# ON CATEGORIES OF PROJECTIVE MODULES

MANABU HARADA AND HIKOJI KANBARA

(Received March 2, 1971)

The authors have studied some structures in categories of completely indecomposable modules in [5], [6] and [7], respectively. Furthermore, one of the authors has given some characterization of semi-perfect modules, defined in [9], in terms of semi-T-nilpotent system in [6].

In this note, we shall work in the same frame and give generalizations of some results in [6], [9] and [11].

Let R be a ring with identity and  $\mathfrak{M}_R$  the category of R-right modules. By  $\mathfrak{A}$  (resp.  $\mathfrak{A}_f$ ) we denote the full sub-additive category of  $\mathfrak{M}_R$ , whose objects consist of all R (resp. R-finitely generated)-projective modules and we denote the Jacobson radical of  $\mathfrak{A}$  by  $\mathfrak{F}$  or  $J(\mathfrak{A})$ , (see the definition in [3], [6] and [8]). Then we shall show, in the first section, that  $\mathfrak{A}/J(\mathfrak{A})$  (resp.  $\mathfrak{A}_f/J(\mathfrak{A}_f)$ ) is a  $C_3$ -completely reducible (resp. completely reducible artinian) abelian category if and only if R is a right (resp. semi-) perfect ring, defined in [1]. In the second section, we shall study a directsum of projective modules  $P = \sum_{\alpha \in I} \oplus P_{\alpha}$ , and show that J(P) is small in P if and only if  $J(P_{\alpha})$  is small in  $P_{\alpha}$  for all  $\alpha \in I$  and  $\{P_{\alpha}\}$  is a (elementwise) semi-T-nilpotent system with respect to the Jacobson radical if the cardinal |I| is infinite (see the section 2 for the definition or [6] and [7]). We have immediately [6], Theorems 6 and 7 and [7], Theorem from this theorem. In the third section, we define a quasi-perfect module, which is a generalization of perfect modules defined in [9] and give analogous results to [9]. In the final section, we shall give another proof of [7], Theorem.

In this note, we always assume that a ring R has the identity and R-modules are unitary. We shall use terminologies of categories in [6], [3], [10] and [8]. Let  $\mathfrak{B}$  be a full subcategory of  $\mathfrak{M}_R$ . We assume that Im., Ker. directsum etc. are considered in  $\mathfrak{M}_R$  (not in  $\mathfrak{B}$ ), unless otherwise stated, and for any object P, P' in  $\mathfrak{M}_R$  we write  $[P, P']_R$  or  $[P, P']_{\mathfrak{M}_R}$  instead of  $\operatorname{Hom}_R(P, P')$ .

## 1. A right perfect ring

Let M be a right R-module, and N an R-submodule of M. N is called small in M if Q+N=M implies Q=M for  $Q\subseteq M$ . By J(M) we denote the

radical of M and hence J(R) is the Jacobson radical of R. We denote  $[M, M]_R$  by  $S_M$ . We shall make use of the definition of (semi-) perfect modules defined in [9].

Now, let  $\mathfrak A$  be a full sub-additive category of  $\mathfrak M_R$ . We define a subfamily  $\mathfrak C$  of morphisms in  $\mathfrak A$  as follows: for any objects P, P' in  $\mathfrak A$ ,  $\mathfrak C \cap [P, P']_R = \{f \mid \in [P, P']_R, \operatorname{Im} f (\operatorname{in} \mathfrak M_R) \text{ is small in } P'\}$ . Then we have

**Lemma 1.** Let A and C be as above. Then C is an ideal in A.

Proof. Let f, f' be in  $\mathfrak{C} \cap [P, P']_R$ . Then  $\operatorname{Im}(f \pm f') \subseteq \operatorname{Im} f + \operatorname{Im} f'$ . Hence,  $f \pm f' \in \mathfrak{C} \cap [P, P']_R$ . Let g be an element in  $[P', P'']_R$  and  $A = \operatorname{Im} f$ . We shall show that g(A) is small in P''. We assume g(A) + N = P'' for some N in  $\mathfrak{M}_R$ . Then for any p' in P' we have g(p') = g(a) + n,  $(a \in A, n \in N)$ . Hence,  $p' - a \in g^{-1}(N)$  and  $g(g^{-1}(N) + A) = g(P')$ . On the other hand, since  $g^{-1}(N)$  contains  $\operatorname{Ker} g, P' = A + g^{-1}(N)$ . A is small in P' and hence,  $P' = g^{-1}(N)$ . Therefore,  $N \supseteq g(g^{-1}(N)) = g(P') \supseteq g(A)$  and N = P''. Hence,  $gf \in \mathfrak{C} \cap [P, P'']_R$ . It is clear that  $fg' \in \mathfrak{C}$  for any g' in  $[P'', P]_R$ . Thus,  $\mathfrak{C}$  is an ideal.

**Corollary.** If every object P in  $\mathfrak A$  is projective in  $\mathfrak M_R$ , then  $\mathfrak C$  is equal to the Jacobson radical of  $\mathfrak A$ .

Proof. Since  $\mathbb{C} \cap [P, P]_R$  is the Jacobson radical of  $[P, P]_R$  by [12], Lemma 1,  $\mathbb{C}$  is the radical of  $\mathfrak{A}$ .

From now on, we shall denote the Jacobson radical of  $\mathfrak{A}$  by  $\mathfrak{F}$ .

**Proposition 1.** Let P be a projective R-module. Then J(P) is small in P if and only if  $[P, J(P)]_R = J(S_P)$ .

Proof. It is clear from the above corollary that  $J(S_P) \subseteq [P, J(P)]_R$  for any projective R-module. Hence, if J(P) is small,  $J(S_P) = [P, J(P)]_R$ . Conversely, we assume  $J(S_P) = [P, J(P)]_R$  and P = N + J(P) for some N in  $\mathfrak{M}_R$ . Then we have a diagram:

$$J(P) \xrightarrow{\nu} J(P)/N \cap J(P) \to 0$$

$$\underset{P}{\gtrless} f$$

$$P/N$$

$$\underset{P}{\uparrow} \nu'$$

where  $\nu$  and  $\nu'$  are canonical epimorphisms.

Since P is projective, we have h in  $[P, J(P)]_R$  such that vh = fv'. Hence,  $J(P) = h(P) + N \cap J(P)$  and P = N + J(P) = N + h(P). On the other hand h(P) is small in P, since h is in  $J(S_P)$ . Hence, P = N.

Let I be any well ordered set. By  $R_I$  we denote the ring of column finite

matices of R over I. An ideal  $\Im$  of a ring R is called *right T-nilpotent*, if for any set  $\{a_i\}_{i=1}$  of elements  $a_i$  in  $\Im$ , there exists n so that  $a_n a_{n-1} \cdots a_1 = 0$ , (n depends on  $\{a_i\}$ , cf. [1]).

**Corollary 1** ([11], [13] and [14]). Let I be an infinite set. Then J(R) is right T-nilpotent if and only if  $J(R_I)=J(R)_I$ .

Proof. Let  $P = \sum_{I} \oplus R$ . If J(R) is T-nilpotent, then  $J(P) = \sum \oplus J(R)$  is small by [9], Theorem 7,2. On the other hand  $R_I$  is equal to  $S_P$ . Hence,  $J(S_P) = [P, J(R)]_R = J(R)_I$ . Conversely, If  $J(R_I) = J(R)_I$ , J(R) is small. Hence, J(R) is T-nilpotent from the argument of [9], Theorem 7.4.

**Corollary 2** ([6]). Let P be a projective module. We assume P is a directsum of completely indecomposable modules. Then P is semi-prefect if and only if  $[P, J(P)]_R = J(S_P)$ .

Proof. It is clear from [9], Theorem 5.1 and [6], Theorem 5.

**Lemma 2.** If R has a family of mutually orthogonal non-zero idempotents  $\{e_i\}_{i=1}^{\infty}$ , then  $R_I$  is not regular in the sense of Von Neumann for any infinite set I.

Proof. We may sasume that (the cardinal of I)= $|I|=\aleph_0$ . We denote a family of matrix units in  $R_I$  by  $e_{ij}$ . Put  $B=\sum e_ie_{ii}$ . If  $R_I$  is a regular ring, then there exists A in  $R_I$  so that BAB=B, say  $A=\sum a_{ij}e_{ij}$ . We may assume  $a_{i1}=0$  if i>t for a large t. Then BAB=B implies that  $\sum_{i=1}^{t}e_ia_{ii}e_j=e_j$  for all j. If j>t, then  $e_j=e_j^2=\sum_{i=1}^{t}e_ie_{i}a_{ij}e_j=0$ , which is a contradiction.

**Corollary.** Let R be a regular ring in the sense of V on Neumann. Then  $R_I$  is regular for any set I if and only if R is artinian.

Proof. If R is artinian, then it is clear that  $R_I$  is regular for any set I. We assume that there exists an infinite series of principal left ideals of  $R: Ra_1 \supset Ra_2 \supset \cdots$ . Since R is regular  $Ra_n = Re'_n$  for some idempotent  $e'_n$ . Hence, R has an infinite set of non-zero mutually orthogonal idempotents  $\{e_i\}$ , which is a contradiction to Lemma 2. Therefore, R has the non zero socle, which is atrinian and hence, R is artinian, since R is equal to the socle.

Let  $\mathfrak A$  be an additive category in  $\mathfrak M_R$  and  $\mathfrak C$  an ideal of  $\mathfrak A$ . Then we can define the factor category  $\mathfrak A/\mathfrak C$  with respect to  $\mathfrak C$ . Let P and f be an object and a morphism in  $\mathfrak A$ , respectively. Then P is also an object in  $\mathfrak A/\mathfrak C$ , however we shall denote it by  $\bar P$  if P is regarded as an object in  $\mathfrak A/\mathfrak C$ . Similarly, f means a class of f in  $\mathfrak A/\mathfrak C$ .

Let  $\{M_{\alpha}\}$  be a family of *R*-modules, We consider the full sub-additve category  $\mathfrak{B}$  (resp.  $\mathfrak{B}_f$ ) in  $\mathfrak{M}_R$ , whose objects consist of all directsums of  $M_{\alpha}$  's (resp. all

Added in proof. 0) It was obtained by M. Tsukerman; Siberian Math. J. 7 (1966).

directsums of finite number of  $M_{\alpha}$ 's), and of their isomorphic images. We call  $\mathfrak{B}$  (resp.  $\mathfrak{B}_f$ ) the *induced category from*  $\{M_{\alpha}\}$ .

**Proposition 2.** Let  $\mathfrak A$  be the induced additive category from a family of projective modules, and  $\mathfrak A$  the radical of  $\mathfrak A$ . We assume  $\mathfrak A/\mathfrak A$  is a spectral abelian category. Then

- 1) For every P in  $\mathfrak{A}$ , J(P) is small in P. Furthermore, we assume  $\mathfrak{A}/\mathfrak{F}$  is  $C_3$ -abelian.
  - 2) If P in  $\mathfrak{A}$  is a directsum<sup>1)</sup> of subobject  $P_{\omega}$  in  $\mathfrak{A}$ , then  $\bar{P} = \sum \oplus \bar{P}_{\omega}$  in  $\mathfrak{A}/\mathfrak{F}$ .
  - 3) If  $\bar{P}$  is a directsum of minimal objects in  $\mathfrak{A}/\mathfrak{F}$ , then P is semi-perfect.
  - 4) If Q in  $\mathfrak{A}$  is a finietly generated R-module, then Q is perfect.
- Proof. 1). Put  $S_P = [P, P]_R$  and  $J'(S_P) = [P, J(P)]_R$ . We assume  $J'(S_P) = J(S_P)$ . Since  $S_P/J(S_P)$  is a regular ring and  $J'(S_P)$  is a tow-sided ideal in  $S_P$ , there exists non zero element e' in  $J'(S_P)$  so that  $e' \equiv e'^2 \pmod{\mathfrak{F}}$ . Herce, we obtain an idempotent e in  $J'(S_P)$  so that  $e \equiv e' \pmod{\mathfrak{F}}$  by [5], Lemma 2. Therefore,  $eP \subset J(P)$ , which is a contradiction. Thus, we obtain  $J'(S_P) = J(S_P)$  and J(P) is small in P by Proposition 1.
- 2). We shall show that  $\sum_{I} \oplus \bar{P}_{\alpha} = \overline{\sum_{I} \oplus P_{\alpha}}$  in  $\mathfrak{A}/\mathfrak{F}$ . Let J be a finite subset of I, then  $P_{J} = \sum_{\alpha \in J} \oplus P_{\alpha}$  is a direct summand of  $P = P_{I}$ . Hence,  $\sum_{J} \bar{P}_{\alpha} = \bar{P}_{J}$  is a direct summand of  $\bar{P}$ , (use the method in the proof of Proposition 1 or see [5], Lemma 2). Therefore,  $\bigcup \bar{P}_{J} = \sum \oplus \bar{P}_{\alpha}$  is a subobject of  $\bar{P}$  by [10], p. 82, Proposition 1.2. Let  $\bar{P} = \sum \oplus \bar{P}_{\alpha} \oplus \bar{Q}$  and f a projection of  $\bar{P}$  to  $\bar{Q}$ . Then  $fg \equiv 1 \pmod{\mathfrak{F}}$  for some  $g \in [Q, P]_{R}$ . Since  $\mathfrak{F}$  is the radical, fg is isomorphic as R-modules.  $\bar{f}(\sum \oplus \bar{P}_{\alpha}) = 0$  implies  $f(\sum \oplus P_{\alpha}) \subset J(Q)$ . Hence,  $J(Q) \supset f(P) \supset fg(Q) = Q$ . Therefore, Q = 0.
- 3). We assume  $\bar{P} = \sum \oplus \bar{P}'_{\alpha}$ . Put  $P' = \sum \oplus P'_{\alpha}$ . Then  $\bar{P} \approx \bar{P}'$  from 2). Therefore,  $P \approx P'$  as R-modules, since  $\Im$  is the radical. Furthermore,  $P'_{\alpha}$  is semi-perfect and so is P by 1), (see [9], Theorem 5.2 and [5], Theorem 5).
- 4). Let Q be a finitely generated R-projective module in  $\mathfrak{A}$ , and  $S_Q = [Q, Q]_R$ . Put  $Q^* = \sum_{i=1}^{\infty} \oplus Q_i$ ;  $Q_i \approx Q$  for all i. Since Q is finitely generated,  $S_{Q^*}$  is the ring  $(S_Q)_{\infty}$  of column finite matrices with entries in  $S_Q$ . From the assumption  $S_{Q^*}/J(S_{Q^*})$  is regular and hence  $(S_Q/J(S_Q))_{\infty}$  is a regular ring. Therefore,  $S_Q/J(S_Q)$  is an artinian ring by Corollary to Lemma 2. Thus,  $\bar{Q} = \sum_{i=1}^{n} \oplus \bar{Q}_i$  in  $\mathfrak{A}/\mathfrak{F}$ , where  $Q_i$ 's are minimal objects in  $\mathfrak{A}/\mathfrak{F}$ . Hence,  $Q = \sum_{i=1}^{n} \oplus Q_i$  and  $Q_i$ 's are completely indecomposable by [5], Lemma 2. It is clear from the first half that Q is perfect.

**Theorem 1.** Let  $\mathfrak A$  be the full sub-additive category of all R-projective

<sup>1)</sup> Directsum is considered in  $\mathfrak{M}_R$ .

modules in  $\mathfrak{M}_R$  and  $\mathfrak{F}$  the radical of  $\mathfrak{A}$ . Then the following statements are equivalent.

- 1  $\mathfrak{A}/\mathfrak{F}$  is a  $C_3$ -abelian completely reducible category.
- 2  $\mathfrak{A}/\mathfrak{F}$  is a  $C_3$ -spectral abelian category.
- 3 R is a right perfect ring.

Proof.  $1\rightarrow 2$ . It is clear.  $2\rightarrow 3$ . Since R is a finitely generated R-module, R is right perfect from Proposition 2.  $3\rightarrow 1$ . If R is right perfect, then every object P in  $\mathfrak A$  is perfect by [1] or [9] and hence, P is a directsum of completely indecomposable modules. Furthermore,  $\mathfrak A\cap [P,P]_R=[P,J(P)]_R$  is equal to the ideal defined in [5], §3, (see [6], §3). Hence,  $\mathfrak A/\mathfrak A$  is a  $C_3$ -completely reducible abelian category by [5], Theorem 7.

Similarly to Theorem 1, we obtain

**Theorem 2.** Let  $\{P_{\alpha}\}$  be a family of finitely generated projective R-modules, and  $\mathfrak{A}_f$  the induced category from  $\{P_{\alpha}\}$ . Then the following two conditions are equivalent.

- 1  $\mathfrak{A}_f/\mathfrak{F}$  is a completely reducible and artinian abelian category.
- 2 Every object in  $\mathfrak{A}_f$  is semi-perfect.

Especially, let  $\mathfrak{A}'_{f}$  be the full sub-category of all R-finitely generated projective modules. Then  $\mathfrak{A}'_{f}/\mathfrak{F}$  is a completely reducible and artinian abelian category if and only if R is semi-perfect.

REMARK. If we omit the assumption "artinian" in Theorem 2, then the thorem is not true in general. For example, let K be a field and  $R = [P, P]_K$ , where P is a K-vector space with infinite dimension. It is well known that R is self injective as a right R-module and R has the socle  $S = \sum_{i=1}^{\infty} \bigoplus e_i R$ . Let  $\mathfrak{A}'_f$  be as above. Then  $\mathfrak{A}'_f$  is a spectral abelian category from [12], Theorem 2, since R is a regular ring. First, we shall show that  $R = \sum \bigoplus e_i R^2$  in  $\mathfrak{A}'_f$ . It is clear that  $S_J = \sum_{i \in J} e_i R$  is in  $\mathfrak{A}'_f$  for every finite set J and is a direct summand of R in  $\mathfrak{A}'_f$  via the inclusion. Let  $\{f_i\}$  be a set of R-homomorphisms  $f_i \colon e_i R \to R$ . Then  $f = \sum f_i$  is in  $[S, R]_R$ . Since R is self-injective and a prime ring, we have a unique extension  $g \in [R, R]_R$  of f. Therefore,  $R = \sum e_i R$  in  $\mathfrak{A}'_f$ , since every object in  $\mathfrak{A}'_f$  is a finitely generated R-module. Noting that  $\mathfrak{A}'_f$  is spectral and  $R = \sum e_i R$  in  $\mathfrak{A}'_f$  even though  $\mathfrak{A}'_f$  is not co-complete, we can easily show that  $\mathfrak{A}'_f$  is completely reducible. However, R is not semi-perfect.

We have shown in Proposition 2 that  $\overline{\sum \oplus P_{\alpha}} = \sum \oplus \overline{P}_{\alpha}$  in  $\mathfrak{A}/\mathfrak{F}$  if  $\mathfrak{A}/\mathfrak{F}$  is a  $C_3$ -abelian spectral category. However, as above this fact is not true if  $\mathfrak{A}/\mathfrak{F}$  is not co-complete, since  $\sum \oplus P_{\alpha} \in \mathfrak{A}'_{1}$ .

<sup>2)</sup> Directsum is considered in  $\mathfrak{A}_{f}'$ .

**Proposition 3.** Let  $\mathfrak{A}_f$  be the induced additive category from a family of semi-perfect modules. Then  $\mathfrak{A}_f|\mathfrak{F}$  is an abelian spectral category.

Proof. It is clear that every object in  $\mathfrak{A}_f$  is semi-perfect from [9], Theorem 5.1. Therefore,  $\mathfrak{A}_f/\mathfrak{F}$  is an abelian spectral category by [12], Theorem 2.

**Corollary.** Let P and Q be semi-perfect modules and f an element in  $[P, Q]_R$ . Then we have decomposition  $P=P_1\oplus P_2$ ,  $Q=Q_1\oplus Q_2$  such that  $f(P_2)$  is small in Q and  $f\mid P_1$  gives an isomorphism of  $P_1$  to  $Q_1$ . Furthermore, under those conditions,  $P_i$  and  $Q_i$  are unique up to isomorphism.

Proof. Let  $\mathfrak{A}_f$  be the induced category from P and Q. Put  $\bar{P}_2' = \operatorname{Ker} f$ . Since  $\mathfrak{A}_f/\mathfrak{F}$  is abelian spectral,  $\bar{P} = \bar{P}_1' \oplus \bar{P}_2'$ . Hence, we have  $P = P_1 \oplus P_2$  so that  $\bar{P}_1 = \bar{P}_1'$  by [5], Lemma 2. Then  $f_1 = \bar{f} \mid \bar{P}_1$  is monomorphic in  $\mathfrak{A}_f/\mathfrak{F}$ . Hence, there exists  $g \in [Q, P]_R$  such that  $\bar{g}f_1$  is equal to the identity of  $P_1$  modulo  $\mathfrak{F}$ . Hence,  $Q = \operatorname{Ker} g \oplus \operatorname{Im} f_1$ . Since  $f(\bar{P}_2) = 0$ ,  $f(P_2)$  is small in Q, If  $P_i$ ,  $Q_i$  satisfy the above conditions, then  $\bar{P}_2 = \operatorname{Ker} f$ ,  $\bar{P}_1 = \operatorname{Coim} f$  and  $\bar{Q}_1 = \operatorname{Im} f$ ,  $\bar{Q}_2 = \operatorname{Coker} f$ . Hence, they are unique up to isomorphism as R-modules.

### 2. Directsum of projective modules

It is known by [9], Corollary 5.3 that every semi-perfect module is a directsum of completely indecomposable projective modules. Thus, we shall study, in this section, a projective module which is a directsum of some submodules. First, we shall generalize the definition of *T*-nilpotent.

Let  $\{M_{\omega}\}_{I}$  be a family of R-modules  $M_{\omega}$ ,  $\mathfrak A$  the induced category from  $\{M_{\omega}\}_{I}$  and  $\mathfrak C$  an ideal of A. We call  $\{M_{\omega}\}_{I}$  a (elementwise) T-nilpotent (resp. semi-T-nilpotent) system with respect to  $\mathfrak C$  if the following conditions are satisfied: for any sequence  $\{f_{i}\}_{i=1}^{\infty}$  of morphisms  $f_{i}$  in  $\mathfrak C \cap [M_{\omega_{i}}, M_{\omega_{i+1}}]_{R}$  and any element x in  $M_{\omega_{1}}$ , there exists n, depending on x and  $\{f_{i}\}$ , such that  $f_{n}f_{n-1}\cdots f_{1}(x)=0$ , where  $M_{i}$ 's are in  $\{M_{\omega}\}$ , (resp.  $\alpha_{i} + \alpha_{j}$  if i + j), (cf. [5], §3).

Let I be a well ordered set and put  $M = \sum_{I} \oplus M_{\alpha}$ , then  $[M, M]_R = S_M$  is equal to the ring of column summable matrices, whose entries  $a_{\sigma\tau}$  consist of elements in  $[M_{\tau}, M_{\sigma}]_R$ , namely for  $f \in S_M$  and  $x_{\tau} \in M_{\tau}$ ,  $f = (b_{\sigma\tau})$  and  $b_{\sigma\tau}(x_{\tau}) = 0$  for almost all  $\sigma \in I$ . In this case  $\sum_{\sigma \in I} b_{\sigma\tau}$  has a meaning and it is an element in  $[M_{\tau}, M]_R$ . We shall make use of those notations in the following. Let  $b_{\alpha_i\alpha_{i-1}}$  be in  $[M_{\alpha_{i-1}}, M_{\alpha_i}]_R$  for  $i = 1, 2 \cdots, n$ . If  $\alpha_1 < \alpha_2 \cdots < \alpha_n$ , we denote briefly  $b_{\alpha_n\alpha_{n-1}}b_{\alpha_{n-1}\alpha_{n-2}}\cdots b_{\alpha_2\alpha_1}$  by  $b(\alpha_n, \alpha_{n-1}, \cdots \alpha_2, \alpha_1)$ .

**Lemma 3.** Let  $\{M_{\omega}\}_{I}$ , M and  $\mathfrak{C}$  be as above with |I| infinite and  $f=(b_{\sigma\tau})$  in  $\mathfrak{C}\cap [M,M]_{R}$ . We assume  $\{M_{\omega}\}_{I}$  a semi-T-nilpotent system with respect to  $\mathfrak{C}$ . We put  $F_{\tau}=\{b(\alpha_{n}, \alpha_{n-1}, \dots, \alpha_{1})|\alpha_{1}=\tau \text{ and } n \text{ is any integer } \geq 2\}$ . Let  $x_{\tau}$  be an

element in  $M_{\tau}$ , then  $b(\alpha_n, \alpha_{n-1}, \dots, \alpha_1)(x_{\tau})=0$  for almost all  $b(\alpha_n, \alpha_{n-1}, \dots, \alpha_1)$  in  $F_{\tau}$ .

Proof. Since  $\mathfrak C$  is an ideal,  $b_{\sigma\tau}$  is in  $\mathfrak C\cap [M_\tau,M_\sigma]_R$ . Now,  $\{b_{\omega_2\tau}\}_{\omega_2}$  is summable and hence, there exists a finite set  $T_1$  such that  $b_{\omega_2\tau}(x_\tau)=0$  if  $\alpha_2 \oplus T_1$ . Since  $\{b_{\omega_3\omega_2}\}_{\omega_3}$  is summable for  $\alpha_2 \oplus T_1$ , there exists a finite set  $T_2$  such that  $b(\alpha_3,\alpha_2,\tau)(x_\tau)=0$  for  $\alpha_3 \oplus T_2$ ,  $\alpha_2 \oplus T_1$ . Repeating this argument, we obtain a family of finite set  $T_i$  such that  $b(\alpha_i,\alpha_{i-1},\cdots,\tau)(x_\tau)=0$  if  $\alpha_k \oplus T_k$  for some k. Hence, we obtain the lemma from Koning Graph Theorem and the assumption.

From Lemma 3, we know that  $\sum_{\alpha_i} b(\sigma, \alpha_{n-1}, \dots, \alpha_2, \tau)$  is in  $[M_{\tau}, M_{\sigma}]_R$ .

**Lemma 4.** Let M,  $\{M_{\alpha}\}_I$  and  $\mathfrak{C}$  be as above and we assume  $\{M_{\alpha}\}_I$  is a semi-T-nilpotent system with respect to  $\mathfrak{C}$ . Let  $(b_{\sigma\tau})$  be in  $S_M \cap \mathfrak{C}$  so that  $b_{\sigma\tau} = 0$  if  $\sigma \geq \tau$  (resp.  $\sigma \leq \tau$ ), then  $(b_{\sigma\tau})$  is quasi-regular in  $S_M$ .

Proof. It is clear from the proof of [5], Lemma 10.

**Lemma 5.** Let  $\{M_{\omega}\}_{I}$ , M and  $\mathbb{C}$  be as above. We assume the following. 1)  $\mathbb{C} \cap S_{\omega} \subseteq J(S_{\omega})$  for every  $\alpha \in I$ . 2) if  $\{a_{i}\}_{i}$  is a summable set in  $\mathbb{C} \cap [M_{\sigma}, M_{\tau}]_{R}$ , then  $\sum_{i} a_{i}$  is in  $\mathbb{C} \cap [M_{\sigma}, M_{\tau}]_{R}$ , where  $S_{\omega} = S_{M_{\omega}} = [M_{\omega}, M_{\omega}]_{R}$ , 3)  $\{M_{\omega}\}_{I}$  is a semi-T-nilpotent system with respect to  $\mathbb{C}$ . Then  $\mathbb{C} \cap S_{M} \subseteq J(S_{M})$ .

Proof. Let  $A'=(a'_{\sigma\tau})$  be in  $\mathfrak{C}\cap S_M$  and put  $A=E-A'=(a_{\sigma\tau})$ , where E is the unit matrix. We shall show by the fundamental transformation of A that A is regular in  $S_M$ . Since  $\mathfrak{C}$  is an ideal and  $\mathfrak{C}\cap S_{\sigma}\subseteq J(S_{\sigma})$ ,  $a_{\sigma\sigma}=1-a'_{\sigma\sigma}$  is unit in  $S_{\sigma}$ . We put  $b_{\sigma 1}=-a_{\sigma 1}a_{11}^{-1}$  for  $\sigma<1$ , then  $\{b_{\sigma 1}\}_{\sigma}$  is summable and  $b_{\sigma 1}$  is in  $\mathfrak{C}\cap [M_1,M_{\sigma}]_R$ . We shall define  $b_{\sigma\tau}$  for  $\sigma<\tau$ , satisfying the following conditions, by the transfinite induction on  $\tau$ 

- 1)  $\{b_{\sigma\tau}\}_{\sigma}$  is summable and  $b_{\sigma\tau}$  is in  $\mathbb{C} \cap [M_{\tau}, M_{\sigma}]_{R}$ .
- 2)  $b_{\sigma\tau} = -y_{\sigma\tau}y_{\tau\tau}^{-1}$ , where for  $\sigma \ge \tau$

$$y_{\sigma\tau} = a_{\sigma\tau} + \sum_{\tau > \alpha_t} b(\sigma, \alpha_t, \alpha_{t-1}, \cdots, \alpha_1) a_{\alpha_1\tau} \cdots (*).$$

We note that  $\sum b(\sigma, \alpha_t, \cdots, \alpha_2, \alpha_1)a_{\omega_1\tau}$  is defined and in  $\mathfrak{C} \cap [M_\tau, M_\sigma]_R$  by 1), 2), the assumption and Lemma 3, and hence  $y_{\tau\tau}$  is unit in  $S_\tau$ , (note that  $\{a_{i\tau}\}_i$  is summable). We assume  $\{b_{\sigma\rho}\}$  is defined for all  $\rho < \tau$ , which satisfy the conditions 1) and 2). Then we can define  $y_{\sigma\tau}$  for  $\sigma \ge \tau$  from (\*) and define  $b_{\sigma\tau}$  by 2). Since  $\{y_{\sigma\tau}\}_\sigma$  is summable by Lemma 3, so is  $\{b_{\sigma\tau}\}_\sigma$ . Next, we put  $c_{\sigma\tau} = \sum b(\sigma, \alpha_t, \cdots, \alpha_2, \tau) \in \mathfrak{C} \cap [M_\tau, M_\sigma]_R$  and  $c_{\sigma\tau} = 0$  if  $\sigma < \tau$ . Then  $C = (c_{\sigma\tau})$  is in  $S_M$  by Lemma 3. We calculate the  $(\sigma, \tau)$ -component  $d_{\sigma\tau}$  is CA. For  $\sigma > \tau > 1$  we have  $d_{\sigma\tau} = \sum_{\rho} c_{\sigma\rho} a_{\rho\tau} = \sum_{\sigma \ge \rho} c_{\sigma\rho} a_{\rho\tau} = \sum_{\sigma \ge \rho} b(\sigma, \alpha_t, \cdots, \alpha_1) a_{\omega_1\tau} + a_{\sigma\tau} = a_{\sigma\tau} + \sum_{\tau > \omega_t} b(\sigma, \alpha_t, \cdots, \alpha_1) a_{\omega_1\tau} + b_{\sigma\tau} (\sum b(\tau, \alpha_t, \cdots, \alpha_1) a_{\omega_1\tau} + a_{\tau\tau}) + \sum_{\sigma > \omega_t > \tau} b_{\omega\omega_t} (\sum b(\alpha_t, \cdots, \alpha_1) a_{\omega_1\tau} + a_{\omega_t\tau})$ . Hence, we have

3)  $d_{\sigma\tau} = y_{\sigma\tau} + b_{\sigma\tau} y_{\tau\tau} + \sum b_{\sigma\omega_t} d_{\omega_t\tau}$ .

It is clear that  $d_{21}=0$ . Now, we assume  $d_{\alpha\beta}=0$  for  $\sigma>\alpha>\beta$ , then we obtain from 2) and 3),  $d_{\sigma\tau}=0$  for  $\sigma>\tau$ . Thus, we have proved  $d_{\sigma\tau}=0$  for all  $\sigma>\tau$ . Furthermore,  $d_{\sigma\sigma}=\sum b(\sigma,\alpha_t,\cdots,\alpha_1)a_{\alpha_1\sigma}+a_{\sigma\sigma}$  is unit in  $S_{\sigma}$  from the assumptions. Finally, we put  $C_1=\sum e_{\sigma\sigma}d_{\sigma\sigma}^{-1}$ , where  $\{e_{\sigma\tau}\}$  is a family of matrix units in  $S_M$ . Then  $D=E-C_1CA=\sum e_{\sigma\tau}x_{\sigma\tau}$  and  $x_{\sigma\tau}$  is in  $\mathfrak{C}\cap[M_{\tau},M_{\sigma}]_R$ , since  $b_{\sigma\tau}$  (resp.  $a_{\sigma\tau}$ ) is in  $\mathfrak{C}\cap[M_{\tau},M_{\sigma}]_R$  if  $\sigma>\tau$  (resp.  $\sigma<\tau$ ). Hence,  $C_1CA$  is regular in  $S_M$  by Lemma 4. We know similarly that C is regular in  $S_M$ . Therefore, A is regular in  $S_M$ , which implies that  $\mathfrak{C}\cap S_M\subseteq J(S_M)$ .

**Theorem 3.** Let  $\{P_{\alpha}\}$  be a family of projective modules and  $P = \sum_{T} \bigoplus P_{\alpha}$ . Then J(P) is small in P if and only if  $J(P_{\alpha})$  is small in  $P_{\alpha}$  for every  $\alpha \in I$  and  $\{P_{\alpha}\}_{I}$  is a semi-T-nilpotent system if I is infinite.

Proof. We assume J(P) is small in P. Then  $J(P_{\alpha})$  is small in  $P_{\alpha}$ . Let  $\{P_{\alpha_i}\}_{i=1}^{\infty}$  be a sub-family of  $\{P_{\alpha}\}$  and  $f_i \in [P_{\alpha_i}, P_{\alpha_{i+1}}]_R \cap \mathfrak{F}$ , where  $\alpha_i \neq \alpha_j$  if  $i \neq j$ . Put  $P'_i = \{p_i + f_i(p_i) | p_i \in P_{\alpha_i}\}$ . Then  $f_i(p_{\alpha_i})$  is in  $J(P_{\alpha_{i+1}})$  by the definition and  $P = \sum_{i=1}^{\infty} P'_{\alpha_i} + \sum_{\beta \neq \alpha_i} P_{\beta} + J(P)$ . Hence,  $P = \sum \bigoplus P'_{\alpha_i} \bigoplus \sum_{\beta \neq \alpha_i} \bigoplus P_{\beta}$ . Therefore,  $\{P_{\alpha}\}$  is a semi-T-nilpotent system, (see [5], Lemma 9). Conversely, if I is finite, the theorem is trivial. Hence, we assume that I is infinite. If  $J(P_{\alpha})$  is small in  $P_{\alpha}$ , then  $J(S_{\alpha}) = [P_{\alpha}, J(P_{\alpha})]_R$  from Proposition 1. Now, we define an ideal  $\mathfrak{E}$  in  $\mathfrak{A}$  induced from  $\{P_{\alpha}\}$  as follows:  $\mathfrak{E} \cap [P_{\alpha}, P_{\beta}]_R = [P_{\alpha}, J(P_{\beta})]_R$ . Then  $\mathfrak{E}$  satisfies the conditions in Lemma 5 by Corollary to Lemma 1 and hence,  $\mathfrak{E} \cap S_P = [P, J(P)]_R \subseteq J(S_P)$ . Therefore, J(P) is small in P by Proposition 1.

**Corollary 1** ([6], Theorems 6 and 7). Let P and  $\{P_{\alpha}\}_{I}$  be as above with I infinite. Then P is perfect (resp. semi-perfect) if and only if  $P_{\alpha}$  is semi-perfect and  $\{P_{\alpha}\}_{I}$  is a T-nilpotent (resp. semi-T-nilpotent) system.

Proof. It is clear from Theorem 3 and [9], Theorem 5.1.

**Corollary 2.** Let P be a projective module in which J(P) is small. Then J(F) is small in F for any directsum F of any copies of P if and only if  $\{P\}^{3}$  is a T-nilpotent system with respect to  $J(S_P)$ .

Proof. It is an immediate consequence of Theorem 3.

**Corollary 3.** Let  $\{P_{\alpha}\}$  be a family of perfect modules. Then  $P = \sum_{I} \bigoplus P_{\alpha}$  is perfect if and only if J(P) is small in P.

Proof. "only if" part is clear. We may assume that J(P) is small in P and  $P_{\alpha}$  is completely indecomposable. If  $|I| < \infty$ , P is perfect. If  $|I| = \infty$ ,

<sup>3)</sup>  $\{P\}$  means  $\{P_i\}$ ;  $P_i \approx P$  for all i.

 $\{P_{\alpha}\}$  is a semi-T-nilpotent system by Corollary 2. Since  $P_{\alpha}$  is perfect, P is a T-nilpotent system. Therefore, P is perfect from Corollary 1.

#### 3. Quasi-perfect modules

We know from Corollary 1 to Theorem 3 that the perfect modules are special ones in projective modules with properties in Corollary 2. Thus, we call such a projective modules P quasi-perfect; namely J(P) is small in P and  $\{P\}$  is a T-nilpotent system with respect to  $J(S_P)$ , or equivalentely  $\{P\}$  is a T-nilpotent system with respect to  $[P, J(P)]_R$  by Proposition 1.

If J(R) is right T-nilpotent, then for every projective module P, J(P) is small in P and P is quasi-perfect by Theorem 3 and vice versa. If R/J(R) is not artinian, then R is quasi-perfect, but not perfect. It is clear that a directsum of any copies (or direct summand) of a quasi-perfect module is also quasi-perfect. Hence, if a projective generator in  $\mathfrak{M}_R$  is quasi-perfect, then so is every projective modules.

**Lemma 6.** Let P be a projective module. We assume that J(P) is small in P and  $P/J(P) = \sum_{I} \bigoplus_{i} \bar{P}'_{\alpha}$  as R/J(R)-modules. If there exist projective R-modules  $Q_{\alpha}$  so that  $Q_{\alpha}/J(Q_{\alpha}) \approx \bar{P}_{\alpha}$  for each  $\alpha \in I$ , then we have a direct decomposition  $P = \sum_{I} \bigoplus_{i} P_{\alpha}$ , which induces the above decomposition, and hence  $J(Q_{\alpha})$  is small in  $Q_{\alpha}$ , (cf. [9], Theorem 4.3).

Proof. Put  $Q = \sum \bigoplus Q_{\alpha}$ , then we have a diagram



where  $\nu$  and  $\nu'$  are natural epimorphisms from the assumption. Since Q is projective and J(P) is small, P is a direct summand of Q via g;  $Q=P\oplus Q'$ . Hence,  $Q=P+J(Q)=P\oplus J(Q')$ . Therefore, Q'=0. It is clear that  $J(Q_{\alpha})$  is small in  $Q_{\alpha}$ .

**Theorem 4.** Let P be a quasi-perfect module. Then every direct decomposition of P/J(P) is lifted to one of P.

Proof. We assume that  $P/J(P) = \bar{P}'_1 \oplus \bar{P}'_2$  as R/J(R)-modules, and show that there exist  $P_i$  so that  $P = P_1 \oplus P_2$  induces the above decomposition. It is clear that  $[P/J(P), P/J(P)]_{R/J(R)} = S/\Im$ , where  $S = S_P$  and  $\Im = J(S_P)$ . Let  $a^2 \equiv a \pmod{\Im}$  for  $a \in S$ . We shall show that there exists an idempotent e in S such that  $e \equiv a \pmod{\Im}$ . We use the same argument in [2], p. 546. We can find the following

identities for each n from  $1 = (x - (1 - x))^{2n} = \sum {2n \choose i} x^i (1 - x)^{2n - i}$ 4)  $f_n(x) = f_{n-1}(x) + g_n(x)(x^2 - x)^{n-1}$ 

- 5)  $f_n(x)^2 = f_n(x) + h_n(x)(x^2 x)^n$

where  $f_n(x)$ ,  $g_n(x)$  and  $h_n(x)$  are polynominals with coefficients of integers. From 4) we have  $f_n(x) = x + g_0(x)(x^2 - x) + \dots + g_n(x)(x^2 - x)^{n-1}$ . Put  $b = a^2 - a \in \Im$  and  $g_i(a)=c_i \in S$ . Let p be an element in P, then  $b^{n(p)}(p)=0$  for some integer n(p)by the assumption. Put  $A=a+\sum_{i=0}^{\infty}c_{i}b^{i+1}$ . Since  $\{c_{i}b^{i+1}\}_{i}$  is summable as above, A is in S. Furthermore,  $(A^2-A)(p)=AA_{n(p)}(p)-A_{n(p)}(p)$ , where  $A_{n(p)}=a$  $+\sum_{n=0}^{n(p)-1}c_ib^{i+1}$ . Now, let  $A_{n(p)}(p)=q$ , and put  $m=\max(n(p),n(q))$ , then  $AA_{n(p)}(p)$  $=A_m A_{n(p)}(p) = A_m A_m(p)$ . Hence,  $(A^2 - A)(p) = A_m^2(p) - A_m(p)$ . We have similarly from 5) that  $(A_{n'}^2 - A_{n'})(p) = 0$  for any  $n' \ge \text{some } n$ . Therefore,  $A^2 = A$ . On the other hand,  $A-a=\sum_i c_i b^{i+1}$  and  $(\sum_i c_i b^{i+1})(p) \in J(P)$ . Hence,  $\sum_i c_i b^{i+1}$  $\in [P, J(P)]_R = \Im$  by Corollary to Proposition 1. Therefore, we have porved the theorem by Lemma 6.

**Corollary 1.** We assume that R/J(R) is artinian. Then every quasi-perfect module is perfect.

Proof. Since P/J(P) is semi-simple, P is perfect from Theorem 4, Corollary to Theorem 3 and [9], Theorem 5.1.

**Corollary 2.** We assume J(R) is right T-nilpotent, then for a projective Rmodule P, a direct decomposition of P/I(P) is lifted to one of P, and every idempotent in  $R_I | J(R_I)$  is lifted to one in  $R_I$  for any set I. Furthermore, if R/J(R) is a regular ring, then  $\mathfrak{A}'_{\tau}/\mathfrak{F}$  is a spectral abelian category, where  $\mathfrak{A}'_{\tau}$  is the full sub-category of finitely generated projective R-modules.

If P is perfect, then P/J(P) is semi-simple and hence,  $S_P/J(S_P) = \prod \Delta_{I_{\alpha}}^{\alpha}$ , where  $\Delta^{\alpha}$  are division rings. It is clear that P'|J(P') is not semi-simple even though  $S_P'/I(S_P') = \prod \Delta^{\alpha}$  for a projective module P' We consider this situation.

**Proposition 4.** Let P be a quasi-perfect module so that  $S_P/J(S_P) = \prod_{\alpha} \Delta_{I_{\alpha}}^{\alpha}$ , then P contains a perfect module  $P_0$  such that  $S_{P_0}/J(S_{P_0}) = \prod_T \Delta_{I'_\infty}^{\alpha}$  and P is perfect if and only if  $P_0$  is a direct summand of P, where  $|I_{\alpha}| \geqslant |I'_{\alpha}|$  and  $|I'_{\alpha}| \geqslant \aleph_0$  if  $|I_{\boldsymbol{\sigma}}|\geqslant \aleph_{\scriptscriptstyle 0}.$ 

Proof. Let  $\bar{S} = S_P/J(S_P)$ ,  $\bar{P} = P/J(P)$ , and  $\bar{e}_{\alpha}$  a projection of  $\bar{S}$  to  $\Delta_{I_{\alpha}}^{\alpha}$ . Then there exists  $P_{\alpha}$  in P which is a direct summand of P and  $S_{P_{\alpha}}/J(S_{P_{\alpha}})$  $=\bar{e}_{\alpha}\bar{S}_{\alpha}\bar{e}_{\alpha}\approx\Delta_{I_{\alpha}}^{\alpha}$ . Let  $\mathfrak{S}$  be the socle of  $\Delta_{I_{\alpha}}^{\alpha}=\bar{S}_{\alpha}$ , and  $\mathfrak{S}\bar{P}(=\bar{P}_{0})\subseteq\bar{P}$ . Then the restriction  $\varphi$  of  $\bar{S}_{\alpha}$  to  $\bar{P}_{0}$  gives elements of  $S_{P_{0}} = [\bar{P}_{0}, \bar{P}_{0}]_{R/J(R)}$ . We first show

that  $\varphi$  is a ring isomorphism. If  $\ker \varphi = \mathfrak{A} \neq 0$ , then  $\mathfrak{A} \supseteq \mathfrak{S}$ .  $\mathfrak{A}\mathfrak{S}\bar{P} = \bar{P}_0 \neq 0$ . Hence, Ker  $\varphi = 0$ . Since  $\bar{P}_0 = \sum e_{ii}\bar{P}$ , where  $\{e_{ij}\}$  is a family of matrix units of  $\bar{S}_{\alpha}$ ,  $\varphi(\mathfrak{S})$  is equal to the socle  $\mathfrak{S}'$  of  $S_{\overline{P}_0}$ . Furthermore,  $\bar{S}_{\boldsymbol{\sigma}} = [\mathfrak{S}, \mathfrak{S}]_{S_{\boldsymbol{\sigma}}}$ , and  $S_{P_0} = [\mathfrak{S}', \mathfrak{S}']_{SP_0}$  as right modules. We may regard  $\bar{S}_{\boldsymbol{\sigma}}$  as a sub-ring of  $S_{P_0} = [\mathfrak{S}', \mathfrak{S}']_{SP_0} = [\mathfrak{S}', \mathfrak{S}']_{SP_0} = [\mathfrak{S}, \mathfrak{S}]_{\bar{S}_{\boldsymbol{\sigma}}} = \bar{S}_{\boldsymbol{\sigma}}$ . Hence,  $\varphi$ is isomorphic. Now, since  $\bar{P}_0 = \sum \oplus e_{ii}\bar{P}$ ,  $P_{\omega}$  contains a direct summand  $P_{\omega J}$  for every finite set  $J \subseteq I$  so that  $\bar{P}_{\alpha J} = \sum_{i \in I} \bigoplus e_{ii} \bar{P}$ . Let S be a family of projective submodules Q of  $P_{\alpha}$  so that  $Q = \sum_{i \in F} \bigoplus Q_i$ ,  $\bar{Q}_i \approx e_{ii}\bar{P}$ , for all i in K, and  $Q_J$  is a direct summan of P for any finite subset J of K. We can find a maximal element  $Q_{\alpha}$ in S by defining a natural relation in S. We assume that  $Q_a$  is a direct summand of P and  $\bar{Q}_{\alpha} \neq \bar{P}_{\alpha}$ . Since  $\bar{Q}_{\alpha}$  is a direct summand of  $\bar{P}_{\alpha}$  we can obtain a submodule U of  $P_{\alpha}$  such that  $P_{\alpha} = Q_{\alpha} \oplus U \oplus P'_{\alpha}$ , which contradicts to the maximality of  $Q_{\alpha}$ . Hence,  $\bar{P}_0 = Q_{\alpha}$  in this case. On the other hand, since  $\varphi$  in the above is isomorphic,  $\bar{P}_0 = \bar{Q}_{\alpha} = \bar{P}_{\alpha}$ . Finally, we put  $P^* = \sum_{\alpha \in T} \bigoplus Q_{\alpha} = \sum_{\alpha} \sum_{i \in K_{\alpha}} \bigoplus Q_{i\alpha}$ , and define a natural homomorphism f;  $P^* \rightarrow P$ . For any finite set J of  $\bigcup K_{\alpha}$ ,  $f \mid P_J^*$ splits as R/J(R)-module. Hence,  $f|P_I^*$  splits as an R-module, since  $J(P_I^*)$  is small in  $P_I^*$ . Hence, f is monomorphic. Since  $Q_{i\alpha}$  is projective and completely indecomposable,  $Q_{ia}$  is perfect from Corollary 2 to Theorem 3. Therefore,  $P^*$ is perfect by Corollary 1 to Theorem 3. If  $P^*$  is a direct summand of P, then  $Q_{\alpha}$  is a direct summand of  $P_{\alpha}$ , and hence,  $Q_{\alpha}=P_{\alpha}$  from the first part.  $P^* \oplus P_1$  and  $\bar{g}$  a projection of  $\bar{P}$  to  $\bar{P}_1$ . If  $\bar{g} = \prod f_{\alpha}(f_{\alpha} \in e_{\alpha}\bar{S}_P e_{\alpha})$  is not zero, then  $f_{\alpha} \neq 0$  for some  $\alpha$ . However,  $\varphi$  is isomorphic, and hence  $f_{\alpha} = 0$ . Therefore,  $P^*=P$ . Conversely, if P is perfect,  $P^*$  is a direct summand of P from Proposition 5 below.

**Proposition 5.** Let P be a semi-perfect module and  $P_0$  a projective R-module in P. Then  $P_0$  is a direct summand of P if and only if  $P_0 \cap J(P) = J(P_0)$ .

Proof. We assume  $J(P) \cap P_0 = J(P_0)$ . Then  $P_0/J(P_0)$  is a R/J(R)-submodule of P/J(P) and  $P/J(P) = P_0/J(P_0) \oplus P_1/J(P_1)$  for some R-projective module  $P_P$  by [9], Theorem 4.3. Hence,  $J(P_0)$  is small in  $P_0$  by Lemma 6. Next, we have a diagram



where i is an inclusion map of  $P_0$  to P and  $k=\nu i$  and  $P_1^*=P_1+J(P)$ . Since P is projective, we obtain  $g\colon P\to P_0$  so that  $kg=\nu$ . Let  $p_0$  in  $P_0$ , then  $(gi(p_0)-p_0)$  is in  $J(S_{P_0})$ . Therefore, gi is isomorphic, which means  $P_0$  is a direct summand of P. The converse is clear.

**Proposition 6.** There exists a semi-perfect module if and only if R contains a completely indecomposable and projective right ideal.

Proof. If P is semi-perfect, then P contains a completely indecomposable semi-perfect module  $P_0$  by [9], Corollary 5.3. Hence,  $P_0/J(P_0)$  is a minimal R/J(R)-projective module. Since  $J(P_0)$  is small,  $P_0 = pR$  for some  $p \in P_0$ . Hence,  $P_0 \approx eR$  for some idempotent e in R. The converse is clear from [6], Theorem 5.

#### 4. Krull-Remak-Schmidt-Azumaya's theorem

In this section, we shall prove Kanbara's theorem in [7] as a corollary of Lemma 5. Let  $\{M_{\alpha}\}_{I}$  be a family of completely indecomposable R-modules and  $\mathfrak A$  the induced category from  $\{M_{\alpha}\}$ . We denote the ideal of  $\mathfrak A$  defined in [5], §3 by  $\mathfrak F'$ . It is sufficient to prove that  $J(S_{M})=\mathfrak F'\cap S_{M}$  under the condition that  $\{M_{\alpha}\}$  is a semi-T-nilpotent system with respect to  $\mathfrak F'$ , where  $M=\sum_{I}\oplus M_{\alpha}$ .

However, if we use the argument in the proof of Lemma 5 in [5], we know that  $\{M_{\alpha}\}$  satisfies the condition 2 in Lemma 5 if we take  $\mathfrak{C}=\mathfrak{F}'$ . It is clear that the conditions 1 and 3 are satisfied. Therefore, we obtain  $J(S_M)=\mathfrak{F}'\cap S_M$  from Lemma 5.

OSAKA CITY UNIVERSITY

#### References

- [1] H. Bass: Finitestic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [2] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
- [3] C. Ehresmann: Categories et Structures, Dunod, Paris, 1965.
- [4] M. Harada: On semi-simple categories, Osaka J. Math. 7 (1970), 89-95.
- [5] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [6] M. Harada: On categories of indecomposable modules II, Osaka J. Math. 8 (1971), 309-321.
- [7] H. Kanbara: Note on Krull-Remak-Schmidt-Azumaya's theorem, Osaka J. Math. 9 (1971), to appear.
- [8] G.M. Kelly: On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299–307.
- [9] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
- [10] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.
- [11] E.M. Patterson: On the radicals of rings of row-finite matrices, Proc. Roy. Soc. Edinburgh Sect. A. 66 (1962), 42–46.

- [12] Y. Sai: On regular categories, Osaka J. Math. 7 (1970), 301-306.
- [13] N.E. Sexauer and J. E. Warnock: The radical of the row-finite matrices over an arbitrary ring, Trans. Amer. Math. Soc. 139 (1965), 287-295.
- [14] R. Ware and J. Zelmanowitz: The radical of the endomorphism ring of a projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.