ON CATEGORIES OF PROJECTIVE MODULES

Manabu HARADA and Hiкoji KANBARA

(Received March 2, 1971)

The authors have studied some structures in categories of completely indecomposable modules in [5], [6] and [7], respectively. Furthermore, one of the authors has given some characterization of semi-perfect modules, defined in [9], in terms of semi- T-nilpotent system in [6].

In this note, we shall work in the same frame and give generalizations of some results in [6], [9] and [11].

Let R be a ring with identity and \mathfrak{M}_{R} the category of R-right modules. By $\mathfrak{A}\left(\right.$ resp. $\left.\mathfrak{N}_{f}\right)$ we denote the full sub-additive category of \mathfrak{M}_{R}, whose objects consist of all R (resp. R-finitely generated)-projective modules and we denote the Jacobson radical of $\mathfrak{A l}$ by \mathfrak{J} or $J(\mathfrak{Z})$, (see the definition in [3], [6] and [8]). Then we shall show, in the first section, that $\mathfrak{H} / J(\mathfrak{X})\left(\right.$ resp. $\left.\mathfrak{A}_{f} / J\left(\mathfrak{X}_{f}\right)\right)$ is a $C_{3}-$ completely reducible (resp. completely reducible artinian) abelian category if and only if R is a right (resp. semi-) perfect ring, defined in [1]. In the second section, we shall study a directsum of projective modules $P=\sum_{\alpha \in I} \oplus P_{a}$, and show that $J(P)$ is small in P if and only if $J\left(P_{a}\right)$ is small in P_{a} for all $\alpha \in I$ and $\left\{P_{a}\right\}$ is a (elementwise) semi- T-nilpotent system with respect to the Jacobson radical if the cardinal $|I|$ is infinite (see the section 2 for the definition or [6] and [7]). We have immediately [6], Theorems 6 and 7 and [7], Theorem from this theorem. In the third section, we define a quasi-perfect module, which is a generalization of perfect modules defined in [9] and give analogous results to [9]. In the final section, we shall give another proof of [7], Theorem.

In this note, we always assume that a ring R has the identity and R-modules are unitary. We shall use terminologies of categories in [6], [3], [10] and [8]. Let \mathfrak{B} be a full subcategory of \mathfrak{M}_{R}. We assume that Im., Ker. directsum etc. are considered in \mathfrak{M}_{R} (not in \mathfrak{B}), unless otherwise stated, and for any object P, P^{\prime} in \mathfrak{M}_{R} we write $\left[P, P^{\prime}\right]_{R}$ or $\left[P, P^{\prime}\right] \mathfrak{M}_{R}$ instead of $\operatorname{Hom}_{R}\left(P, P^{\prime}\right)$.

1. A right perfect ring

Let M be a right R-module, and N an R-submodule of $M . N$ is called small in M if $Q+N=M$ implies $Q=M$ for $Q \subseteq M$. By $J(M)$ we denote the
radical of M and hence $J(R)$ is the Jacobson radical of R. We denote $[M, M]_{R}$ by S_{M}. We shall make use of the definition of (semi-) perfect modules defined in [9].

Now, let \mathfrak{A} be a full sub-additive category of \mathfrak{M}_{R}. We define a subfamily $\mathfrak{(C)}$ of morphisms in \mathfrak{A} as follows: for any objects P, P^{\prime} in $\mathfrak{A}, \mathfrak{C} \cap\left[P, P^{\prime}\right]_{R}$ $=\left\{f \mid \in\left[P, P^{\prime}\right]_{R}, \operatorname{Im} f\left(\right.\right.$ in $\left.\mathfrak{M}_{R}\right)$ is small in $\left.P^{\prime}\right\}$. Then we have

Lemma 1. Let \mathfrak{A} and © be as above. Then © is an ideal in \mathfrak{A}.
Proof. Let f, f^{\prime} be in $₫ \subseteq\left[P, P^{\prime}\right]_{R}$. Then $\operatorname{Im}\left(f \pm f^{\prime}\right) \subseteq \operatorname{Im} f+\operatorname{Im} f^{\prime}$. Hence, $f \pm f^{\prime} \in \mathfrak{C} \cap\left[P, P^{\prime}\right]_{R}$. Let g be an element in $\left[P^{\prime}, P^{\prime \prime}\right]_{R}$ and $A=\operatorname{Im} f$. We shall show that $g(A)$ is small in $P^{\prime \prime}$. We assume $g(A)+N=P^{\prime \prime}$ for some N in \mathfrak{M}_{R}. Then for any p^{\prime} in P^{\prime} we have $g\left(p^{\prime}\right)=g(a)+n,(a \in A, n \in N)$. Hence, $p^{\prime}-a \in g^{-1}(N)$ and $g\left(g^{-1}(N)+A\right)=g\left(P^{\prime}\right)$. On the other hand, since $g^{-1}(N)$ contains Ker $g, P^{\prime}=A+g^{-1}(N) . \quad A$ is small in P^{\prime} and hence, $P^{\prime}=g^{-1}(N)$. Therefore, $N \supseteq g\left(g^{-1}(N)\right)=g\left(P^{\prime}\right) \supseteq g(A)$ and $N=P^{\prime \prime}$. Hence, $g f \in \mathbb{C} \cap\left[P, P^{\prime \prime}\right]_{R}$. It is clear that $f g^{\prime} \in \mathbb{C}$ for any g^{\prime} in $\left[P^{\prime \prime}, P\right]_{R}$. Thus, $\mathfrak{\Im}$ is an ideal.

Corollary. If every object P in \mathfrak{A} is projective in \mathfrak{M}_{R}, then \mathfrak{C} is equal to the Jacobson radical of \mathfrak{A}.

Proof. Since $\mathfrak{G} \cap[P, P]_{R}$ is the Jacobson radical of $[P, P]_{R}$ by [12], Lemma $1, \mathfrak{C}$ is the radical of \mathfrak{A}.

From now on, we shall denote the Jacobson radical of \mathfrak{A} by \mathfrak{J}.
Proposition 1. Let P be a projective R-module. Then $J(P)$ is small in P if and only if $[P, J(P)]_{R}=J\left(S_{P}\right)$.

Proof. It is clear from the above corollary that $J\left(S_{P}\right) \subseteq[P, J(P)]_{R}$ for any projective R-module. Hence, if $J(P)$ is small, $J\left(S_{P}\right)=[P, J(P)]_{R}$. Conversely, we assume $J\left(S_{P}\right)=[P, J(P)]_{R}$ and $P=N+J(P)$ for some N in \mathfrak{M}_{R}. Then we have a diagram:

where ν and ν^{\prime} are canonical epimorphisms.
Since P is projecitve, we have h in $[P, J(P)]_{R}$ such that $\nu h=f \nu^{\prime}$. Hence, $J(P)=h(P)+N \cap J(P)$ and $P=N+J(P)=N+h(P)$. On the other hand $h(P)$ is small in P, since h is in $J\left(S_{P}\right)$. Hence, $P=N$.

Let I be any well ordered set. By R_{I} we denote the ring of column finite
matices of R over I. An ideal \mathfrak{F} of a ring R is called right T-nilpotent, if for any set $\left\{a_{i}\right\}_{i=1}$ of elements a_{i} in \mathfrak{F}, there exists n so that $a_{n} a_{n-1} \cdots a_{1}=0, \quad(n$ depends on $\left\{a_{i}\right\}, c f$. [1]).

Corollary 1 ([11], [13] and [14]). Let I be an infinite set. Then $J(R)$ is right T-nilpotent if and only if $J\left(R_{I}\right)=J(R)_{I}$.

Proof. Let $P=\sum_{I} \oplus R$. If $J(R)$ is T-nilpotent, then $J(P)=\Sigma \oplus J(R)$ is small by [9], Theorem 7,2. On the other hand R_{I} is equal to S_{P}. Hence, $J\left(S_{P}\right)$ $=[P, J(R)]_{R}=J(R)_{I}$. Conversely, If $J\left(R_{I}\right)=J(R)_{I}, J(R)$ is small. Hence, $J(R)$ is T-nilpotent from the argument of [9], Theorem 7.4.

Corollary 2 ([6]). Let P be a projective module. We assume P is a directsum of completely indecomposable modules. Then P is semi-prefect if and only if $[P, J(P)]_{R}=J\left(S_{P}\right)$.

Proof. It is clear from [9], Theorem 5.1 and [6], Theorem 5.
Lemma 2. If R has a family of mutually orthogonal non-zero idempotents $\left\{e_{i}\right\}_{i=1}^{\infty}$, then R_{I} is not regular in the sense of Von Neumann for any infinite set $I .{ }^{0}$

Proof. We may sasume that (the cardinal of I) $=|I|=\boldsymbol{K}_{0}$. We denote a family of matrix units in R_{I} by $e_{i j}$. Put $B=\sum e_{i} e_{1 i}$. If R_{I} is a regular ring, then there exists A in R_{I} so that $B A B=B$, say $A=\sum a_{i j} e_{i j}$. We may assume $a_{i 1}=0$ if $i>t$ for a large t. Then $B A B=B$ implies that $\sum_{i=1}^{t} e_{i} a_{i 1} e_{j}=e_{j}$ for all j. If $j>t$, then $e_{j}=e_{j}^{2}=\sum_{i=1}^{t} e_{j} e_{i} a_{i j} e_{j}=0$, which is a contradiction.

Corollary. Let R be a regular ring in the sense of Von Neumann. Then R_{I} is regular for any set I if and only if R is artinian.

Proof. If R is artinian, then it is clear that R_{I} is regular for any set I. We assume that there exists an infinite series of principal left ideals of $R: R a_{1} \supset R a_{2}$ $\supset \cdots$. Since R is regular $R a_{n}=R e_{n}^{\prime}$ for some idempotent e_{n}^{\prime}. Hence, R has an infinite set of non-zero mutually orthogonal idempotents $\left\{e_{i}\right\}$, which is a contradiction to Lemma 2. Therefore, R has the non zero socle, which is atrinian and hence, R is artinian, since R is equal to the socle.

Let \mathfrak{A} be an additive category in \mathfrak{M}_{R} and \mathfrak{C} an ideal of \mathfrak{N}. Then we can define the factor category $\mathfrak{A} / \mathbb{C}$ with respect to \mathfrak{C}. Let P and f be an object and a morphism in \mathfrak{N}, respectively. Then P is also an object in $\mathfrak{A} / \mathbb{C}$, however we shall denote it by \bar{P} if P is regarded as an object in $\mathfrak{U} / \mathbb{C}$. Similary, \bar{f} means a class of f in $\mathfrak{U} / \mathbb{C}$.

Let $\left\{M_{\infty}\right\}$ be a family of R-modules, We consider the full sub-additve category \mathfrak{B} (resp. \mathfrak{B}_{f}) in \mathfrak{M}_{R}, whose objects consist of all directsums of M_{a} 's (resp. all

[^0]dircetsums of finite number of M_{a} 's), and of their isomorphic images. We call \mathfrak{B} (resp. \mathfrak{B}_{f}) the induced category from $\left\{M_{\alpha}\right\}$.

Proposition 2. Let \mathfrak{Q} be the induced additive category from a family of projective modules, and \mathfrak{F} the radical of \mathfrak{N}. We assume \mathfrak{A} / \Im is a spectral abelian category. Then

1) For every P in $\mathfrak{A}, J(P)$ is small in P. Furthermore, we assume $\mathfrak{U} / \mathcal{F}$ is C_{3}-abelian.
2) If P in \mathfrak{A} is a directsum ${ }^{1)}$ of subobject P_{a} in \mathfrak{A}, then $\bar{P}=\sum \oplus \bar{P}_{a}$ in \mathfrak{Y} / \Im.
3) If \bar{P} is a directsum of minimal objects in \mathfrak{A} / \Im, then P is semi-perfect.
4) If Q in \mathfrak{A} is a finietly generated R-module, then Q is perfect.

Proof. 1). Put $S_{P}=[P, P]_{R}$ and $J^{\prime}\left(S_{P}\right)=[P, J(P)]_{R}$. We assume $J^{\prime}\left(S_{P}\right)$ $\neq J\left(S_{P}\right)$. Since $S_{P} / J\left(S_{P}\right)$ is a regular ring and $J^{\prime}\left(S_{P}\right)$ is a tow-sided ideal in S_{P}, there exists non zero element e^{\prime} in $J^{\prime}\left(S_{P}\right)$ so that $e^{\prime} \equiv e^{\prime 2}(\bmod \mathfrak{F})$. Herce, we obtain an idempotent e in $J^{\prime}\left(S_{P}\right)$ so that $e \equiv e^{\prime}(\bmod \mathfrak{F})$ by [5], Lemma 2. Therefore, $e P \subset J(P)$, which is a contradiction. Thus, we obtain $J^{\prime}\left(S_{P}\right)=J\left(S_{P}\right)$ and $J(P)$ is small in P by Proposition 1.
2). We shall show that $\sum_{I} \oplus \bar{P}_{a}=\overline{\sum_{I} \oplus P_{a}}$ in \mathfrak{Y} / \Im. Let J be a finite subset of I, then $P_{J}=\sum_{\alpha \in J} \oplus P_{a}$ is a direct summand of $P=P_{I}$. Hence, $\sum_{J} \bar{P}_{\alpha}=\bar{P}_{J}$ is a direct summand of \bar{P}, (use the method in the proof of Proposition 1 or see [5], Lemma 2). Therefore, $\cup \bar{P}_{J}=\sum \oplus \bar{P}_{a}$ is a subobject of \bar{P} by [10], p. 82, Proposition 1.2. Let $\bar{P}=\sum \oplus \bar{P}_{\infty} \oplus \bar{Q}$ and \bar{f} a projection of \bar{P} to \bar{Q}. Then $f g \equiv 1$ $(\bmod \Im)$ for some $g \in[Q, P]_{R}$. Since \Im is the radical, $f g$ is isomorphic as R modules. $\bar{f}\left(\sum \oplus \bar{P}_{a}\right)=0$ implies $f\left(\sum \oplus P_{a}\right) \subset J(Q)$. Hence, $J(Q) \supset f(P) \supset f g(Q)$ $=Q$. Therefore, $Q=0$.
3). We assume $\bar{P}=\sum \oplus \bar{P}_{\alpha}^{\prime}$. Put $P^{\prime}=\sum \oplus P_{\alpha}^{\prime}$. Then $\bar{P} \approx \bar{P}^{\prime}$ from 2). Therefore, $P \approx P^{\prime}$ as R-modules, since \mathfrak{F} is the radical. Furthermore, P_{a}^{\prime} is semiperfect and so is P by 1), (see [9], Theorem 5.2 and [5] , Theorem 5).
4). Let Q be a finitely generated R-projective module in \mathfrak{U}, and $S_{Q}=$ $[Q, Q]_{R}$. Put $Q^{*}=\sum_{i=1}^{\infty} \oplus Q_{i} ; Q_{i} \approx Q$ for all i. Since Q is finitely generated, $S_{Q *}$ is the ring $\left(S_{Q}\right)_{\infty}$ of column finite matrices with entries in S_{Q}. From the assumption $S_{Q^{*}} / J\left(S_{Q^{*}}\right)$ is regular and hence $\left(S_{Q} / J\left(S_{Q}\right)\right)_{\infty}$ is a regular ring. Therefore, $S_{Q} \mid J\left(S_{Q}\right)$ is an artinian ring by Corollary to Lemma 2. Thus, $\bar{Q}=\sum_{i=1}^{n} \oplus \bar{Q}_{i}{ }^{\prime}$ in \mathfrak{U} / \Im, where $Q_{i}^{\prime} s$ are minimal objects in $\mathfrak{Y} / \mathfrak{F}$. Hence, $Q=\sum_{i=1}^{n} \oplus Q_{i}$ and $Q_{i}^{\prime} s$ are completely indecomposable by [5], Lemma 2. It is clear from the first half that Q is perfect.

Theorem 1. Let \mathfrak{A} be the full sub-additive category of all R-projective

1) Directsum is considered in $M l_{R}$.
modules in \mathfrak{M}_{R} and \mathfrak{F} the radical of \mathfrak{N}. Then the following statements are equivalent.

1 U/Э is a C_{3}-abelian completely reducible category.
2 थ/§ is a C_{3}-spectral abelian category.
$3 R$ is a right perfect ring.
Proof. $\quad 1 \rightarrow 2$. It is clear. $2 \rightarrow 3$. Since R is a finitely generated R-module, R is right perfect from Proposition 2. 3 3 . If R is right perfect, then every object P in \mathfrak{A} is perfect by [1] or [9] and hence, P is a directsum of completely
 ideal defined in [5], §3, (see [6], §3). Hence, \mathfrak{A} / \Im is a C_{3}-completely reducible abelian category by [5], Theorem 7.

Similarly to Theorem 1, we obtain
Theorem 2. Let $\left\{P_{a}\right\}$ be a family of finitely generated projective R-modules, and \mathfrak{A}_{f} the induced category from $\left\{P_{a}\right\}$. Then the following two conditions are equivalent.
$1 \mathfrak{A}_{f} / \Im$ is a completely reducible and artinian abelian category.
2 Every object in \mathfrak{N}_{f} is semi-perfect.
Especially, let $\mathfrak{X}_{f}^{\prime}$ be the full sub-category of all R-finitely generated projective modules. Then $\mathfrak{A l}_{f}^{\prime} / \Im$ is a completely reducible and artinian abelian category if and only if R is semi-perfect.

Remark. If we omit the assumption "artinian" in Theorem 2, then the thorem is not true in general. For example, let K be a field and $R=[P, P]_{K}$, where P is a K-vector space with infinite dimension. It is well known that R is self injective as a right R-module and R has the socle $S=\sum_{i=1}^{\infty} \oplus e_{i} R$. Let $\mathfrak{A}_{f}^{\prime}$ be as above. Then $\mathfrak{Q}_{f}^{\prime}$ is a spectral abelian category from [12], Theorem 2, since R is a regular ring. First, we shall show that $R=\sum \oplus e_{i} R^{2)}$ in $\mathfrak{Y}_{f}^{\prime}$. It is clear that $S_{J}=\sum_{i \in J} e_{i} R$ is in $\mathfrak{N}_{f}^{\prime}$ for every finite set J and is a direct summand of R in $\mathfrak{N}_{f}^{\prime}$ via the inclusion. Let $\left\{f_{i}\right\}$ be a set of R-homomorphisms $f_{i}: e_{i} R \rightarrow R$. Then $f=\sum f_{i}$ is in $[S, R]_{R}$. Since R is self-injective and a prime ring, we have a unique extension $g \in[R, R]_{R}$ of f. Therefore, $R=\sum e_{i} R$ in $\mathfrak{U}_{f}^{\prime}$, since every object in $\mathfrak{Y}_{f}^{\prime}$ is a finitely generated R-module. Noting that $\mathfrak{Y}_{j}^{\prime}$ is spectral and $R=\sum e_{i} R$ in $\mathfrak{U}_{f}^{\prime}$ even though $\mathfrak{U}_{f}^{\prime}$ is not co-complete, we can easily show that $\mathfrak{X}_{f}^{\prime}$ is completely reducible. However, R is not semi-perfect.

We have shown in Proposition 2 that $\overline{\sum \oplus P_{a}}=\sum \oplus \bar{P}_{a}$ in \mathfrak{U} / \Im if \mathfrak{X} / \Im is a C_{3}-abelian spectral category. However, as above this fact is not true if $\mathfrak{A} / \mathfrak{F}$ is not co-complete, since $\sum \oplus P_{a} \notin \mathfrak{U}_{j}^{\prime}$.
2) Directsum is considered in $\mathfrak{A}_{f}{ }^{\prime}$.

Proposition 3. Let \mathfrak{N}_{f} be the induced additive category from a family of semi-perfect modules. Then $\mathfrak{Q}_{f} / \mathfrak{F}$ is an abelian spectral category.

Proof. It is clear that every object in \mathfrak{A}_{f} is semi-perfect from [9], Theorem 5.1. Therefore, $\mathfrak{Q}_{f} / \mathfrak{F}$ is an abelian spectral category by [12], Theorem 2.

Corollary. Let P and Q be semi-perfect modules and f an element in $[P, Q]_{R}$. Then we have decomposition $P=P_{1} \oplus P_{2}, Q=Q_{1} \oplus Q_{2}$ such that $f\left(P_{2}\right)$ is small in Q and $f \mid P_{1}$ gives an isomorphism of P_{1} to Q_{1}. Furthermore, under those conditions, P_{i} and Q_{i} are unique up to isomorphism.

Proof. Let \mathfrak{A}_{f} be the induced category from P and Q. Put $\bar{P}_{2}^{\prime}=\operatorname{Ker} \bar{f}$. Since $\mathfrak{N}_{f} / \mathfrak{F}$ is abelian spectral, $\bar{P}=\bar{P}_{1}^{\prime} \oplus \bar{P}_{2}^{\prime}$. Hence, we have $P=P_{1} \oplus P_{2}$ so that $\bar{P}_{1}=\bar{P}_{1}^{\prime}$ by [5], Lemma 2. Then $\bar{f}_{1}=\overline{f \mid} \bar{P}_{1}$ is monomorphic in $\mathfrak{\Re}_{f} \mid \mathfrak{Y}$. Hence, there exists $g \in[Q, P]_{R}$ such that $\bar{g} f_{1}$ is equal to the identity of P_{1} modulo \Im. Hence, $Q=\operatorname{Ker} g \oplus \operatorname{Im} f_{1}$. Since $\bar{f}\left(\bar{P}_{2}\right)=0, f\left(P_{2}\right)$ is small in Q, If P_{i}, Q_{i} satisfy the above conditions, then $\bar{P}_{2}=\operatorname{Ker} \bar{f}, \bar{P}_{1}=\operatorname{Coim} \bar{f}$ and $\bar{Q}_{1}=\operatorname{Im} \bar{f}, \bar{Q}_{2}=\operatorname{Coker} \bar{f}$. Hence, they are unique up to isomorphism as R-modules.

2. Directsum of projective modules

It is known by [9], Corollary 5.3 that every semi-perfect module is a directsum of completely indecomposable projective modules. Thus, we shall study, in this section, a projective module which is a directsum of some submodules. First, we shall generalize the definition of T-nilpotent.

Let $\left\{M_{a}\right\}_{I}$ be a family of R-modules M_{a}, \mathfrak{N} the induced category from $\left\{M_{a}\right\}$ and \mathbb{C}^{5} an ideal of A. We call $\left\{M_{a}\right\}_{I}$ a (elementwise) T-nilpotent (resp. semi-Tnilpotent) system with respect to \mathfrak{C} if the following conditions are satisfied: for any sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ of morphisms f_{i} in $\mathbb{C} \cap\left[M_{\alpha_{i}}, M_{\alpha_{i+1}}\right]_{R}$ and any element x in $M_{a_{1}}$, there exists n, depending on x and $\left\{f_{i}\right\}$, such that $f_{n} f_{n-1} \cdots f_{1}(x)=0$, where M_{i} 's are in $\left\{M_{a}\right\}$, (resp. $\alpha_{i} \neq \alpha_{j}$ if $i \neq j$), (cf. [5], §3).

Let I be a well ordered set and put $M=\sum_{I} \oplus M_{\infty}$, then $[M, M]_{R}=S_{M}$ is equal to the ring of column summable matrices, whose entries $a_{\sigma \tau}$ consist of elements in $\left[M_{\tau}, M_{\sigma}\right]_{R}$, namely for $f \in S_{M}$ and $x_{\tau} \in M_{\tau}, f=\left(b_{\sigma \tau}\right)$ and $b_{\sigma \tau}\left(x_{\tau}\right)=0$ for almost all $\sigma \in I$. In this case $\sum_{\sigma \in I} b_{\sigma \tau}$ has a meaning and it is an element in $\left[M_{\tau}, M\right]_{R}$. We shall make use of those notations in the following. Let $b_{\alpha_{i} a_{i-1}}$ be in $\left[M_{\alpha_{i-1}}, M_{a_{i}}\right]_{R}$ for $i=1,2 \cdots, n$. If $\alpha_{1}<\alpha_{2} \cdots<\alpha_{n}$, we denote briefly $b_{\omega_{n} v_{n-1}} b_{\omega_{n-1} \alpha_{n-2}} \cdots b_{\alpha_{2} \alpha_{1}}$ by $b\left(\alpha_{n}, \alpha_{n-1}, \cdots \alpha_{2}, \alpha_{1}\right)$.

Lemma 3. Let $\left\{M_{a}\right\}_{I}, M$ and \mathfrak{C} be as above with $|I|$ infinite and $f=\left(b_{\sigma \tau}\right)$ in $\mathfrak{C} \cap[M, M]_{R}$. We assume $\left\{M_{a}\right\}_{I}$ a semi-T-nilpotent system with respect to \mathfrak{C}. We put $F_{\tau}=\left\{b\left(\alpha_{n}, \alpha_{n-1}, \cdots, \alpha_{1}\right) \mid \alpha_{1}=\tau\right.$ and n is any integer $\left.\geq 2\right\}$. Let x_{τ} be an
element in M_{τ}, then $b\left(\alpha_{n}, \alpha_{n-1}, \cdots, \alpha_{1}\right)\left(x_{\tau}\right)=0$ for almost all $b\left(\alpha_{n}, \alpha_{n-1}, \cdots, \alpha_{1}\right)$ in F_{τ}.

Proof. Since \mathbb{C}^{5} is an ideal, $b_{\sigma \tau}$ is in $\mathbb{C} \cap\left[M_{\tau}, M_{\sigma}\right]_{R}$. Now, $\left\{b_{\omega_{2}}\right\}_{\omega_{2}}$ is summable and hence, there exists a finite set T_{1} such that $b_{\alpha_{2} \tau}\left(x_{\tau}\right)=0$ if $\alpha_{2} \notin T_{1}$. Since $\left\{b_{\omega_{3} \alpha_{2}}\right\}_{\alpha_{3}}$ is summable for $\alpha_{2} \in T_{1}$, there exists a finite set T_{2} such that $b\left(\alpha_{3}, \alpha_{2}, \tau\right)\left(x_{\tau}\right)=0$ for $\alpha_{3} \in T_{2}, \alpha_{2} \in T_{1}$. Repeating this argument, we obtain a family of finite set T_{i} such that $b\left(\alpha_{t}, \alpha_{t-1}, \cdots, \tau\right)\left(x_{\tau}\right)=0$ if $\alpha_{k} \notin T_{k}$ for some k. Hence, we obtain the lemma from Koning Graph Theorem and the assumption.

From Lemma 3, we know that $\sum_{\alpha_{i}} b\left(\sigma, \alpha_{n-1}, \cdots, \alpha_{2}, \tau\right)$ is in $\left[M_{\tau}, M_{\sigma}\right]_{R}$.
Lemma 4. Let $M,\left\{M_{a}\right\}_{I}$ and \mathfrak{G} be as above and we assume $\left\{M_{a}\right\}_{I}$ is a semi-T-nilpotent system with respect to ©. Let $\left(b_{\sigma \tau}\right)$ be in $S_{M} \cap$ © so that $b_{\sigma \tau}=0$ if $\sigma \geq \tau$ (resp. $\sigma \leq \tau$), then ($b_{\sigma \tau}$) is quasi-regular in S_{M}.

Proof. It is clear from the proof of [5], Lemma 10.
Lemma 5. Let $\left\{M_{a}\right\}_{I}, M$ and \mathbb{C} be as above. We assume the following. 1) $\mathfrak{C} \cap S_{a} \subseteq J\left(S_{a}\right)$ for every $\alpha \in I$. 2) if $\left\{a_{i}\right\}_{i}$ is a summable set in $\mathfrak{C} \cap\left[M_{\sigma}, M_{\tau}\right]_{R}$, then $\sum_{i} a_{i}$ is in $\mathbb{C} \cap\left[M_{\sigma}, M_{\tau}\right]_{R}$, where $\left.S_{\infty}=S_{M_{\infty}}=\left[M_{\infty}, M_{a}\right]_{R}, 3\right)\left\{M_{a}\right\}_{I}$ is a semi-T-nilpotent system with respect to $₫$. Then $\mathbb{C} \cap S_{M} \subseteq J\left(S_{M}\right)$.

Proof. Let $A^{\prime}=\left(a_{\sigma_{\tau}}^{\prime}\right)$ be in $\mathbb{C}^{5} \cap S_{M}$ and put $A=E-A^{\prime}=\left(a_{\sigma \tau}\right)$, where E is the unit matrix. We shall show by the fundamental transformation of A that A is regular in S_{M}. Since \mathbb{C} is an ideal and $\mathbb{C} \cap S_{\infty} \subseteq J\left(S_{a}\right), a_{\sigma \sigma}=1-a_{\sigma \sigma}^{\prime}$ is unit in S_{σ}. We put $b_{\sigma 1}=-a_{\sigma 1} a_{11}^{-1}$ for $\sigma<1$, then $\left\{b_{\sigma_{1}}\right\}_{\sigma}$ is summable and $b_{\sigma_{1}}$ is in $\mathfrak{C} \cap\left[M_{1}, M_{\sigma}\right]_{R}$. We shall define $b_{\sigma \tau}$ for $\sigma<\tau$, satisfying the following conditions, by the transfinite induction on τ

1) $\left\{b_{\sigma \tau}\right\}_{\sigma}$ is summable and $b_{\sigma \tau}$ is in $\mathbb{C} \cap\left[M_{\tau}, M_{\sigma}\right]_{R}$.
2) $b_{\sigma \tau}=-y_{\sigma \tau} y_{\tau \tau}^{-1}$, where for $\sigma \geq \tau$

$$
y_{\sigma \tau}=a_{\sigma \tau}+\sum_{\tau>\alpha_{t}} b\left(\sigma, \alpha_{t}, \alpha_{t-1}, \cdots, \alpha_{1}\right) a_{\alpha_{1} \tau} \cdots(*) .
$$

We note that $\sum b\left(\sigma, \alpha_{t}, \cdots, \alpha_{2}, \alpha_{1}\right) a_{\alpha_{1} \tau}$ is defined and in $\mathbb{C} \cap\left[M_{\tau}, M_{\sigma}\right]_{R}$ by 1), 2), the assumption and Lemma 3, and hence $y_{\tau \tau}$ is unit in S_{τ}, (note that $\left\{a_{i \tau}\right\}_{i}$ is summable). We assume $\left\{b_{\sigma \rho}\right\}$ is defined for all $\rho<\tau$, which satisfy the conditions 1) and 2). Then we can define $y_{\sigma \tau}$ for $\sigma \geq \tau$ from (*) and define $b_{\sigma \tau}$ by 2). Since $\left\{y_{\sigma \tau}\right\}_{\sigma}$ is summable by Lemma 3, so is $\left\{b_{\sigma \tau}\right\}_{\sigma}$. Next, we put $c_{\sigma \tau}=\sum b\left(\sigma, \alpha_{t}, \cdots, \alpha_{2}, \tau\right) \in \mathbb{C} \cap\left[M_{\tau}, M_{\sigma}\right]_{R}$ and $c_{\sigma \tau}=0$ if $\sigma<\tau$. Then $C=\left(c_{\sigma \tau}\right)$ is in S_{M} by Lemma 3. We calculate the (σ, τ)-component $d_{\sigma \tau}$ is $C A$. For $\sigma>\tau>1$ we have $d_{\sigma \tau}=\sum_{\rho} c_{\sigma \rho} a_{\rho \tau}=\sum_{\sigma_{\geq \rho}} c_{\sigma \rho} a_{\rho \tau}=\sum b\left(\sigma, \alpha_{t}, \cdots, \alpha_{1}\right) a_{\alpha_{1} \tau}+a_{\sigma \tau}=a_{\sigma \tau}$ $+\sum_{\tau>\alpha_{t}} b\left(\sigma, \alpha_{t}, \cdots, \alpha_{1}\right) a_{a_{1} \tau}+b_{\sigma \tau}\left(\sum b\left(\tau, \alpha_{t}, \cdots, \alpha_{1}\right) a_{a_{1} \tau}+a_{\tau \tau}\right)+\sum_{\sigma>\alpha_{t}>\tau} b_{\alpha a_{t}}\left(\sum b\left(\alpha_{t}, \cdots\right.\right.$, $\left.\left.\sigma_{1}\right) a_{a_{1} \tau}+a_{w_{t} \tau}\right)$. Hence, we have
3) $d_{\sigma \tau}=y_{\sigma \tau}+b_{\sigma \tau} y_{\tau \tau}+\sum b_{\sigma \alpha_{t}} d_{\alpha_{t} \tau}$.

It is clear that $d_{21}=0$. Now, we assume $d_{\alpha \beta}=0$ for $\sigma>\alpha>\beta$, then we obtain from 2) and 3), $d_{\sigma \tau}=0$ for $\sigma>\tau$. Thus, we have proved $d_{\sigma \tau}=0$ for all $\sigma>\tau$. Furthermore, $d_{\sigma \sigma}=\sum b\left(\sigma, \alpha_{t}, \cdots, \alpha_{1}\right) a_{\alpha_{1} \sigma}+a_{\sigma \sigma}$ is unit in S_{σ} from the assumptions. Finally, we put $C_{1}=\sum e_{\sigma \sigma} d_{\sigma \sigma}^{-1}$, where $\left\{e_{\sigma \tau}\right\}$ is a family of matrix units in S_{M}. Then $D=E-C_{1} C A=\sum e_{\sigma \tau} x_{\sigma \tau}$ and $x_{\sigma \tau}$ is in $\mathbb{C} \cap\left[M_{\tau}, M_{\sigma}\right]_{R}$, since $b_{\sigma \tau}$ (resp. $a_{\sigma \tau}$) is in $\mathbb{C} \cap\left[M_{\tau}, M_{\sigma}\right]_{R}$ if $\sigma>\tau$ (resp. $\sigma<\tau$). Hence, $C_{1} C A$ is regular in S_{M} by Lemma 4. We know similarly that C is regular in S_{M}. Therefore, A is regular in S_{M}, which implies that $\mathbb{C} \cap S_{M} \subseteq J\left(S_{M}\right)$.

Theorem 3. Let $\left\{P_{a}\right\}$ be a family of projective modules and $P=\sum_{J} \oplus P_{\infty}$. Then $J(P)$ is small in P if and only if $J\left(P_{a}\right)$ is small in P_{a} for every $\alpha \in I$ and $\left\{P_{a}\right\}_{I}$ is a semi-T-nilpotent system if I is infinite.

Proof. We assume $J(P)$ is small in P. Then $J\left(P_{a}\right)$ is small in P_{α}. Let $\left\{P_{a_{i}}\right\}_{i=1}^{\infty}$ be a sub-family of $\left\{P_{a}\right\}$ and $f_{i} \in\left[P_{\alpha_{i}}, P_{a_{i+1}}\right]_{R} \cap \mathfrak{F}$, where $\alpha_{i} \neq \alpha_{j}$ if $i \neq j$. Put $P_{i}^{\prime}=\left\{p_{i}+f_{i}\left(p_{i}\right) \mid p_{i} \in P_{\alpha_{i}}\right\}$. Then $f_{i}\left(p_{\alpha_{i}}\right)$ is in $J\left(P_{w_{i+1}}\right)$ by the definition and $P=\sum_{i=1}^{\infty} P_{\alpha_{i}}^{\prime}+\sum_{\beta \neq \alpha_{i}} P_{\beta}+J(P)$. Hence, $P=\sum \oplus P_{\alpha_{i}}^{\prime} \oplus \sum_{\beta \neq \alpha_{i}} \oplus P_{\beta}$. Therefore, $\left\{P_{a}\right\}$ is a semi- T-nilpotent system, (see [5], Lemma 9). Conversely, if I is finite, the theorem is trivial. Hence, we assume that I is infinite. If $J\left(P_{\alpha}\right)$ is small in P_{α}, then $J\left(S_{a}\right)=\left[P_{a s}, J\left(P_{a}\right)\right]_{R}$ from Proposition 1. Now, we define an ideal \mathbb{C} in \mathfrak{A} induced from $\left\{P_{a}\right\}$ as follows: $\mathfrak{C} \cap\left[P_{a}, P_{\beta}\right]_{R}=\left[P_{a}, J\left(P_{\beta}\right)\right]_{R}$. Then © satisfies the conditions in Lemma 5 by Corollary to Lemma 1 and hence, $\mathfrak{C} \cap S_{P}$ $=[P, J(P)]_{R} \subseteq J\left(S_{P}\right)$. Therefore, $J(P)$ is small in P by Proposition 1 .

Corollary 1 ([6], Theorems 6 and 7). Let P and $\left\{P_{a}\right\}_{I}$ be as above with I infinite. Then P is perfect (resp. semi-perfect) if and only if P_{∞} is semi-perfect and $\left\{P_{a}\right\}_{I}$ is a T-nilpotent (resp. semi-T-nilpotent) system.

Proof. It is clear from Theorem 3 and [9], Theorem 5.1.
Corollary 2. Let P be a projective module in which $J(P)$ is small. Then $J(F)$ is small in F for any directsum F of any copies of P if and only if $\{P\}^{3)}$ is a T - nilpotent system with respect to $J\left(S_{P}\right)$.

Proof. It is an immediate consequence of Theorem 3.
Corollary 3. Let $\left\{P_{a}\right\}$ be a family of perfect modules. Then $P=\sum_{I} \oplus P_{\infty}$ is perfect if and only if $J(P)$ is small in P.

Proof. "only if" part is clear. We may assume that $J(P)$ is small in P and P_{a} is completely indecomposable. If $|I|<\infty, P$ is perfect. If $|I|=\infty$,

[^1]$\left\{P_{a}\right\}$ is a semi- T-nilpotent system by Corollary 2. Since P_{α} is perfect, P is a T-nilpotent system. Therefore, P is perfect from Corollary 1.

3. Quasi-perfect modules

We know from Corollary 1 to Theorem 3 that the perfect modules are special ones in projective modules with properties in Corollary 2. Thus, we call such a projective modules P quasi-perfect; namely $J(P)$ is small in P and $\{P\}$ is a T-nilpotent system with respect to $J\left(S_{P}\right)$, or equivalentely $\{P\}$ is a T-nilpotent system with respect to $[P, J(P)]_{R}$ by Proposition 1.

If $J(R)$ is right T-nilpotent, then for every projective module $P, J(P)$ is small in P and P is quasi-perfect by Theorem 3 and vice versa. If $R / J(R)$ is not artinian, then R is quasi-perfect, but not perfect. It is clear that a directsum of any copies (or direct summand) of a quasi-perfect module is also quasi-perfect. Hence, if a projective generator in \mathfrak{M}_{R} is quasi-perfect, then so is every projective modules.

Lemma 6. Let P be a projective module. We assume that $J(P)$ is small in P and $P / J(P)=\sum \oplus_{I} \bar{P}_{a}^{\prime}$ as $R / J(R)$-modules. If there exist projective R-modules Q_{α} so that $Q_{\alpha} / J\left(Q_{\alpha}\right) \approx \bar{P}_{\alpha}{ }^{\prime}$ for each $\alpha \in I$, then we have a direct decomposition $P=\sum_{I} \oplus P_{\alpha}$, which induces the above decomposition, and hence $J\left(Q_{\infty}\right)$ is small in Q_{a}, (cf. [9], Theorem 4.3).

Proof. Put $Q=\sum \oplus Q_{a}$, then we have a diagram

where ν and ν^{\prime} are natural epimorphisms from the assumption. Since Q is projective and $J(P)$ is small, P is a direct summand of Q via $g ; Q=P \oplus Q^{\prime}$. Hence, $Q=P+J(Q)=P \oplus J\left(Q^{\prime}\right)$. Therefore, $Q^{\prime}=0$. It is clear that $J\left(Q_{a}\right)$ is small in Q_{α}.

Theorem 4. Let P be a quasi-perfect module. Then every direct decomposition of $P / J(P)$ is lifted to one of P.

Proof. We assume that $P / J(P)=\bar{P}_{1}^{\prime} \oplus \bar{P}_{2}^{\prime}$ as $R / J(R)$-modules, and show that there exist P_{i} so that $P=P_{1} \oplus P_{2}$ induces the above decomposition. It is clear that $[P / J(P), P / J(P)]_{R / J(R)}=S / \Im$, where $S=S_{P}$ and $\mathfrak{Y}=J\left(S_{P}\right)$. Let $a^{2} \equiv a(\bmod$ F) for $a \in S$. We shall show that there exists an idempotent e in S such that $e \equiv a$ (mod $\mathfrak{F})$. We use the same argument in [2], p. 546. We can find the following
identities for each n from $1=(x-(1-x))^{2 n}=\sum\binom{2 n}{i} x^{i}(1-x)^{2 n-i}$
4) $f_{n}(x)=f_{n-1}(x)+g_{n}(x)\left(x^{2}-x\right)^{n-1}$
5) $f_{n}(x)^{2}=f_{n}(x)+h_{n}(x)\left(x^{2}-x\right)^{n}$,
where $f_{n}(x), g_{n}(x)$ and $h_{n}(x)$ are polynominals with coefficients of integers. From 4) we have $f_{n}(x)=x+g_{0}(x)\left(x^{2}-x\right)+\cdots+g_{n}(x)\left(x^{2}-x\right)^{n-1}$. Put $b=a^{2}-a \in \Im$ and $g_{i}(a)=c_{i} \in S$. Let p be an element in P, then $b^{n(p)}(p)=0$ for some integer $n(p)$ by the assumption. Put $A=a+\sum_{i=0}^{\infty} c_{i} b^{i+1}$. Since $\left\{c_{i} b^{i+1}\right\}_{i}$ is summable as above, A is in S. Furthermore, $\left(A^{2}-A\right)(p)=A A_{n(p)}(p)-A_{n(p)}(p)$, where $A_{n(p)}=a$ $+\sum_{i=0}^{n(p)-1} c_{i} b^{i+1}$. Now, let $A_{n(p)}(p)=q$, and put $m=\max (n(p), n(q))$, then $A A_{n(p)}(p)$ $=A_{m} A_{n(p)}(p)=A_{m} A_{m}(p)$. Hence, $\quad\left(A^{2}-A\right)(p)=A_{m}^{2}(p)-A_{m}(p)$. We have similarly from 5) that $\left(A_{n^{\prime}}^{2}-A_{n^{\prime}}\right)(p)=0$ for any $n^{\prime} \geq$ some n. Therefore, $A^{2}=A$. On the other hand, $A-a=\sum_{i} c_{i} b^{i+1}$ and $\left(\sum_{i} c_{i} b^{i+1}\right)(p) \in J(P)$. Hence, $\sum_{i} c_{i} b^{i+1}$ $\in[P, J(P)]_{R}=\Im$ by Corollary to Proposition 1. Therefore, we have porved the theorem by Lemma 6.

Corollary 1. We assume that $R / J(R)$ is artinian. Then every quasi-perfect module is perfect.

Proof. Since $P / J(P)$ is semi-simple, P is perfect from Theorem 4, Corollary to Theorem 3 and [9], Theorem 5.1.

Corollary 2. We assume $J(R)$ is right T-nilpotent, then for a projective R module P, a direct decomposition of $P / J(P)$ is lifted to one of P, and every idempotent in $R_{I} \mid J\left(R_{I}\right)$ is lifted to one in R_{I} for any set I. Furthermore, if $R / J(R)$ is a regular ring, then $\mathfrak{U}_{f}^{\prime} / \mathfrak{F}$ is a spectral abelian category, where $\mathfrak{Q}_{j}^{\prime}$ is the full sub-category of finitely generated projective R-modules.

If P is perfect, then $P / J(P)$ is semi-simple and hence, $S_{P} / J\left(S_{P}\right)=\Pi \Delta_{I_{\infty}}^{\infty}$, where Δ^{a} are division rings. It is clear that $P^{\prime} \mid J\left(P^{\prime}\right)$ is not semi-simple even though $S_{P}^{\prime} \mid J\left(S_{P}{ }^{\prime}\right)=\Pi \Delta^{\infty}$ for a projective module P^{\prime} We consider this situation.

Proposition 4. Let P be a quasi-perfect module so that $S_{P} / J\left(S_{P}\right)=\prod_{T} \Delta_{I_{a}}^{a}$, then P contains a perfect module P_{0} such that $S_{P_{0}} / J\left(S_{P_{0}}\right)=\prod_{T} \Delta_{I^{\prime}{ }_{a b}}^{a_{a}}$ and P is perfect if and only if P_{0} is a direct summand of P, where $\left|I_{a}\right| \geqslant\left|I_{a}^{\prime}\right|$ and $\left|I_{a}^{\prime}\right| \geqslant \boldsymbol{\aleph}_{0}$ if $\left|I_{a}\right| \geqslant \boldsymbol{N}_{0}$.

Proof. Let $\bar{S}=S_{P} / J\left(S_{P}\right), \bar{P}=P / J(P)$, and \bar{e}_{a} a projection of \bar{S} to $\Delta_{I_{a}}^{\alpha}$. Then there exists P_{a} in P which is a direct summand of P and $S_{P_{a}} / J\left(S_{P a}\right)$ $=\bar{e}_{\infty} \bar{S}_{\alpha} \bar{e}_{\infty} \approx \Delta_{I_{a}}^{\alpha}$. Let \mathfrak{S} be the socle of $\Delta_{I_{\alpha}}^{\alpha}=\bar{S}_{\infty}$, and $\subseteq \bar{S} \bar{P}\left(=\bar{P}_{0}\right) \subseteq \bar{P}$. Then the restriction φ of \bar{S}_{ϕ} to \bar{P}_{q} gives elements of $S_{P_{0}}=\left[\bar{P}_{0}, \bar{P}_{0}\right]_{R / J(R)}$. We first show
that φ is a ring isomorphism. If $\operatorname{Ker} \varphi=\mathfrak{A} \neq 0$, then $\mathfrak{A} \supseteq \mathbb{S}$. Since $\mathfrak{S}=\mathbb{S}^{2}$, $\mathfrak{\Re} \bar{P} \bar{P}=\bar{P}_{0} \neq 0$. Hence, Ker $\varphi=0$. Since $\bar{P}_{0}=\sum e_{i i} \bar{P}$, where $\left\{e_{i j}\right\}$ is a family of matrix units of $\bar{S}_{a}, \varphi(\mathfrak{S})$ is equal to the socle \mathfrak{S}^{\prime} of $S_{\bar{P}_{0}}$. Furthermore, $\bar{S}_{a}=[\mathfrak{S}, \mathfrak{S}]_{s_{a}}$, and $S_{\bar{P}_{0}}=\left[\mathfrak{S}^{\prime}, \mathfrak{S}^{\prime}\right]_{S} \bar{P}_{0}$ as right modules. We may regard \bar{S}_{∞} as a sub-ring of $S_{\bar{P}_{0}}$ by φ. Then $S_{\bar{P}_{0}}=\left[\mathfrak{S}^{\prime}, \mathfrak{S}^{\prime}\right]_{S_{P_{0}}} \subseteq[\mathfrak{S}, \mathfrak{S}]_{\bar{S}_{\alpha}}=\bar{S}_{\alpha}$. Hence, φ is isomorphic. Now, since $\bar{P}_{0}=\sum \oplus e_{i i} \bar{P}, P_{\infty}$ contains a direct summand $P_{\omega J}$ for every finite set $J \subseteq I$ so that $\bar{P}_{a J}=\sum_{i \in J} \oplus e_{i i} \bar{P}$. Let S be a family of projective submodules Q of P_{a} so that $Q=\sum_{i \in \bar{K}} \oplus Q_{i}, \bar{Q}_{i} \approx e_{i i} \bar{P}$, for all i in K, and Q_{J} is a direct summan of P for any finite subset J of K. We can find a maximal element Q_{∞} in \boldsymbol{S} by defining a natural relation in \boldsymbol{S}. We assume that Q_{∞} is a direct summand of P and $\bar{Q}_{\infty} \neq \bar{P}_{0}$. Since \bar{Q}_{∞} is a direct summand of \bar{P}_{∞} we can obtain a submodule U of P_{a} such that $P_{\infty}=Q_{a} \oplus U \oplus P_{a}^{\prime}$, which contradicts to the maximality of Q_{∞}. Hence, $\bar{P}_{0}=\bar{Q}_{\infty}$ in this case. On the other hand, since φ in the above is isomorphic, $\bar{P}_{0}=\bar{Q}_{\alpha}=\bar{P}_{\alpha}$. Finally, we put $P^{*}=\sum_{\alpha \in F} \oplus Q_{\infty}=\sum_{\alpha} \sum_{i \in K_{\alpha}} \oplus Q_{i \omega}$, and define a natural homomorphism $f ; P^{*} \rightarrow P$. For any finite set J of $\cup K_{a}, f \mid P_{J}^{*}$ splits as $R / J(R)$-module. Hence, $f \mid P_{J}^{*}$ splits as an R-module, since $J\left(P_{J}^{*}\right)$ is small in P_{j}^{*}. Hence, f is monomorphic. Since $Q_{i \alpha}$ is projective and completely indecomposable, $Q_{i \star}$ is perfect from Corollary 2 to Theorem 3. Therefore, P^{*} is perfect by Corollary 1 to Theorem 3. If P^{*} is a direct summand of P, then Q_{∞} is a direct summand of P_{α}, and hence, $Q_{\alpha}=P_{\alpha}$ from the first part. Let $P=$ $P^{*} \oplus P_{1}$ and \bar{g} a projection of \bar{P} to \bar{P}_{1}. If $\bar{g}=\Pi f_{\alpha}\left(f_{\alpha} \in e_{\alpha} \bar{S}_{P} e_{\alpha}\right)$ is not zero, then $f_{\infty} \neq 0$ for some α. However, φ is isomorphic, and hence $f_{\alpha}=0$. Therefore, $P^{*}=P$. Conversely, if P is perfect, P^{*} is a direct summand of P from Proposition 5 below.

Proposition 5. Let P be a semi-perfect module and P_{0} a projective R-module in P. Then P_{0} is a direct summand of P if and only if $P_{0} \cap J(P)=J\left(P_{0}\right)$.

Proof. We assume $J(P) \cap P_{0}=J\left(P_{0}\right)$. Then $P_{0} / J\left(P_{0}\right)$ is a $R / J(R)$-submodule of $P / J(P)$ and $P / J(P)=P_{0} / J\left(P_{0}\right) \oplus P_{1} / J\left(P_{1}\right)$ for some R-projective module P_{P} by [9], Theorem 4.3. Hence, $J\left(P_{0}\right)$ is small in P_{0} by Lemma 6. Next, we have a diagram

where i is an inclusion map of P_{0} to P and $k=\nu i$ and $P_{1}^{*}=P_{1}+J(P)$. Since P is projective, we obtain $g: P \rightarrow P_{0}$ so that $k g=\nu$. Let p_{0} in P_{0}, then $\left(g i\left(p_{0}\right)-p_{0}\right)$ is in $J\left(S_{P_{0}}\right)$. Therefore, $g i$ is isomorphic, which means P_{0} is a direct summand of P. The converse is clear.

Proposition 6. There exists a semi-perfect module if and only if R contains a completely indecomposable and projective right ideal.

Proof. If P is semi-perfect, then P contains a completely indecomposable semi-perfect module P_{0} by [9], Corollary 5.3. Hence, $P_{0} / J\left(P_{0}\right)$ is a minimal $R / J(R)$-projective module. Since $J\left(P_{0}\right)$ is small, $P_{0}=p R$ for some $p \in P_{0}$. Hence, $P_{0} \approx e R$ for some idempotent e in R. The converse is clear from [6], Theorem 5.

4. Krull-Remak-Schmidt-Azumaya's theorem

In this section, we shall prove Kanbara's theorem in [7] as a corollary of Lemma 5. Let $\left\{M_{a}\right\}_{I}$ be a family of completely indecomposable R-modules and \mathfrak{A} the induced category from $\left\{M_{a}\right\}$. We denote the ideal of \mathfrak{A} defined in [5], §3 by \mathfrak{Y}^{\prime}. It is sufficient to prove that $J\left(S_{M}\right)=\Im^{\prime} \cap S_{M}$ under the condition that $\left\{M_{\infty}\right\}$ is a semi- T-nilpotent system with respect to \Im^{\prime}, where $M=\sum_{I} \oplus M_{\infty}$. However, if we use the argument in the proof of Lemma 5 in [5], we know that $\left\{M_{a}\right\}$ satisfies the condition 2 in Lemma 5 if we take $\mathfrak{C}=\mathfrak{F}^{\prime}$. It is clear that the conditions 1 and 3 are satisfied. Therefore, we obtain $J\left(S_{M}\right)=\Im^{\prime} \cap S_{M}$ from Lemma 5.

Osaka City University

References

[1] H. Bass: Finitestic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
[2] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
[3] C. Ehresmann: Categories et Structures, Dunod, Paris, 1965.
[4] M. Harada: On semi-simple categories, Osaka J. Math. 7 (1970), 89-95.
[5] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
[6] M. Harada: On categories of indecomposable modules II, Osaka J. Math. 8 (1971), 309-321.
[7] H. Kanbara: Note on Krull-Remak-Schmidt-Azumaya's theorem, Osaka J. Math. 9 (1971), to appear.
[8] G.M. Kelly: On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299307.
[9] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
[10] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.
[11] E.M. Patterson: On the radicals of rings of row-finite matrices, Proc. Roy. Soc. Edinburgh Sect. A. 66 (1962), 42-46.
[12] Y. Sai: On regular categories, Osaka J. Math. 7 (1970), 301-306.
[13] N.E. Sexauer and J. E. Warnock: The radical of the row-finite matrices over an arbitrary ring, Trans. Amer. Math. Soc. 139 (1965), 287-295.
[14] R. Ware and J. Zelmanowitz: The radical of the endomorphism ring of a projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.

[^0]: Added in proof. 0) It was obtained by M. Tsukerman; Siberian Math. J. 7 (1966).

[^1]: 3) $\{P\}$ means $\left\{P_{i}\right\} ; P_{i} \approx P$ for all i.
