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The authors have studied some structures in categories of completely
indecomposable modules in [5], [6] and [7], respectively. Furthermore, one of
the authors has given some characterization of semi-perfect modules, defined in
[9], in terms of semi-T-nilpotent system in [6].

In this note, we shall work in the same frame and give generalizations of
some results in [6], [9] and [11].

Let R be a ring with identity and My the category of R-right modules.
By U (resp. A,) we denote the full sub-additive category of Mg, whose objects
consist of all R (resp. R-finitely generated)-projective modules and we denote
the Jacobson radical of U by ¥ or J(A), (see the definition in [3], [6] and [8]).
Then we shall show, in the first section, that 2A/J(A) (resp. A,/ J(A))) is a C,~
completely reducible (resp. completely reducible artinian) abelian category if
and only if R is a right (resp. semi-) perfect ring, defined in [1]. In the second

section, we shall study a directsum of projective modules P= > PP, and show
acsI

that J(P) is small in P if and only if J(P,) is small in P, for all a=1 and {P,}
is a (elementwise) semi-T-nilpotent system with respect to the Jacobson radical
if the cardinal |I| is infinite (see the section 2 for the definition or [6] and [7]).
We have immediately [6], Theorems 6 and 7 and [7], Theorem from this
theorem. In the third section, we define a quasi-perfect module, which is a
generalization of perfect modules defined in [9] and give analogous results to
[9]. In the final section, we shall give another proof of [7], Theorem.

In this note, we always assume that a ring R has the identity and R-modules
are unitary. We shall use terminologies of categories in [6], [3], [10] and [8].
Let B be a full subcategory of M;. We assume that Im., Ker. directsum etc.
are considered in Mz (not n B), unless otherwise stated, and for any object
P, P’ in My we write [P, P’]g or [P, P’]amy instead of Homg(P, P’).

1. A right perfect ring

Let M be a right R-module, and N an R-submodule of M. N is called
small in M if Q4+N=M implies Q=M for Qc M. By J(M) we denote the
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radical of M and hence J(R)is the Jacobson radical of R. We denote [M, M]p
by Sp. We shall make use of the definition of (semi-) perfect modules defined
in [9].

Now, let 2 be a full sub-additive category of M,. We define a subfamily
€ of morphisms in A as follows: for any objects P, P/ in A, €N[P, P']g
={f| <[P, P'lg, Im f (in M) is small in P’}. Then we have

Lemma 1. Let A and € be as above. Then € is an ideal in N.

Proof. Let f, f/ be in €N[P, P'lg. Then Im(f+f)SImf+Imf’.
Hence, f+ f'e€N[P, P']lg. Let g be an element in [P/, P"]g and A=Im f.
We shall show that g(4) is small in P””. We assume g(4)+N=P"” for some N
in Me. Then for any p’ in P’ we have g(p')=g(a)+n, (ac 4, neN). Hence,
p'—acs g (N) and g(g ' (N)4+A4)=g(P’). On the other hand, since g7'(IV)
contains Ker g, P’=A+g '(N). A is small in P’ and hence, P'=g *(N).
Therefore, N D g(g7(N))=g(P’)2 g(4) and N=P”. Hence, gf cCN [P, P"]g.
It is clear that fg’€ for any ¢’ in [P, P]lg. Thus, € is an ideal.

Corollary. If every object P in 9 is projective in My, then € is equal to the
Jacobson radical of U.

- Proof. Since €N [P, P]g is the Jacobson radical of [P, P]g by [12], Lemma
1, € is the radical of 2.

From now on, we shall denote the Jacobson radical of 2 by J.

Proposition 1. Let P be a projective R-module. Then J(P) is small in P
if and only if [P, J(P)le=](Skp)-

Proof. It is clear from the above corollary that J(Sp) <[P, J(P)]g for any
projective R-module. Hence, if J(P) is small, J(Sp)=[P, J(P)]z. Conversely,
we assume J(Sp)=[P, J(P)]lg and P=N+J(P) for some N in M. Then
we have a diagram:

J(P) = J(P)IN 0\ J(P) — 0
2 f

PIN
I
P

where v and »’ are canonical epimorphisms.
Since P is projecitve, we have % in [P, J(P)]g such that »h=fv". Hence,
J(P)=h(P)+N N J(P) and P=N-+J(P)=N-+h(P). On the other hand A(P)
is small in P, since % is in J(Sp). Hence, P=N.

Let I be any well ordered set. By R; we denote the ring of column finite
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matices of R over I. An ideal ¥ of a ring R is called right T-nilpotent, if for
any set {a;};_, of elements a; in J, there exists n so that a,a,_,---a,=0, (n
depends on {a;}, ¢f. [1]).

Corollary 1 ([11], [13] and [14]). Let I be an infinite set. Then J(R) is
right T-nilpotent if and only if J(R;)=J(R);.

Proof. Let P=;€BR. If J(R) is T-nilpotent, then J(P)=>'P J(R) is

small by [9], Theorem 7,2. On the other hand R; isequal to Sp. Hence, J(Sp)
=[P, J(R)]z=J(R);. Conversely, If J(R;)=](R);, J(R) is small. Hence, J(R)
is T-nilpotent from the argument of [9], Theorem 7.4.

Corollary 2 ([6]). Let P be a projective module. We assume P is a di-
rectsum of completely indecomposable modules. Then P is semi-prefect if and only

if [P, J(P)]r=J(Skp).
Proof. It is clear from [9], Theorem 5.1 and [6], Theorem 5.

Lemma 2. If R has a family of mutually orthogonal non-zero idempotents
{e;}7-1, then Ry is not regular in the sense of Von Neumann for any infinite set 1.”

Proof. We may sasume that (the cardinal of I)=|I|=R,. We denote a
family of matrix units in R; by e, ;. Put B=327%¢,e,;. If R, is aregular ring, then
there exists A in R, so that BAB=B, say A=3a;e;;. We may assume a;,=0

if >t for a large . 'Then BAB=B implies that 2 e;aqe;—e;forallj. If j>t,

¢

. B C L

then e ;=ej= Zl e e;a; ;¢ ;—0, which is a contradiction.
&

Corollary. Let R be a regular ring in the sense of Von Neumann. Then
R, is regular for any set I if and only if R is artinian.

Proof. If R is artinian, then it is clear that R; is regular for any set I. We
assume that there exists an infinite series of principal left ideals of R: Ra,DRa,
D---. Since R is regular Ra,= Re;, for some idempotent ¢;,. Hence, R has an
infinite set of non-zero mutually orthogonal idempotents {e;}, which is a con-
tradiction to Lemma 2. Therefore, R has the non zero socle, which is atrinian
and hence, R is artinian, since R is equal to the socle.

Let 2 be an additive category in Mz and € an ideal of A. Then we can
define the factor category /€ with respectto®. Let P and f be an object and
a morphism in U, respectively. Then P is also an object in /€, however we
shall denote it by P if P is regarded as an object in /€. Similary, f means a
class of fin /€.

Let {M,} be a family of R-modules, We consider the full sub-additve category
B (resp. B,) in My, whose objects consist of all directsums of M, ’s (resp. all

Added in proof. 0) It was obtained by M. Tsukerman; Siberian Math. J. 7 (1966).
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dircetsums of finite number of M,’s), and of their isomorphic images. We call
B (resp. B ;) the induced category from {M,}.

Proposition 2. Let U be the induced additive category from a family of pro-
Jjective modules, and 3 the radical of N. We assume WY is a spectral abelian
category. Then

1) For every Pin N, J(P) is small in P.

Furthermore, we assume A is Cy—abelian.
2) If Pin W is a directsum® of subobject P, in N, then P=> PP, in WA[I.
3) If Pis a directsum of minimal objects in U/, then P is semi-perfect.

4) If Q in Nis a finietly generated R-module, then Q is perfect.

Proof. 1). Put Sp=[P, P]g and J'(Sp)=[P, J(P)]zr. We assume J'(Sp)
=+ J(Sp). Since Sp[J(Sp) is a regular ringand J’(Sp) is a tow-sided ideal in Sp,
there exists non zero element ¢’ in J’(Sp) so that ¢ =¢* (mod J). Herce, we
obtain an idempotent e in J’(Sp) so that e=¢’ (mod J) by [5], Lemma 2.
Therefore, eP C J(P), which is a contradiction. Thus, we obtain J’(Sp)=J(Sp)
and J(P) is small in P by Proposition 1.

2). We shall show that EIEBP'”:ZIEBP‘” in A/J. Let J be a finite subset

of I, then P;= 3 @P, is a direct summand of P=P;. Hence, >)P,=P;isa
aeT J

direct summand of P, (use the method in the proof of Proposition 1 or see [5],

Lemma 2). Therefore, UP,=>®P, is a subobject of P by [10], p. 82,

Proposition 1.2. Let P=3"®P,®HQ and f a projection of P to Q. Then fg=1

(mod J) for some g [0, Plp. Since J is the radical, fg is isomorphic as R-

modules. f(3IPP,)=0 implies [ DP,)c J(Q). Hence, J(Q)D f(P)Dfg(0)
=Q. Therefore, 0=0.

3). We assume P=3PP,. Put P’=3PP,. Then P~P from 2).
Therefore, P~ P’ as R-modules, since  is the radical. Furthermore, P} is semi-
perfect and so is P by 1), (see [9], Theorem 5.2 and [5] , Theorem 5).

4). Let Q be a finitely generated R-projective module in 2, and So=

[0, Olg. Put O*= 2 BO;; 0;~0 for all . Since Q is finitely generated,

Sgx is the ring (Sp).. of column finite matrices with entries in So. From the
assumption Spx/J(Sgx) is regular and hence (Sq/J(Sg)). is a regular ring.
Therefore, Sq[J(Sp) is an artinian ring by Corollary to Lemma 2. Thus,

0= ﬁ @0, in A/, where Qs are minimal objects in A/Y. Hence, Q= Zﬁl PO;

and Qjs are completely indecomposable by [5], Lemma 2. It is clear from the
first half that Q is perfect.

Theorem 1. Let A be the full sub-additive category of all R-projective

1) Directsum is considered in Mig.
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modules in My and I the radical of N. Then the following statements are
equivalent.

1 /I is a Cy-abelian completely reducible category.

2 U/ is a Cy-spectral abelian category.

3 R s a right perfect ring.

Proof. 1—2. Itisclear.2—3. Since R is a finitely generated R-module,
R is right perfect from Proposition 2. 3—1. If R is right perfect, then every
object P in U is perfect by [1] or [9] and hence, P is a directsum of completely
indecomposable modules. Furthermore, I N [P, Plz=[P, J(P)]g is equal to the
ideal defined in [5], §3, (see [6], §3). Hence, /J is a C,-completely reducible
abelian category by [5], Theorem 7.

Similarly to Theorem 1, we obtain

Theorem 2. Let {P,} be a family of finitely generated projective R-modules,
and U, the induced category from {P,}. Then the following two conditions are
equivalent.

1 U/ is a completely reducible and artinian abelian category.

2 Ewvery object in U is semi-perfect.

Especially, let A be the full sub-category of all R-finitely generated projective
modules. Then W[ is a completely reducible and artinian abelian category if
and only if R is semi-perfect.

ReMaRk. If we omit the assumption “artinian” in Theorem 2, then the
thorem is not true in general. For example, let K be a field and R=[P, P],
where P is a K-vector space with infinite dimension. It is well known that R is

self injective as a right R-module and R has the socle S= i} @Pe;R. Let A be

as above. Then 2} is a spectral abelian category from [12], Theorem 2, since

R is a regular ring. First, we shall show that R=>Pe;R” in A;. Itis clear

that S;= > ¢;R is in A} for every finite set J and is a direct summand of R in
=i

A4 via the inclusion. Let {f,} be a set of R-homomorphisms f;: e,R—R.
Then f=>1f;is in [S, R]g. Since R is self-injective and a prime ring, we have
a unique extension gE[R, R]z of f. Therefore, R=2>Y,R in A}, since every
object in A} is a finitely generated R-module. Noting that 2} is spectral and
R=3"¢,R in U} even though A} is not co-complete, we can easily show that A,
is completely reducible. However, R is not semi-perfect.

We have shown in Proposition 2 that >DIPP,=>PP, in /I if A/J is a
C,-abelian spectral category. However, as above this fact is not true if 2/J is
not co-complete, since > PP, ;.

2) Directsum is considered in Ay’
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Proposition 3. Let U, be the induced additive category from a family of
semi-perfect modules. Then U Y is an abelian spectral category.

Proof. It is clear that every object in U, is semi-perfect from [9], Theo-
rem 5.1. Therefore, A /F is an abelian spectral category by [12], Theorem 2.

Corollary. Let P and Q be semi-perfect modules and f an element in [P, Q.
Then we have decomposition P—P,BP,, Q=0Q,BQ, such that f(P,) is small in Q
and f | P, gives an isomorphism of P, to Q,. Furthermore, under those conditions,
P; and Q; are unique up to isomorphism.

Proof. Let U, be the induced category from P and Q. Put P{=Kerf.
Since A /Y is abelian spectral, P=P{PP;. Hence, we have P=P, PP, so that
P,=P{ by [5], Lemma 2. Then f,=f]|P, is monomorphic in %/Y. Hence,
there exists g=[Q, P such that gf, is equal to the identity of P, modulo .
Hence, Q=Ker g®dImf,. Since f(P,)=0, f(P,) is small in Q, If P;, Q; satisfy
the above conditions, then P,=Ker f, P,—Coim f and Q,=Imf, Q,=Coker f.
Hence, they are unique up to isomorphism as R-modules.

2. Directsum of projective modules

It is known by [9], Corollary 5.3 that every semi-perfect module is a
directsum of completely indecomposable projective modules. Thus, we shall
study, in this section, a projective module which is a directsum of some
submodules. First, we shall generalize the definition of T-nilpotent.

Let {M,}; be a family of R-modules M, 2 the induced category from {M,}
and € an ideal of 4. We call {M,}; a (elementwise) T-nilpotent (resp. semi-T-
nilpotent) system with respect to € if the following conditions are satisfied: for
any sequence {f,}7-, of morphisms f;in €N\ [M,,, M ,,, ]r and any element x in
M ,,, there exists n, depending on x and {f:}, such that f,f,_,-- f,(x)=0, where
M;’s are in {M,}, (resp. a; %, if i % f), (cf. [5], §3).

Let I be a well ordered set and put M:?@MM then [M, M]r=.Sy is equal

to the ring of column summable matrices, whose entries a,, consist of elements

in [M,, M,]r, namely for f €S, and x, e M,, f=(b,,) and b,.(x,)=0 for almost

all 1. In this case X b,, has a meaning and it is an element in [M,, M]g.
ocer

We shall make use of those notations in the following. Let by, |
be in [M,; ,, M,]g for i=1, 2::-, n. If a,<a,--<a,, we denote briefly
b b boyw, DY b(0yy Qy_yy *ortyy ).

Bnn—1 Bp—10p—2

Lemma 3. Let {M,},;, M and € be as above with |I | infinite and f=(b,.)
in €CN[M, Mg. We assume {M,}; a semi-T-nilpotent system with respect to €.
We put F.={b(ct,, Ay_,, ***, Q)| a,=T and n is any integer >2}. Let x, be an
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element in M., then b(ct,, dtu_,, =, ,)(%.)=0 for almost all b(et,, at,_,, -+, @)
inF,.

Proof. Since € is an ideal, b,, is in €N[M,, M,]Jr. Now, {b,,}a, is
summable and hence, there exists a finite set 7, such that b,,,(x,)=0 if o, & T,.
Since {bus,ta, is summable for a,&T,, there exists a finite set 7, such that
b(a,, a,, T)(x,)=0 for a,=T,, a,=T,. Repeating this argument, we obtain a
family of finite set T such that b(a;, a;_,, -+, T)(x,)=0 if € T, for some k.
Hence, we obtain the lemma from Koning Graph Theorem and the assumption.

From Lemma 3, we know that > (o, a,_,, ***, a;, 7) is in [M,, M,]g.
@ .

Lemma 4. Let M, {M,}; and & be as above and we assume {M,}, is a semi-
T-nilpotent system with respect to €. Let (b,,) be in Sy N € so that b,,=0 if a>7
(resp. o <), then (b,,) is quasi-regular in Sy,.

Proof. It is clear from the proof of [5], Lemma 10.

Lemma 5. Let {M,};, M and € be as above. We assume the following.
1) €N S,C J(S,) for every ac 1. 2)if {a;}; is a summable set in €N [M,, M,]g,
then 33 a; is in €N [M,, M.]r, where Sy=Sy,=[M,, M,)r, 3) {M,}; is a semi-

T-nilpotent system with respect to €. Then €N Sy < J(Su)-

Proof. Let A’=(a!,) be in €N .Sy, and put A=E—A’'=(a,,), where E is
the unit matrix. We shall show by the fundamental transformation of A that 4
is regular in Sp,. Since € is an ideal and €N S, < J(S,), @;e=1—a}, is unit in
S,. We put b,,=—agaifor o<1, then {b,,}, is summable and b,, is in
€N[M,, M,]r. We shall define b,, for o<<7, satisfying the following conditions,
by the transfinite induction on 7

1) {b,.}, is summable and b,, is in €N [M,, M ]r.

2) by,=—y,.y, where for o >T

_ymzaw—f—Tg ba, sy Ar_ys **5 Q)G (%)
t

We note that >(a, a;, ***, o, &,)a,,, is defined and in €N [M,, M,]z by
1), 2), the assumption and Lemma 3, and hence y,, is unit in S,, (note that {a,,},
is summable). We assume {b,,} is defined for all p<<7, which satisfy the con-
ditions 1) and 2). Then we can define y,, for o >7 from (%) and define b,, by
2). Since {y,.}, is summable by Lemma 3, so is {b,.},. Next, we put
Cor=2b(c, s, +++, a,, VECN[M,, M,]r and ¢,,=0 if e<7. Then C=(c,,)
is in Sy by Lemma 3. We calculate the (o, T7)-component d,, is CA. For
o>1>1 we have d, ’T=; chaPT=°§ca’PaP‘r=2 b(a-’ Ayt al)awlT+aGT=aaT

+7§ b(a'y Oy ooy a1)aw17+b¢'r(2 b(7) Oypy oy a1)aw1'r+aw)+q>;>_rbwm(2 b(at’ °t

0,)4a:+a4,.). Hence, we have
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3) do-7=yo-7+bm-y'rr+2 ba-mtdwfr .

It is clear that d,,=0. Now, we assume d,z=0 for o>« >, then we obtain
from 2) and 3), d,,=0 for o>7. Thus, we have proved d,,=0 for all o>7.
Furthermore, d,,=>b(o, ay, **+, at;)a, ,+a,, is unit in S, from the assumptions.
Finally, we put C;=>"e_ . d-+, where {e,} is a family of matrix units in Sy,.
Then D=E—C,CA= >} e,x,, and x,, is in €N [M,, M,]g, since b,, (resp. a,,)
is in €N[M,, M,]g if o>7 (resp. o<<7). Hence, C,CA4 is regular in S, by
Lemma 4. We know similarly that C is regular in Sy;. Therefore, 4 is regular
in S,s, which implies that €N Sy, < J(Sy).

Theorem 3. Let {P,} be a family of projective modules and P=3\DP,.
J

Then J(P) is small in P if and only if J(P,) is small in P, for every a1 and {P,},
ts a semi-T-nilpotent system if I is infinite.

Proof. We assume J(P)is small in P. Then J(P,) is small in P,. Let
{P,;}i-1 be a sub-family of {P,} and f; € [Pa;, P, Jr NS, where a; o, if i 3.
Put Pi={p;+ fi(p:)| pi€Pa,;}. Then f(ps,) is in J(P,,, ) by the definition and

p=% P+ SYPg+J(P). Hence, P=3PP, D > PPs. Therefore, {P,} is
=1 BHY; : Bx%;

a semi-7-nilpotent system, (see [5], Lemma 9). Conversely, if I is finite, the
theorem is trivial. Hence, we assume that [ is infinite. If J(P,) is small in P,,
then J(S,)=[Ps, J(Ps)]r from Proposition 1. Now, we define an ideal € in
induced from {P,} as follows: €N [P,, Pgle=[Ps, J(Pg)lz- Then € satisfies
the conditions in Lemma 5 by Corollary to Lemma 1 and hence, €N Sp
=[P, J(P)]r< J(Sp). 'Therefore, J(P) is small in P by Proposition 1.

Corollary 1 ([6], Theorems 6 and 7). Let P and {P,}; be as above with I

infinite. Then P is perfect (resp. semi-perfect) if and only if P, is semi-perfect and
{P,}; is a T-nilpotent (vesp. semi-T-nilpotent) system.

Proof. It is clear from Theorem 3 and [9], Theorem 5.1.

Corollary 2. Let P be a projective module in which J(P) is small. Then
J(F) is small in F for any directsum F of any copies of P if and only if {P}*’is a
T- nilpotent system with respect to J(Sp).

Proof. It is an immediate consequence of Theorem 3.

Corollary 3. Let {P,} be a family of perfect modules. Then P=3) PP, is
perfect if and only if J(P) is small in P. !

Proof. “‘only if” part is clear. We may assume that J(P) is small in P
and P, is completely indecomposable. If |I|<co, P is perfect. If |I|=oo,

3) {P} means {P;}; P;=~P for all i
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{P,} is a semi-T-nilpotent system by Corollary 2. Since P, is perfect, P is a
T-nilpotent system. Therefore, P is perfect from Corollary 1.

3. Quasi-perfect modules

We know from Corollary 1 to Theorem 3 that the perfect modules are spe-
cial ones in projective modules with properties in Corollary 2. Thus, we call
such a projective modules P quasi-perfect; namely J(P) is small in P and {P} is
a T-nilpotent system with respect to J(Sp), or equivalentely {P} is a T-nilpotent
system with respect to [P, J(P)]r by Proposition 1.

If J(R) is right T-nilpotent, then for every projective module P, J(P) is
small in P and P is quasi-perfect by Theorem 3 and vice versa. If R[J(R) is
not artinian, then R is quasi-perfect, but not perfect. It is clear that a directsum
of any copies (or direct summand) of a quasi-perfect module is also quasi-perfect.
Hence, if a projective generator in My is quasi-perfect, then so is every pro-
jective modules.

Lemma 6. Let P be a projective module. We assume that J(P)is small in P
and P|J(P)=3" P, as R|J(R)-modules. If there exist projective R-modules Q, so
I

that Q,/J(Q4)~P,’ for each a1, then we have a direct decomposition P =>) PP,
I

which induces the above decomposition, and hence J(Q,) is small in Q,, (cf. [9],
Theorem 4.3).

Proof. Put O=>1P0,, then we have a diagram

0 — J(P) ~— P—— P|J(P) — 0

¥\\\\ g v

0

where v and »” are natural epimorphisms from the assumption. Since Q is
projective and J(P) is small, P is a direct summand of Q via g; Q=P®HQ".
Hence, Q=P+ J(Q)=P @D J(Q’). Therefore, O’=0. It is clear that J(Q,) is

small in Q,,.

/

Theorem 4. Let P be a quasi-perfect module. Then every direct decom-
position of P|J(P) is lifted to one of P.

Proof. We assume that P/J(P)=P{®P} as R/J(R)-modules, and show that
there exist P; so that P=P,@P, induces the above decomposition. It is clear
that [P/J(P), P[J(P)lr;;cry="S/J, where S=Sp and IJ=J(Sp). Let a’=a (mod
J) for aS.  We shall show that there exists an idempotent e in S such that e=a
(mod ¥). We use the same argument in [2], p. 546. We can find the following
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identities for each # from 1=(x—(1—x))”=3 (2;l)x"(l——x)2"“'

4 fal®)=fror(%)Fgu(x)(¥ —2)""

5) fuwy=Su()+hau(x)(x*— )",
where f,(x), g.(x) and k,(x) are polynominals with coefficients of integers. From
4) we have f,(x)=x-+g,(x)(x*—x)+ -+ g, (x)(x*—x)*"". Put b=a’—acJ and
gi(@a)=c,€8. Let p be an element in P, then b"#(p)=0 for some integer n(p)

by the assumption. Put A:a—l—f} c;b**.  Since {c;6*""}; is summable as above,

A is in S. Furthermore, (A°—A)(p)=AAnp(p)—Anp(p), Where Au,=a

n(p)-1

+ X3 ¢t Now, let A,,(p)=¢, and put m=max(n(p), n(q)), then A A, P)

=A,Aup(p)=A,A.(p). Hence, (A*—A)(p)=A4%p)—A..(p). We have
similarly from 5) that (4% —A4,/)(p)=0 for any n’ >some n. Therefore, A*=A4.
On the other hand, 4—a=3"¢b*** and (3] ¢b*"")(p)€ J(P). Hence, 23 c b

€[P, J(P)]z=S by Corollary to Proposition 1. Therefore, we have porved the
theorem by Lemma 6.

Corollary 1. We assume that R|J(R) is artinian. Then every quasi-perfect
module is perfect.

Proof. Since P/J(P) is semi-simple, P is perfect from Theorem 4, Corollary
to Theorem 3 and [9], Theorem 5.1.

Corollary 2. We assume J(R) is right T-nilpotent, then for a projective R-
module P, a direct decomposition of P[J(P) is lifted to one of P, and every
idempotent in Ry |[J(R;) is lifted to one in R; for amy set I. Furthermore, if
R/J(R) is a regular ring, then N,/ is a spectral abelian category, where A} is the
Sull sub-category of finitely generated projective R-modules.

If P is perfect, then P/J(P) is semi-simple and hence, Sp/J(Sp)=IIA7,,
where A® are division rings. It is clear that P’/J(P’) is not semi-simple even
though Sp’[J(Sp’)=IIA? for a projective module P’ We consider this situation.

Proposition 4. Let P be a quasi-perfect module so that Sp[J(Sp)=I1A7,,
paadd
then P contains a perfect module P, such that Sp [J(Sp,)=I1A7, and P is perfect
T

if and only if P, is a direct summand of P, where |I,|>|1,| and |1, >R, if
[ 1] >R,.

Proof. Let S=Sp/J(Sp), P=P[J(P), and &, a projection of S to A?,.
Then there exists P, in P which is a direct summand of P and Sp,//(Sra)
=2,5,8,~A%,. Let & be the socle of A?,=S,, and S8P(=P,)CP. Then the
restriction @ of S, to P, gives elements of SPO=[PO, Pgr;yry- We first show
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that @ is a ring isomorphism. If Ker =%=0, then ADS. Since S=E?,
ASP=P,+0. Hence, Ker p=0. Since P=31¢;;P, where {e; ;} is a family of
matrix units of Sas ®(®) is equal to the socle & of Sz,. Furthermore,
Sa=[&, &]s,, and Sp =[&", &'sp, as right modules. We may regard S, as
a sub-ring of S5, by @. Then S5 =[&, &]sp,<S[S, Gl5,=S,. Hence, @
is isomorphic. Now, since P,=3Pe;;P, P, contains a direct summand P, for
every finite set J I so that P, fz; Pe;;P. Let S be a tamily of projective sub-

modules Q of P, so that 0=> P0;, Q,—ze;,- P, for all  in K, and Q; is a direct
IEK

summan of P for any finite subset J of K. We can find a maximal element Q,

in S by defining a natural relationin S. We assume that Q, is a direct summand

of P and Q,:@:Po . Since Q,, is a direct summand of P, we can obtain a sub-

module U of P, such that P,=Q,PUGP, which contradicts to the maximality

of O,. Hence, P0=Q,,, in this case. On the other hand, since @ in the above is

isomorphic, P,=Q,=P,. Finally, we put P*:asz POu= 2 2; @Qis, and
= @ €Ky

define a natural homomorphism f; P*—P. For any finite set | of UK,,f|P¥
splits as R/J(R)-module. Hence, f|P¥ splits as an R-module, since J(P¥) is
small in P¥. Hence, f is monomorphic. Since Q;, is projective and completely
indecomposable, Q,, is perfect from Corollary 2 to Theorem 3. Therefore, P*
is perfect by Corollary 1 to Theorem 3. If P* is a direct summand of P, then
0, is a direct summand of P,, and hence, Q,=P, from the first part. Let P=
P*@®P, and g a projection of P to P,. If g=IIf,(f,Ee,Spe,) is not zero, then
f++0 for some a. However, @ is isomorphic, and hence f,=0. Therefore,
P*=P. Conversely, if P is perfect, P* is a direct summand of P from Proposi-
tion 5 below.

Proposition 5. Let P be a semi-perfect module and P, a projective R-module
in P. Then P, is a direct summand of P if and only if P,N J(P)=](P,).

Proof. We assume J(P)NP,=J(P,). 'Then P,JJ(P,) is a R/J(R)-sub-
module of P/J(P) and P[J(P)=P,[J(P,)®P,/J(P,) for some R-projective module
Pp by [9], Theorem 4.3. Hence, J(P,) is small in P, by Lemma 6. Next,
we have a diagram

k
O"ﬁJ(Po)_*Po__’P/PT——%()

i NP
where 7 is an inclusion map of P, to P and k=vi and P¥=P,+J(P). Since
P is projective, we obtain g: P—P, so that kg=v. Let p, in P,, then
(gi(po)— Po) is in J(Sp,). Therefore, gi is isomorphic, which means P, is a
direct summand of P. The converse is clear,
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Proposition 6. There exists a semi-perfect module if and only if R contains
a completely indecomposable and projective right ideal.

Proof. If P is semi-perfect, then P contains a completely indecomposable
semi-perfect module P, by [9], Corollary 5.3. Hence, P,/J(P,) is a minimal
R[J(R)-projective module. Since J(P,) is small, P,=pR for some pc P,. Hence,
P,~¢R for some idempotent e in R. The converse is clear from [6], Theorem 5.

4. Krull-Remak-Schmidt-Azumaya’s theorem

In this section, we shall prove Kanbara’s theorem in [7] as a corollary of
Lemma 5. Let {M,}; be a family of completely indecomposable R-modules and
A the induced category from {M,}. We denote the ideal of 2 defined in [5], §3
by J’. It is sufficient to prove that J(.Sy)=3 NSy under the condition that
{M,} is a semi-T-nilpotent system with respect to ', whereM =EI®M,,.

However, if we use the argument in the proof of Lemma 5 in [5], we know that
{M,} satisfies the condition 2 in Lemma 5 if we take €=3J’. It is clear that the
conditions 1 and 3 are satisfied. Therefore, we obtain J(Sy)=J" N Sy from
Lemma 5.
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