, where P is a prime ideal of R.
Since n=dim M=dim N, we have M[P]=N[P]=S, @B S,, where S; are
simple R-modules. Then the injective hull E(M) of M is isomorphic to E(S,)
@@ E(S,). By Theorem 3.17 of [11] the submodules of E(S;) are only
ekp/ep", n=1, 2, ---, where e is a uniform idempotent in ﬁp and thus E(S;) is
an artinian module. Hence M is also artinian module and so M=M, &---H M,
where M; is an indecomposable R-module. By Corollary 3. 26 of [11], M, is a
cocyclic module.

(iv) = (v): This is trivial.

(v)=>(ii): This is trivial.

2. Pure-injective and pure-projective modules

A short exact sequence 0—L SM L N—0 of R-modules is said to be
pure-exact if Image o is a pure submodule of M.

A module P is pure-projective if for any pure-exact sequence 0—L—M—
N—0, the natural homomorphism

Hom (P, M) — Hom (P, N)

is surjective. Similarly, a module G is pure-injective if for any such sequence,
the natural homomorphism

Hom (M, G) — Hom (L, G)

is surjective.

In this section, we give characterizations of pure-projective and pure-
injective modules.

Since a projective module is a direct summand of a direct sum of cyclic
modules, by Corollary 3.8, Theorem 3.10 of [11] and Corollary 3 of [14],

we have

Proposition 2. 1. An R-module is pure-projective if and only if it is a direct
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summand of a direct sum of cyclic modules.

Lemma 2.2. For a submodule S of an R-module M, the following conditions
are equivalent :

(1) Sidspurein M;

(ii) S/SA is a direct summand of M|SA for every non-zero ideal A of R;

(i) #f BSS, where B is a submodule of S, such that S|B is of bounded order,
then S|B is a direct summand of M|B.

Proof. (i)=(ii): This follows from the same way as in Theorem 27. 10 of

[6].

(ii )=(iii): Asumme that S/B is of bounded order. Then there exists an
ideal 440 of R such that SAZ B and so, by the assumption, M/SA=S/SAD
K/SA, where K is a submodule of M. Then it immediately follows that

M|B = S/B®K +B)/B.

(iti)=(1i): If xc=s, where x&M, s&S and ¢ is regular in R, then there
exists an ideal A0 of R such that Rc2 A4, because R is bounded. By the
assumption, M/SA=S/SAPK|SA, where K is a submodule of M. We denote
the image of an element m (€ M) in M/SA by m. Now we write T=3,+k,
where 5,5 and kK. Then §,c=35 and so s,c—s&SASSc. Hence sc—s=s,
with s,& S and thus (s, +s,) c=s, as desired.

By the validity of Lemma 2. 2, the proof of the following lemma is proceeded
as in Theorem 29. 2 of [6].

Lemma 2.3. A short exact sequence 0—L—>M—->N—0 is pure-exact if
and only if for any bounded module G, the natural homomorphism Hom (M, G)—
Hom (L, G) is surjective.

Lemma 2.4. (i) Let m be a non-zero element in an R-module M and let B
be a submodule of M that is maximal with respect to the property of excluding m.
Then M|B is cocyclic.

(i) Let N, (a=A) be R-modules. Then =Z,PDN,, is pure in 11, N,, where A
is an index set.

Proof. (i) follows from the same way as in Proposition 25. 2 of [6].
(if) immediately follows from the definition of pure submodules.

Lemma 2.5. Every R-module can be embedded as a pure submodule in a
direct product of cocyclic modules.

Proof. Let {G,} be the family of cocyclic quotient modules and bounded
quotient modules of an R-module M, and let G=1I1, G, The natural epimor-
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phism 6,: M—G, induces a homomorphism §: M—G, where 8(m)=(6,(m)) for
every meM. Then, by Lemma 2.4,  is a monomorphism. To prove that
(M) is pure in G, we let O(m)=gc, where g G, me M and ¢ is regular in R.
Then there exists a non-zero ideal 4 of R such that Re24. If M/MA=0,
then M=Mc and so m=myc for some m,cM. Hence O(m)=0(m,)c. If
M|MA=+0, then m+MA=(m,+MA)c for some m,cM, and so m—m,ce
MAS Mc. Hence m=myc for some m,& M and thus O(m)=0(m,)c. If G, is of
bounded order, then G, is a direct sum of cocyclic modules by Theorems 3.7
and 3. 38 of [11] and thus G, can be embedded as a pure submodule in a direct
product of cocyclic modules by Lemma 2.4. Therefore M can be embedded as
a pure submodule in a direct product of cocyclic modules.

Following [14], an R-module M is compact if there is a compact Hausdorff
topology on M making it a topological group and such that the right multi-
plications by elements of R are continuous.

An R-module M is algebraically compact if M is a direct summand in every
R-module G that contains M as a pure submodule (see [6]). Every divisible
module and every bounded module are algebraically compact (see [11]).

It follows at once that a direct summand of an algebraically compact module
is again algebraically compact, and a module is algebraically compact exactly if
its reduced part is algebraically compact.

Theorem 2.6. The following conditions on an R-module M are equivalent:

(1) M is pure-injective;

(ii) M is algebraically compact;

(ili) M is a direct summand of a direct product of cocyclic modules;

(iv) M is a direct summand of a compact R-modules;

(v) every finitely soluble family of linear equations over R in M has a simul-
taneous solution (cf. Theorem 38.1 of [6]).

Proof. By Theorem 3.10 of [11] and Theorem 2 of [14], (i), (iv) and (v) are
equivalent.

(1)=>(ii): This is trivial.

(ii )=>(iii): This follows immediately from Lemma 2. 5.

(ii)=(1): Let G=11, G,, where G, are cocyclic, let M be a direct sum-
mand of G and let

)
M56¢ ™ m,
where p is the injection and = is the projection.

Now let 0—>H->K—>L—0 be a pure-exact sequence and let ¢: H—M be any
homomorphism. Since G, is divisible or of bounded order, by Lemma 2. 3,
there exists Yr,: K—G, such that Yr,i=m,pp, where 7,: G—G, is the projec-
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tion. We define a map yr: K—G by yr(k)=(V,(k)), where ke K, i.e., mr =1,
Then we can easily prove that ¢=(z )7, as desired.

By using (iii) in Theorem 2. 6, the proof of the following Corollary is pro-
ceeded as in Corollary 38. 2 of [6].

Corollary 2.7. Let M be areducedmodule. Then M is a pure-injective module
if and only if M is a direct summand of a direct product of reduced cocyclic modules.

3. Basic submodules over g-discrete valuation rings

We shall study, in sections 4,5, the structure of algebraically compact
modules over bounded Dedekind prime rings. For this purpose, we shall
generalize, in this section, a result [10] on modules over commutative discrete
valuation rings to the case of modules over non-commutative discrete valuation
rings.

In commutative rings, a ring is a discrete valuation ring if it is a principal
ideal domain with unique maximal ideal. We now generalize, in a natural way,
the concept of this to the case of non-commutative rings. A ring R is called a
generalized discrete valuation ring (for short: g-discrete valuation ring) if

(i) Ris aprime ring,

(i1) R is a right and left principal ideal ring,

(iif) J(R) is a unique maximal ideal of R,

(iv) Idempotents modulo J(R) can be lifted.

Furthermore, if R is a domain and R/J(R) is a division ring, then we call
R a discrete valuation ring. Let P be a prime ideal of a bounded Dedekind prime
ring R. Then, by Lemmas 2. 2 and 2. 3 of [11], Rp is a g-discrete valuation ring.

Throughout this section R will be a fixed g-discrete valuation ring with
unique maximal ideal P and Q will be the quotient ring of R. Furthermore we
denote the completion of R with respect to P by R, and its maximal ideal by P.

Lemma 3.1. (i) R=(D),, where D is a discrete valuation ring with unique
maximal ideal P,= p,D= Dp, ( p,= D).

(i) Risa g-discrete valuation ring with maximal ideal P= polé =ﬁpo and
R= (D)., where p,= D with P,=p,D=Dp,.

(iii) Let e, f be any uniform idempotents in R. Then eR=1R.

(iv) Let e be any idempotent in R. Then e is a uniform idempotent in R if and
only if eR[eP is a simple R-module.

Proof. Since idempotents modulo P can be lifted, it is clear that R= (D).
The other assertions follow from the same arguments as in Lemmas 2. 1, 2. 2

and 2. 3 of [11].

Let R=(D),. Throughout this section, e;; will denote the matrix with 1 in
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the (7, j) position and zeros elswehere.

Lemma 3.2. Let R, P, D and p, be as same as in Lemma 3.1. Then
every proper R-submodule of e,,Q containing e, R is of the form e Rpg" for some
non-negative integer n.

Proof. Since PgR=Rpj for all n, it is clear that e,,Rp5™ is an R-submodule
of e,,0 containing ¢,,R. Conversely, let K be an R-submodule of e;,Q containing
e, R. First we shall prove that if e, 7ps”"= K, where e, 7 £ P, then ¢, Pi*cK.
We put

Ty = Tk .
e, r = ( 0 ) , where r ;€D (1=<j<k).

Since e,,r £ P, there is a natural integer j (1< j=<k) such that 7 ; is a unit in D.
Then

ripe” 0.++,0
ellrpo—”ejl = 0 0
0
Since there is a unit # in D such that r ;ps”=py™u, we have e,ps”=
e, rpo"(e;u'e,)E K, as desired. Since any element e,,q in e,,Q has the form
e, apy”, where e;,acc P, we may assume that K2De,,po™ and K Re,,pg""™ for
some natural integer z#. Then it is clear that K2e Rpy”. Suppose that
KRe,Rps”, then there is an element k= K such that kete ,Rps” . We write

k=e,apy’, where e accP and [>n. Then we have K2e,Rp;® and thus
K2e,ps"*, which is a contradiction. Hence K =e,,Rp5™.

Let M be a torsion-free R-module. Then we can prove that the mapping
m—->m@1, me M, is an R-monomorphism of M into the tensor product M ® 0,
every element of MQ has the form mc™, where me& M and c¢ isregularin R, and
M@ rQ=MQ under the correspondence m@q—mq, g= Q. As usual, we con-
sider M as a submodule of MQ and identify me M withm-1. In similar fashion
if N is a submodule of M, we have NEN® r O=NQ= {nc™*|nEN, c: regular
in R}.

Lemma 3.3. Let M be a torsion-free R-module with dim M =1. Then M
is either isomorphic to eQ or isomorphic to eR, where e is a uniform idempotent in R.

Proof. (i) If M is divisible, then, by Lemma 3. 16 of [11], M==eQ for any
uniform idempotent e in R, because eQ is a minimal right ideal of Q.

(i1) If M is not divisible, then, clearly M is reduced and Me,,R=M=0.
Hence there exists an element x& M such that xe, R+0. By Theorem 2.4 of
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[3], we have e,,R==xe,R and so, by Proposition 4. 4 of [4], MO=ze,,Q. So we
may assume that e,, RCMSe,, Q. By Lemma 3.2, M=e, Rp;" for some non-
negative integer # and thus M =e,, Rp;"=e,,po"R=2e, R, as desired.

Lemma 3.4. If M is not a divisible R-module, then M contains a non-zero
pure cyclic uniform submodule.

Proof. By Theorem 3. 19 of [11], we may assume that M is reduced.

(i) If M is torsion-free and if x is a non-zero element of M, then xQ=
S, PP S,SMQ, where S; is a simple Q-module. Since MQ is an essential
extension of M as an R-module, N;=S;N M =0 for each i. Since N,Q=S;
and N;=N,;QN M, we have dim N;=1 and N, is pure in M. By Lemma 3. 3,
N;=<eR for any uniform idempotent e in R.

(i1) If M is not torsion-free, then the torsion module T of M is non-zero.
By Theorems 3. 2 and 3. 24 of [11] T possesses a uniform cyclic direct summand
N. Since T is pure in M, N is pure in M.

Lemma 3.5. Let M be an R-module and let S be a pure submodule such
that M|S is not divisible. Then there exists an element y= M such that SN yR=0
and SP yR is again pure.

Proof. By Lemma 3. 4, there exists an element y,& M/S such that y,R is a
pure uniform submodule. Let o: M—M/S be the canonical epimorphism and
let N be the inverse image in M of y,R. If y,R is torsion-free, then, by
Theorem 3. 1 of [11], y,R is R-projective and so N =S@yR for some ye N with
a(y)=y,. If y,R is torsion, then, by Lemma 3. 5 of [11], N =S@yR for some
yeEN with o(y)=y,. Next we shall show that N is pure in M. Suppose that
xc=s-+yr, where x& M, s€ S, r&R and c is regular in R. Then o(x)c=y,.
By the purity of y,R, there exists an element yr, in y,R, where r,&R with
a(x)c=(y,r,)c and thus xc— yr,c€ S. By the purity of .S, there exists an element
s, .8 such that (x— yr,)c=s,c and so xc=(s,+ yr,)c. Hence N is pure in M,
as desired.

A submodule B of an R-module M is called a basic submodule if it satisfies the
following conditions:

(1) B is a direct sum of cyclic modules,

(i) B is pure in M,

(iii) M/B is divisible.

Theorem 3.6. Let R be a g-discrete valuation ring and let M be an R-
module. Then

(1) M possesses a basic submodule.

(i1) Amny two basic submodules of M are isomorphic.

(iil) Let S be a pure submodule of M and let B be a basic submodule of S.
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Then there exists a basic submodule of M which contains B as a direct summand.

Proof. (i) Let {x;} be a maximally pure independent subset of M, and let
B be the submodule generated by the x’s. Then B is certainly a direct sum of
cyclic modules and, by Lemma 3. 5, M/B is divisible. Hence B is a basic sub-
module of M.

To prove (ii), let R=(D), J(R)=P and P=p,R=Rp, be as in Lemma 3. 1.
Let B be any basic submodule of M. By Theorems 3.1, 3.38 of [11] and
Lemma 3. 3, B is a direct sum of uniform cyclic submodules and so B is a direct
sum of a torsion-free module C and a torsion module E. First we shall prove
that C is independent of the choice of B. By Lemma 3.3, C=3 ®eR and
C|CP=%, ®eR/eP, where e is a uniform idempotent in R. By Lemma 3.1,
eR/eP is a simple R-module. Therefore by Lemma 3.1 and Krull-Remak-
Schmidt-Azumaya’s theorem, it is enough to show that C/CP is an invariant for
M. But this follows immediately from the same argument as in Lemma 21 of
[10].

Next, we shall prove that the torsion component E of B is a basic submodule
of T, where T is the torsion part of M. Suppose that T/E is not divisible.
Then, by Lemma 3. 5, there exists an element y= T such that ENyR=0 and
E’'=E®yRis purein T. Since CN T=0, the sum B’=E’+C is direct. We
shall prove that B’ ispurein M. If xc=t+z, where x&M, 2C, teE’, tp;=0
and c is regular in R, then xcpi=2pi=C. By the purity of C, there exists an
element 2, C such that 2pi==z,cpé. Since C is torsion-free, s=z2,c and thus
(x—=,)c=t=E’. By the putity of E’, there exists an element ¢, E’ such that
(x*—=2,)c=t,c and thus xc=(t,+2,)¢, as desired. The purity of B’ implies that
B’[B is pure in M/B. Since B’/B is of bounded order, B’/B is a direct summand
of M|B by Theorem 3. 12 of [11] and thus B’/B is divisible, which is a contra-
diction. Hence E is a basic submodule of 7. To prove that the submodule
E is independent of the choice of B, by Theorem 3. 39 of [11], it is enough to
show that the number of uniform cyclic summands of order P* in E is an
invariant for M. For m>n, it is equal to the number of uniform cyclic sum-
mands of order P* in E/EP™. Hence we may prove that E/EP™ is an invariant
for M. Since E is a basic submodule of 7', we have TP”+E=T and TP”"NE=
EP™. Hence E[EP™=(TP™+E)/TP”=T|TP™ and thus E/EP™ is an invariant
for M for every m.

(iii) This follows from the same way as in (iii) of Lemma 21 of [10].

By Lemma 3. 14 of [11], a primary module over a bounded Dedekind
prime ring is a module over a g-discrete valuation ring and so it has a basic sub-
module. Futhermore the concepts of quasi-basis and lower basic submodules
in modules over g-discrete valuation rings can also be introduced by the analogy
of that of abelian groups, and the results of Chapter V of [5] can be easily
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carried over to that of modules over bounded Dedekind prime rings.

4. Complete modules and algebraically compact modules

For an R-module M we introduce two topologies as follows: The R-adic
topology on M is defined by taking as neighborhoods of 0 the submodules MA4
(4 are non-zero ideals of R). And the P-adic topology on M is defined by
taking as neighborhoods of 0 the submodules MP* (k=1, 2, ---), where P is a
prime ideal of R. These topologies make M into a not necessarily Hausdorft
topological R-module. A module M is called complete in a given topology if it
is Hausdorff, and every Cauchy net in M has a limit in M. If M=11,M,, then
M is complete in the R-adic topology if and only if M, is complete in the R-adic
topology for each «, because R is noetherian.

If M is a pure submodule of an R-module G, then G is a pure essential
extension of M if there are no non-zero submodules SSG with SN M =0 and
the image of M is pure in G/S. A pure extension G of M is a pure-injective
envelope if G is pure-injective and the extension is pure-essential. By Proposi-
tion 6 of [14], for any module, pure-injective envelopes exist and are unique up
to isomorphism. Furthermore, by the same arguments as in abelian groups
(see §41 of [6]), G is a pure-injective envelope of a module M if and only if G
is a maximal pure-essential extension of M. Let M be an R-module. We
denote the submodule N M4 by M", where A ranges over non-zero ideals of R.

Lemma 4.1. Let G be the pure-injective envelope of an R-module M and
let G=D®PC, where D is divisible and C is reduced. Then M*=DNM. In
particular, if M*=0, then G is reduced.

Proof. Since R is bounded, it is clear that G'= N G¢, where ¢ ranges over
regular elements in R. From this fact and Corollary 3. 11 of [11], we have

M'= NMA = N(GANM)=G'NM=DNM.

If M'=0, then DNM=0. Clearly the image of M in G/D is pure and thus
D=0. Hence G is reduced.

For an abelian group M, the following three conditions are equivalent: (i)
M is reduced, algebraically compact; (ii) M is complete in the Z-adic topology;
(i) M=11, M ,, where M, is complete in the p-adic topology, where Z is the
rational integers and p are prime numbers (cf. Theorem 39.1 and Proposition
40. 1 of [6]). :

For modules over bounded Dedekind prime rings, we have

Theorem 4.2. The following conditions on an R-module M are equivalent:
(1) M is reduced, algebraically compact;
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(ii) M is complete in the R-adic topology;

(iit) M=I1p Mp, where P ranges over non-zero prime ideals of R and each
Mp is complete in the P-adic topology.

In particular, the M p are uniquely determined by M.

Proof. (i)=(i1): By Corollary 2.7, M is a direct summand of a direct
product of reduced cocyclic modules. Since a reduced cocyclic module is com-
plete in the R-adic topology, M is complete in the R-adic topology.

(i1)=>(iit): Since M is Hausdorff, i.e., M*=0, M is reduced and 0=p
N MP* (P ranges over non-zero prime ideals of R and k=1, 2, --+) by the same
argument as in [1, p. 73, Proposition 6]. Let Mp=1lim M [MP*. Then the
following definition makes } p in a natural way into a r‘rT(;clule over the R . Let
Mm=---, m;+ MP",---) be any element of M, where m,—m;= MP* (j=7) and let
7=(-++, r;+ P’ --:) be any element of R%, where r,—r;&P’ (j=i). Since
R/P*~Rp|P’" by the natural correspondence and P”( R=P”, we may assume
thatr,€R, r,—r;€ P’ (j=i). We define hé=(--+, mg;+ MP?, ---). Itis easily
verified that with this definition M p becomes an ﬁp—module. It is clear that
M p is complete in the P-adic topology (equivalently, it is complete in the P-adic
topology). Let 8: M—I1p Mp be the diagonal homomorphism. Then it is clear
that 4 is a monomorphism. Using [1, p. 73, Proposition 6], we can prove that
0 maps continuosly onto a dense submodule of IT Mp and that the induced
topology on §(M) as a submodule is the same as the R-adic topology. Hence 6
is an isomorphism.

Since MpP;=Mp(P;+P) and 0= N, MpP* (k=1,2, ---), we obtain that
Mp=Npsp MP* (k=1,2,-). Hence the components Mp are uniquely
determind by M

(iliy=(1): Since Mp is complete in the P-adic topology, it is in a natural
way an kp-module, and so M pP;=M p for every non-zero prime ideal P; (3 P)
of R. Hence Mp is complete in the R-adic topology. Thus M is complete in
the R-adic topoloty. Now let G be an R-module such that G contain M as a
pure submodule.

(a) If G is complete in the R-adic topology, then we may assume that
G =11 Gp, where Gp is an Rp-module, and complete in the P-adic topology, and
that Gp2Mp. lLet Bp be a basic submodule of Mp. By Theorem 3.6, we
enlarge Bp to a basic submodule By’ =Bp@Cp of Gp. Then we obtain that
GP=3P=BP€BéP and that Mp=Bp, Thus we have G=Me®II Cp.

(b) If G is not necessarily complete and G*=(. Then, by Lemma 4. 1,
the pure-injective envelope G of G is also reduced, and hence G is complete.
By case (a), we obtain that G=M®@K, and thus G=MD(K N G).

() Let G be an arbitrary R-module and let G=G/G'. Then clearly
G'NM=0 and M=M®HG"/G* (=M) is pure in G. Hence by case (b), we
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obtain that G= M@K, where K is a submodule of G. Since G=M+K, and
MNK=MNK)NG'=(MNG)NK=0, we have G=M@PK. Hence M is
reduced, algebraically compact.

Using (iii) in Theorem 4. 2, the proof of the following Corollary is proceeded
as in Corollary 40. 4 of [6].

Corollary 4.3. Every non-zero reduced, algebraically compact R-module
contains a direct summand which is isomorphic to eR, or e/RP/els” (n=1,2, )
for some P, where e is a uniform idempotent in Ry.

Corollary 4.4. Let R be a complete g-discrete valuation ring with quotient
ring Q and let M be an indecomposable R-module. Then M is isomorphic to one of
the following four modules: eR[eP”, eR, eQ, or type P, where e is a uniform idem-
potent in R and P is a unique maximal ideal of R.

Proof. If M is reduced, torsion-free, then, by Lemma 3. 4, M contains a
non-zero pure cyclic submodule which is isomorphic to eR. By Theorem 4. 2,
it is a direct summand of M and thus M =eR. Now the assertion immediately
follows from Corollary 3. 26 of [11].

Corollary 4.5. Let R be a complete g-discrete valuation ring and let M be
a countably generated, torsion-free R-module. Then M is the direct sum of a divi-
sible module and a reduced module E, where if E is finitely generated, then E=eR
D+ DeR for some uniform idempotent e in R and if E is not finitely generated, then
E is a free R-module.

Proof. By Theorem 3.9 of [11], M is the direct sum of a divisible module
and a reduced module E. If E is finitely generated, then, by Theorem 3.1 of
[11] and Lemma 3.3, E=eR@---PeR. If E is not finitely generated, then it
is clear that M is expressed as the union of an ascending sequence of pure sub-
modules N,.EN,&:--&E N, -+, where dim N,=n. By induction, we assume
that N, is a direct sum of # number of copies of eR. Hence N, is algebraically
compact by Theorem 4. 2. Since 0—N,—N,,,, is pure-exact and dim N, =
n+1, we have N,.,=N,PeR. Hence E is a direct sum of an infinite number
of copies of eR. Thus E is R-free by Theorem 2. 4 of [2].

Let {4;|i=I} be the set of all non-zero ideals of R. We put i<i for
i, jel to mean 4;,2A4; Thus the index set I is directed.

Now we put M =liLn M|MA; and p: M—M is the natural homomorphism.
Since M/MA is isomorphic to I1; M/MP4: for each ideal A of R (A= P71---Pg¥),
we have M= IIp M, », Where Mp=lim M|/MP* 1t is clear that MP is complete
in the P-adic topology and thatM, ;Z — MpP®, where P® is the heighest power of
P dividing 4. Hence M, is complete in the R-adic topology, and thus M is
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complete in the R-adic topology. Furthermore we obtain that w(M) is pure in
M. To prove this, suppose that #c= u(m), where #=---, m;+MA,, m)EM,
me M and ¢ is a regular element of R. Since R is bounded, there is a non-zero
ideal A, such that Re2 A4, and thus Mc2MA,. Then myc+MA,=m+ MA,
implies that my—meMA,SMc and so u(m’)c=u(m) for some m'eM, as
desired. Hence we have

Proposition 4.6. Let M be an R-module. Then M is the pure-injective
envelope of p(M).

Theorem 4.7. The pure-injective envelope of an R-module M is isomorphic
to the direct sum of the injective envelope of M* and the completion M of M.

Proof. Let G be the pure-injective envelope of M. We write G=D®C,
where D is divisible and C is reduced. Then M*=DN M by Lemma 4. 1. If
D=2E(M?"), then we have D=E(M")dD, with D,%0. Clearly D,N M =0 and
(D,6pM)[D, is pure in G/D,. Hence G is not a pure-essential extension of M,
which is a contradiction and thus D=E(M"). Let G=G/E(M") and let
M= M|M" (=[M +E(M")]/E(M"). Then G is a reduced pure-injective module

AN

and Mis purein G. Hence we may ' assume that Mc M(=M)c G by Proposition
6 of [14] and Proposition 4. 6. If M& G, then there exists a proper submodule

P o
K of G such that K2 E(M"), K2M and K/E(M*)=M. Hence K=E(M")PM.
Thus K is a pure-injective module, which is a contradiction. Hence we have

Mzﬁz G, and thus G%E(M‘)@M.
Following [6], an R-module M is a P-adic module if M is an IA?P-module.

Lemma 4.8. Let Bp, Mp be P-adic modules such that BpoSMp. Let
B=73 @®Bp and let M=T11 Mp. Then

(i) Bpis purein Mp for every P if and only if B is pure in M.

(ii) Mp/Bp is divisible for every P if and only if M|B is divisible.

Proof. (i) 'Thisis immediate.

(ii) The “if” part is clear. The “only if” part: Let m=(m,) be any
element of M and let ¢ be any regular element of R. Since R is bounded, there
exists a non-zero ideal 4 such that Re2 4, where A= P{1---P4+.  For any prime
ideal P (P, --+, P;), we have Rp2Rpc2RpA=Rp, and hence ¢ is a unit in
Rp. Thus we obtain m,=m,c for some m,eMp (P=P,, -+, P;). For any
prime ideal P; (1<i<k), m, =m,c+b; (m, EMp, b, Bp,), because Mp |Bp, is
divisible. Now let m'=(m,), b= >)i_, b, Then we have m=m'c+b, as
desired.

A submodule B of the R-module M is called a basic submodule if it is satisfies
the following conditions:
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(1) Bis adirect sum of cyclic P-adic modules,
(ii) Bis purein M,
(iii) M/B is divisible.

Proposition 4.9. Let M be an algebraically compact R-module. Then
(1) M possesses a basic submodule.
(it) Any two basic submodules of M are isormorphic.

Proof. (1) Clearly we may restrict ourselves to the case when M is
reduced. By Theorem 4. 2, we have M =11 Mp, where Mp is a P-adic module.
By Theorem 3. 6, there exists a basic submodule By of M. Then B=3@B,
is a basic submodule of M by Lemma 4. 8.

(ii) Let B’ be another basic submodule of M and let B’=3@ B/, where
By’ is the direct sum of all direct summands belonging to the same prime ideal
P. Then, by Lemma 4.8, M=PB=11 By By Theorem 4. 2, Bp'=Mp for
every prime ideal P. It is clear that B, is a basic submodule of B, and so
Bp'=B, by Theorem 3. 6. Hence B’=B as an R-module.

Theorem 4.10. There is a one-to-one correspondence between the reduced
algebraically compact modules M and the direct sums B of cyclic P-adic modules (P
ranges over prime ideals of R): given M, we let its basic submodule B correspond to
M: to a given B, there corresponds its R-adic completion.

Proof. By Proposition 4. 9, the correspondence M—B, where M is a
reduced algebraically compact R-module and B is its basic submodule, is single-
valued and M=B. Conversely let B be a direct sum of cyclic P-adic modules.
Then it is clear that B'=0. Hence B is a pure-injective envelope of B by
Proposition 4. 6 and so B is unique up to isomorphism. Clearly B is a reduced,
algebraically compact module and B is a basic submodule of B.

Corollary 4.11. There is a one-to-one correspondence between the P-adic,
reduced, algebraically compact modules and the direct sums of cyclic P-adic modules.

Let M be areduced, algebraically compact R-module. M is called adjusted
if it has no non-zero torsion-free direct summannds. Let B be a basic sub-
module of a reduced, algbraically compact module M. We write B=C®D,
where C is the direct sum of all torsion-free, cyclic summands of B and D is the
direct sum of all torsion, cyclic summsnds of B. Then M= B=C @ﬁ, Cisa
torsionfree, algebraically compact R-module and is an adjusted, algebraically
compact R-module. Let T be the torsion submodule of M. Then clearly
D2T2D and DT is the maximal divisible submodule of M|T, because D/T is
a homomorphic image of a divisible module DID and M|T=C&®D|T. Hence
we have
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Proposition 4.12. Let M be a reduced, algebraically compact R-module.
Then there is a direct decomposition

M=C®D,

where C is torsion-free, algebraically compact and D is an adjusted, algebraically
compact module. D is a uniquely determined submodule of M.

By Theorem 4. 10 and the proof of Proposition 4. 12, we have

Corollary 4.13. The mapping B—B gives a one-to-one correspondence
between the class of direct sums of torsion, cyclic modules and the class of adjusted,
algebraically compact modules.

S. The Harrison duality theorem

In this section we shall study a structure of reduced, torsion-free, algebraic-
ally compact R-modules. Let R be a bounded Dedekind prime ring and let Q
be the quotient ring of R. If Pis a prime ideal of R, then Rp=(D),, where D
is a local Dedekind prime domain with unique maximal ideal P,. Furthermore
we have Py= p,D=Dp,, where p,€ D, P'=p Rp=Rpp, and Iszpolép———ép . (see

0, .
[11]). The sequence 0—Rp/P™* — Rp/P"*' is exact, where 0,(x-+ P")=px-+
P’"**forevery xin Rp. 'Theinductive limit lim Rp/P’* of the R-modules Rp/P’",

under the homomorphism 6, is divisible, P-primary. Since Rp/P’" is isomorphic
to ép/lf’” in a natural correspondence, we have lim Rp/P""=lim Iép/ls”. Hence

if dim Rp=d,, then dim (lim Rp/P™)=dp. We define Op=1{9=0Q|¢P"<R for
some non-negative integer n} for a fixed prime ideal P of R. The module Q/R
will be denoted by K and Op/R will be denoted by Kp. Then we have

Lemma 5.1. (1) Kp is isomorphic to Q/Rp as an (R, R)-bimodule.

(i) K=Z@PKp, where P ranges over non-zero prime ideals of R. In par-
ticular, K p is divisible, the P-primary part of K as a right and left R-module.

(ill) Kp s isomorphic to l_irng/P’ ",

(iv) Homg(Kp, K P);ﬁp as an IA?P-module.

Proof. Since R is a bounded Asano order in Q, we can easily obtain that
Op+Rp=0, OpNRp=R and (Qp,+-*+Qp,)NQp,,, =R, where P, P; are
prime ideals of R. From these facts, (i) and (ii) are immediate.

(ili) The map 0: lim Rp/P""—Q[Rp (=K p) defined by g+ P""—ps"g+Rp,
gERp, is an R-monorerhism. Let ¢ be any element of Q. Since Q=Rp+
Op, we write g=gq,+¢,, where ¢,=Rp, ,Qp. Then ¢,P"SR for some n and
so we have g,=spy” (S€Rp). Since ps"Rp=Rpps”, ¢.=p5"s, (5;Rp). Then
0(s,+P™)=ps"s,+ Rp=q-+ Rp, and thus § is an isomorphism.
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(iv) By (i), we may prove that Homg(Q/Rp, Q/Rp)gkp. It is clear that
Homg(Q/Rp, Q/Rp)=Homz, (O/Rp, O/Rp). Let a be any element of
Hompg(Q/Rp, O/Rp) and let a(ps”+Rp)=7,p5"+ Rp, where r,eRp. Thenr,
is unique up to mod P’*. Since a(ps”+ Rp)=a(po ™ P+ Rp) po=74+1P5"+ Rp,
we have 7,,—7,,,€P’". Let §=(---, s,+P’" ---) be any element of kp. Then
ad(po”+ Rp)=a(s,pa”"+ Rp)=a(ps”"s, + Rp)=7,5,p5"+ Rp, where s,/ERp
with 5,5 "= ps”"s,/. Hence the map a—7=(--+,7,+P’" --+) is an isomorphism
as an I%p-module. . ’

Let M be an (R, R)-bimodule. We define M,[P*]= {xe M|P"x=0}.

Lemma 5.2. Let M be an (R, R)-bimodule such that M is torsion as a left
R-module, let N be a right R-module and let H=Homg(M, N). Then
(i) H is areduced, algebraically compact R-module.
(i) If M us divisible as a left R-module, then H is torsion-free. Furthermore,
if M is P-primary as a left R-module, then H is a P-adic module and a= HP” if
and only if a annihilates M ,[P™].

Proof. (i) follows from the same argument as in Theorem 46. 1 of [6].

(ii) If ac=0, where a €H, c is a regular element in R, then 0= ac(M)=
a(cM)=a(M) and thus ¢=0. Hence H is torsion-free. If M is P-primary,
then clearly H is a P-adic module, because M is in a natural way a P-adic
module by Lemma 3. 14 of [11]. If a = HP"=Hpj, then clearly « annihilates
M,[P"]. Conversely, assume that (M ,[P*])=0. Letmbeany element of M.
Since pgM = M, there exists an element m’ < M such that m=pgm’. Now define
amap B: M—N by B(m)=a(m’). Then B is well-defined, because 7’ is unique
up to mod M,[P"]. Clearly B is additive. LetreR. Then mr=pim'r and so
B(mry=a(m'r)=B(m)r, i.e., B H. Since pym=psm, we have (pym)' =m. So
(Bps)(m)=B(psm)= a(m) and hence o= Bp5, as desired.

Let M be an R-module. Then by Zorn’s lemma there exist maximally
independent sets of uniform submodules of M. By Theorem 1. 10 of [12], the
cardinal number of these sets is an invariant for M. We call it the dimension of
M, and denote it by dimp M (=dim M). Let H be a torsion-free R-module.
We define the P-rank of H to be the dimpH/HP and denote it by P-rank H.

Lemma 5.3. Let H, K be reduced, torsion-free, algebraically compact R-
modules. Then

(1) P-rank H=dim} (Bp), where Bp is a basic submodule of P-adic
component Hp of H (see Theorem 4. 2).

(ii) H=K if and only if P-rank H= P-rank K for every prime ideal P of R.

Proof. (i) By Theorem 4.2, H=II Hp, where Hp is a P-adic com-
ponent of . Let By be a basic submodule of Hp and let B=3@Bp. Then,
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by Lemma 4. 8, B is a basic submodule of H. Hence we have HP+B=H and
H/HP=(HP+ B)/HP=B/|(HP N B)=B|BP. Because BP=BpP®3 p1p’ By, we
have H/HP=Bp/BpP and thus P-rank H=dim Bp.

- (ii) Since H, p=Bp, Hp is a pure-injective envelope of Bp. So (ii) follows
immediately from (i).

Let M be a torsion R-module. We define the P-dimension of M as
dimzM[P], and denote it by P-dim M. Clearly P-dim M =dim Mp, where Mp
is the P-primary submodule of M.

Lemma 5.4. Let G,, G, be torsion, divisible R-modules. Then G,=G, if
and only if P-dim G = P-dim G, for every prime ideal P of R.

Proof. This is trivial.

For a convenience, we denote the R-module of type P~ by R(P~) and the
cardinal number of a set S by |S].

Lemma5.5. Let M be a torsion, divisible R-module and let H=
Homg(K, M). Then P-rank H= P-dim M for every prime ideal P of R.

Proof. Let K=3@Kp and let M =3@Mp be the primary decomposition
of M. Then we have

H==T1 Homy(K p,M)=~=I1 Homg(Kp, Mp),

as an R-module. By Lemma 5.1, dimg [Homp(Kp, Kp)|=dp, where dp=
dim Rp. Hence dimp o[ Homg(K p,R(P~))] =1 and Homg(K p, R(P*)}is reduced
by Lemma 5. 2. Thus we have Homg(K p, R(P”))zeﬁp by Lemma 3. 3, where
e is a uniform idempotent in I%p. Now we put Hp=Homg(Kp, Mp) and put
Mp=3,c;PE;, where |I|=dimMp and E;,=R(P~). Let Bp=3;®D
Homg(Kp, E;). We shall prove that Bp is a basic submodule of Hp. Itisclear
that Bp is a direct sum of cyclic P-adic modules. If ac=a,P- - Pas, where
a€Hp, a;eHomg(Kp, E;) and ¢ is a regular element of R. Then a(Kp)=
a(cKp)=ac(Kp)SE,®--DErand thusasBp. Hence Bp is pure in Hp. To
prove that Hp/Bp is divisible, we let « be any element of Hp and let S=.S,
@-+PS,, be thesocle of Kp. Then there are a finite number ¢,, --+, 7,&1 such
that a(S)SE; D---DE;,. Thus the restricted map o’ =a|S: S—E; P---DE,
can be extended to a map B: Kp—E; D--PE,; . Since (a—B)(S)=0, we
have a— B Hp, by Lemma 5.2 and B€Bp. So (Hp/Bp)p,=Hp/Bp. Let ¢
be any regular element of Rp. Then Rpc2 P" for some n, because Rp is bounded.
Hence we have (Hp/Bp)c2(Hp/Bp) P*=(Hp|Bp)ps=Hp/Bp, and thus Bp is a
basic submodule of Hp. By Lemma 5. 3, we obtain that P-rank H =dimg,Bs =
P-dim M, as desired v
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Theorem 5. 6. The correspondence
(*) M — H = Homg(K, M)

is one-to-one between all divisible, torsion R-modules M and all reduced, torsion-free,
algebraically compact R-modules H.  The inverse of (*) is given by the correspon-
dence: H—-H ® p K (cf. Proposition 2. 1 of [8]).

Proof. By Lemmas 5.2, 5.3, 5.4 and 5. 5, the correspondence (*) is a
monomorphism. Let A be any reduced, torsion-free, algebraically compact R-
module and let H=II Hp be as in Theorem 4.2. Furthermore let By be a
basic submodule of Hp and let B=3@Bp. By Lemma 4. 8, the short exact
sequence 0—B—H—H|[B—( is pure-exact and thus we obtain that 0—-BQp
K—-H®rK—(H|B)®r K—0 is exact by Proposition 3 of [14]. Since H/B is
divisible and K is torsion, H/BQr K=0 and so BQRr K=H®r K. Since
B=3@Bpand K=3PKp,wehave BQr K=3P(BpQ®r Kp). Now we denote
BP=2€BeIA3P, where e is a uniform idempotent in I%P. Then BpQr Kp=3®
(eRp®x Kp). Since Rpo®@g Kp=Kp and dim Kp=dp, where dp=dimg (Rp),
we obtain that ekp® r Kp is a P-primary, uniform, divisible R-module. Hence
H®prK is a torsion, divisible R-module, and clearly P-dim (H®Qg K)=
dimg,(Bp)=P--rank H for every prime ideal P of R. By Lemmas 5.3, 5.5,
H=Homg(K, HRQ K). This completes the proof.

Corollary 5.7. A torsion-free R-module H is a reduced, algebraically compact
R-module if and only if it is isomorphic to a direct summand of a direct product
of copies of the modules epRp, where ep is a uniform idempotent in R, and P ranges
over non-zero prime ideals of R (cf. Propositions 2. 1 and 3. 6 of [8]).

Proof. The “if” part is clear. The “only if” part: By Theorem 5.6,
H=Homg(K, M), where M=Z2,PZPR(P~). Since M is divisible, it is a
direct summand of II,IIR(P~). Hence H is a direct summand of
Homg(K, I I1 R(P~))=I1p I1 Homg(K, R(P~)), and Homg(K, R(P~)) is iso-
morphic to epRp, where ep is a uniform idempotent in Kp (see the proof of
Lemma 5. 5).
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