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Abstract
The paper develops the theory of quandle rings introduced by the authors in a recent work. Or-

derability of quandles is investigated and many interesting examples of such quandles are given.
It is proved that quandle rings of left or right orderable quandles which are semi-latin have no
zero-divisors. Idempotents in quandle rings of certain interesting quandles are computed and
used to determine sets of maximal quandles in these rings. Understanding of idempotents is
further applied to determine automorphism groups of these quandle rings. Also, commutator
width of quandle rings is introduced and computed in a few cases.

1. Introduction

1. Introduction
A quandle is an algebraic system with a single binary operation that satisfies axioms

encoding the three Reidemeister moves of planar diagrams of links in the 3-space. These
objects show appearance in diverse areas of mathematics, namely, knot theory [19, 24],
group theory, set-theoretic solutions to the Yang-Baxter equations and Yetter-Drinfeld Mod-
ules [14], Riemannian symmetric spaces [23] and Hopf algebras [2], to name a few. Though
already studied under different guises in the literature, study of these objects gained mo-
mentum after the fundamental works of Joyce [19] and Matveev [24], who showed that link
quandles are complete invariants of non-split links up to orientation of the ambient 3-space.
Although link quandles are strong invariants, it is difficult to check whether two quandles
are isomorphic. This motivated search for newer properties and invariants of quandles them-
selves. We refer the reader to the articles [11, 21, 26] for more on the historical development
of the subject.

In recent years, quandles and their weaker analogues called racks have received a great
deal of attention. A (co)homology theory for quandles and racks has been developed in [12],
which has led to stronger invariants of links. In fact, a recent work [31] shows that quandle
cohomology is a Quillen cohomology, which is the cohomology group of a functor from the
category of models (or algebras) to that of complexes. Automorphisms of quandles, which
reveal a lot about their internal structures, have been investigated in much detail in a series
of papers [4, 5, 15]. Fusing ideas from combinatorial group theory into quandles, recent
works [7, 8] have shown that free quandles and link quandles are residually finite.

In an attempt to linearise the study of quandles, a theory of quandle rings analogous to
the classical theory of group rings was proposed in [6], where several interconnections be-
tween quandles and their associated quandle rings were investigated, and an analogue of the
group rings isomorphism problem for quandle rings was proposed. The work was developed
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further in a recent paper [16] of Elhamdadi et al., where examples of non isomorphic finite
quandles with isomorphic quandle rings have been given. At the same time, they proved
that if two finite quandles admit 2-transitive actions of their inner automorphism groups and
have isomorphic quandle rings, then the quandles have the same number of orbits of each
cardinality.

The purpose of this paper is to develop the theory of quandle rings further. It may be
mentioned that, at this point, our approach and motivation is purely algebraic. However, a
natural problem concerning knots and links (Problem 3.16) emerges from our discussion.
Following [6], given a quandle (resp. rack) Q and an integral domain R, the quandle (resp.
rack) ring R[Q] of Q with coefficients in R is defined as the set of all formal finite R-linear
combinations of elements of Q with usual operations (see Section 2). We investigate zero-
divisors in quandle rings using orderability of quandles and show that many interesting
quandles arising from orderable groups are left or right orderable. Investigation of unit
groups of group rings is a major research theme in the subject. An analogue of this problem
for quandles is the investigation of maximal quandles in quandle rings. We show that the
set mq(R[Q]) of all non-zero maximal quandles in R[Q] contains, in general, more than one
element. Since each element of a quandle is an idempotent in its quandle ring, the first step
towards a solution of the problem is to describe the set I(R[Q]) of all non-zero idempotents in
R[Q]. The problem of determining mq(R[Q]) also connects with the description of the group
Aut(R[Q]) of ring automorphisms of R[Q] that are R-linear. Clearly, every automorphism of
Q induces an automorphism of R[Q]. In fact, any automorphism φ ∈ Aut(R[Q]) is defined
by its action on Q and its image φ(Q) lies in some maximal quandle from mq(R[Q]). We
compute idempotents, maximal quandles and R-algebra automorphisms of quandle rings of
small order quandles including all quandles of order 3.

The paper is organised as follows. In Section 2, we recall some basic definitions and
examples from the theory of quandles and quandle rings. In Section 3, we introduce unique
product quandles and show that their quandle rings have no zero-divisors over integral do-
mains. We define orderability of quandles to give explicit examples of such quandles, and
show that a semi-latin quandle which is right or left orderable is necessarily a unique prod-
uct quandle. Our results also answer a question from [16, Question 4.3] about existence of
quandles whose quandle rings do not have zero-divisors, and suggest an analogue of Ka-
plansky’s zero-divisor conjecture for quandle rings. In Section 4, we compute idempotents
in quandle rings R[T], Z[R3], Z[R4] and Z[Cs(4)], where T is any trivial quandle, Rn is
a dihedral quandle and Cs(4) is the 3-element singular cyclic quandle of Joyce [18]. In
Section 5, the computation of idempotents is then used to determine the set of maximal
quandles in these quandle rings. In Section 6, we determine automorphism groups of these
quandle rings. More precisely, we prove that Aut(Z[T2]) � Z � Z2, Aut(Z[R3]) � Aut(R3),
Aut(Z[R4]) � (Z2 × Z2) � Z2 and Aut(Z[Cs(4)]) � Z2, where T2 is the 2-element trivial
quandle. In Section, 7, we introduce commutator width of quandle rings and give a bound
for the commutator width of finite non-commutative quandles admitting a 2-transitive action
by their automorphism groups. We also compute the precise commutator width of quandle
rings R[T], R[R3], R[R4] and R[Cs(4)]. We conclude with Section 8 where we comment on
relation of quandle algebras with other well-known non-associative algebras like alternative
algebras, Jordan algebras and Lie algebras.
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2. Preliminaries on quandle rings

2. Preliminaries on quandle rings
A quandle is a non-empty set Q with a binary operation (x, y) �→ x ∗ y satisfying the

following axioms:
Q1: x ∗ x = x for all x ∈ Q,
Q2: For any x, y ∈ Q there exists a unique z ∈ Q such that x = z ∗ y,
Q3: (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ Q.
An algebraic system satisfying only axioms Q2 and Q3 is called a rack. Many interesting

examples of quandles come from groups showing deep connection with group theory.
• If G is a group, then the binary operation a ∗ b = b−1ab turns G into the quandle

Conj(G) called the conjugation quandle of G.
• A group G with the binary operation a ∗ b = ba−1b turns the set G into the quandle

Core(G) called the core quandle of G. In particular, if G = Zn, the cyclic group of
order n, then it is called the dihedral quandle and denoted by Rn.
• Let G be a group and φ ∈ Aut(G). Then the set G with binary operation a ∗ b =
φ(ab−1)b forms a quandle Alex(G, φ) referred as the generalized Alexander quandle
of G with respect to φ.

A quandle Q is called trivial if x ∗ y = x for all x, y ∈ Q. Unlike groups, a trivial quandle
can have arbitrary number of elements. We denote the n-element trivial quandle by Tn and
an arbitrary trivial quandle by T.

Notice that the axioms Q2 and Q3 are equivalent to the map Sx : Q→ Q given by

Sx(y) = y ∗ x

being an automorphism of Q for each x ∈ Q. These automorphisms are called inner au-
tomorphisms, and the group generated by all such automorphisms is denoted by Inn(X). A
quandle is said to be connected if it admits a transitive action by its group of inner automor-
phisms. For example, dihedral quandles of odd order are connected, whereas that of even
order are disconnected. A quandle X is called involutary if S2

x = idQ for each x ∈ Q. For
example, all core quandles are involutary. A quandle (resp. rack) Q is called commutative if
x ∗ y = y ∗ x for all x, y ∈ Q. The dihedral quandle R3 is commutative and no trivial quandle
with more than one element is commutative.

A quandle Q is called latin if left multiplication by each element of Q is a bijection of Q,
that is, the map Lx : Q→ Q defined by

Lx(y) = x ∗ y
is a bijection for each x ∈ Q. For example, R3 is latin but no trivial quandle with more than
one element is latin. We say that Q is semi-latin if left multiplication by each element of Q
is an injection of Q. Obviously, every latin quandle is semi-latin. The converse is not true in
general; for example, the quandle Core(Z) is semi-latin but not latin. In fact, a direct check
shows that if G is an abelian group, then Core(G) is semi-latin if and only G has no 2-torsion.
Similarly, one can see that for an arbitrary group G and an automorphism φ ∈ Aut(G), the
quandle Alex(G, φ) is semi-latin if and only if φ is fixed-point free.

Next we recall some definitions and results from [6]. Throughout this paper, unless spec-
ified otherwise, R will be an integral domain, that is, an associative and commutative ring
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with unity and without zero-divisors. From now onwards, except the situation where there
are more than one binary operations on a set, we denote the multiplication in a quandle (resp.
rack) by (x, y) �→ xy.

Let Q be a quandle and R[Q] the set of all formal finite R-linear combinations of elements
of Q, that is,

R[Q] :=

⎧⎪⎪⎨⎪⎪⎩
∑

i

αixi | αi ∈ R, xi ∈ Q

⎫⎪⎪⎬⎪⎪⎭ .
Then R[Q] is an additive abelian group with coefficient-wise addition. Define multiplication
in R[Q] by setting ⎛⎜⎜⎜⎜⎜⎜⎝

∑
i

αixi

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

β j x j

⎞⎟⎟⎟⎟⎟⎟⎠ :=
∑
i, j

αiβ j(xix j).

Clearly, the multiplication is distributive with respect to addition from both left and right,
and R[Q] forms a ring (in fact, an R-algebra), which we call the quandle ring (or quandle
algebra) of Q with coefficients in the ring R. Since Q is non-associative, unless it is a trivial
quandle, it follows that R[Q] is a non-associative ring in general. If Q is a rack, then its rack
ring (or rack algebra) R[Q] is defined analogously.

Define the augmentation map

ε : R[Q]→ R

by setting

ε

⎛⎜⎜⎜⎜⎜⎝
∑

i

αixi

⎞⎟⎟⎟⎟⎟⎠ =
∑

i

αi.

Clearly, ε is a surjective ring homomorphism, and ΔR(Q) := ker(ε) is a two-sided ideal of
R[Q], called the augmentation ideal of R[Q]. It is easy to see that {x − y | x, y ∈ Q} is a
generating set for ΔR(Q) as an R-module. Further, if x0 ∈ Q is a fixed element, then the set{
x − x0 | x ∈ Q \ {x0}} is a basis for ΔR(Q) as an R-module. For convenience, we denote
ΔZ(Q) by Δ(Q).

Since R[Q] is a ring without unity, it is desirable to embed it into a ring with unity. The
ring

R◦[Q] := R[Q] ⊕ Re,

where e is a symbol (not in Q) satisfying e
(∑

i αixi
)
=

∑
i αixi =

(∑
i αixi

)
e, is called the

extended quandle ring of Q. For convenience, we denote the unity 1e of R◦[Q] by e. We can
extend the augmentation map to ε : R◦[Q]→ R and define the extended augmentation ideal
as

ΔR◦(Q) := ker(ε : R◦[Q]→ R).

As before, it is easy to see that the set {x − e | x ∈ Q} is a basis for ΔR◦(Q) as an R-module.
We conclude the section by recalling a result that characterises trivial quandles in terms

of their augmentation ideals [6, Theorem 3.5].
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Theorem 2.1. A quandle Q is trivial if and only if Δ2
R(Q) = {0}.

3. zero-divisors in quandle rings

3. zero-divisors in quandle rings
Recall that a non-zero element u of a ring is called a zero-divisor if there exists a non-

zero element v such that either uv = 0 or vu = 0. Every non-zero nilpotent element of an
associative ring is a zero-divisor. Determining whether group rings of torsion-free groups
over fields have zero-divisors is a classical and still open problem in the theory of group
rings. In this section, we investigate the analogous problem for quandle rings.

Let R be an integral domain. It is easy to see that if T is a trivial quandle with more than
one element, then R[T] contains zero-divisors. If G is a group with an element g of finite
order, say n > 1, then the element

ĝ := 1 + g + · · · + gn−1

of the integral group ring Z[G] satisfies ĝ(1 − g) = 0, and hence Z[G] has a zero-divisor.
By analogy, it has been proved in [16, Proposition 4.1] that, if a quandle Q has a finite orbit
(under the action of Inn(Q)) with more than one element, then R[Q] has zero-divisors.

We first formulate some sufficient conditions under which a quandle ring contains zero-
divisors. We say that a quandle Q containing more than one element is inert if there is a
finite subset A = {a1, a2, . . . , an} of Q and two distinct elements x, y ∈ Q such that Ax = Ay,
where Az = {a1z, a2z, . . . , anz}.

Proposition 3.1. The following hold:

(1) Any extended quandle ring R◦[Q] contains zero-divisors.
(2) If Q is a quandle containing a trivial subquandle with more than one element, then

R[Q] contains zero-divisors.
(3) If Q is an inert quandle, then the quandle ring R[Q] contains zero-divisors. In

particular, if Q contains a finite subquandle with more than one element, then the
quandle ring R[Q] contains zero-divisors.

(4) If Q is not semi-latin, then the quandle ring R[Q] contains zero-divisors.

Proof. If e is the unit in R◦[Q] and x ∈ Q, then

x(e − x) = x − x2 = x − x = 0.

Thus, x and e − x are zero-divisors, which proves (1).
For (2), let T = {x1, x2} be a trivial subquandle in Q. Taking u = x1 − x2 ∈ R[Q] gives

u2 = (x1 − x2)(x1 − x2) = 0.

For (3), let x and y be two distinct elements in Q and A = {a1, a2, . . . , am} such that
Ax = Ay. Then

(a1 + a2 + · · · + am)(x − y) = 0.

If Q contains a finite subquandle A, then we can take x and y to be two distinct elements of
A.

For (4), suppose that for some x ∈ Q there exist distinct y, z ∈ Q such that Lx(y) = Lx(z).
Then we have
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x(y − z) = Lx(y) − Lx(z) = 0.

�

If R is an integral domain, then it is obvious that the quandle ring R[T1] of the one element
quandle T1 does not have zero-divisors. The following question has been raised in [16,
Question 4.3].

Question 3.2. Are there other quandles Q for which R[Q] does not have zero-divisors?

We introduce a class of quandles whose quandle rings do not have zero-divisors. As in
case of groups (see, for example, [27, Chapter 13]), a quandle Q is said to be a up-quandle
(unique product quandle) if given any two non-empty finite subsets A and B of Q, there is at
least one element x ∈ Q that has a unique representation of the form x = ab for some a ∈ A
and b ∈ B. A quandle Q is said to be a tup-quandle (two unique product quandle) if given
any two non-empty finite subsets A and B of Q with |A| + |B| > 2, there exists at least two
distinct elements x, y ∈ Q that have unique representations of the form x = ab and y = cd,
where a, c ∈ A and b, d ∈ B. It is clear that every t.u.p-quandle is a up-quandle.

The following observation is an analogue of the corresponding result for groups [27,
Chapter 13, Lemma 1.9].

Proposition 3.3. If Q is a up-quandle, then R[Q] has no zero-divisors.

Proof. Let u and v be non-zero elements of R[Q] and write

u =
n∑

i=1

αixi, v =

m∑
j=1

β jy j,

where αi, β j are non-zero elements of R and A = {xi} and B = {y j} are non-empty subsets of
Q. Then

uv =
∑
i, j

αiβ j xiy j,

where each αiβ j � 0 since R has no zero-divisors. Since Q is a up-quandle, there exists a
uniquely represented element in the product AB, say z = x1y1. It then follows that non-zero
summand α1β1x1y1 cannot be cancelled by any other term in the product uv. Thus, uv � 0
and R[Q] has no zero-divisors. �

We now consider orderable quandles to give explicit examples of up-quandles. Following
the notion of orderability of groups [27, Chapter 13], we say that a quandle Q is right
orderable if the elements of Q are linearly ordered with respect to a relation < such that
x < y implies xz < yz for all x, y, z ∈ Q. Similarly, we say that Q is left orderable if
the elements of Q are linearly ordered with respect to a relation < such that x < y implies
zx < zy for all x, y, z ∈ Q. A quandle is said to be bi-orderable (or simply orderable) if it is
both left and right orderable. Note that the definitions make sense for racks as well.

A right orderable group G must also be left orderable and vice-versa, but not under the
same ordering. Indeed, if < is a right ordering for G, then it is easy to see that <′ defined
by x <′ y if and only if y−1 < x−1 yields a left ordering (see [27, Chapter 13]). However,
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the case of quandles is not the same. For example, a trivial quandle can be right orderable
but not left orderable. Indeed, if T = {x1, x2, . . .} is a trivial quandle, then it is clear that the
linear order x1 < x2 < · · · is preserved under multiplication on the right, but is not preserved
under multiplication on the left.

The following result gives examples of some left and right orderable quandles arising
from groups.

Proposition 3.4. The following hold for an orderable group G:

(1) Conj(G) is a right orderable quandle.
(2) Core(G) is a left orderable quandle.
(3) If φ ∈ Aut(G) is an order reversing automorphism, then Alex(G, φ) is a left order-

able quandle.

Proof. Let G be an ordered group with order < and x, y, z ∈ G such that x < y. Then

x ∗ z = z−1xz < z−1yz = y ∗ z

implies that Conj(G) is a right orderable quandle, and

z ∗ x = xz−1x < yz−1x < yz−1y = z ∗ y
implies that Core(G) is a left orderable quandle. This proves (1) and (2).

For (3), ordering of G and φ being order reversing implies that φ(x)−1 < φ(y)−1. This
gives

z ∗ x = φ(zx−1)x = φ(z)φ(x−1)x < φ(z)φ(x−1)y < φ(z)φ(y−1)y = z ∗ y,
which proves that Alex(G, φ) is left orderable. �

We recall the construction of the free quandle on a given set ([17, p.351], [22]). Let S be
a set and F(S) the free group on S. Define

FR(S) :=
{
aw | a ∈ S, w ∈ F(S)}

with the operation given as

aw ∗ bu := awu−1bu.

A direct check shows that FR(S) is a free rack on S. The free quandle FQ(S) on S is then
defined as a quotient of FR(S) modulo the equivalence relation generated by

aw = aaw

for a ∈ S and w ∈ F(S). It is easy to see that FQ(S) is the desired free quandle satisfying the
universal property. If |S| = n, we denote FQ(S) by FQn. With this definition, we have the
following result.

Theorem 3.5. Free quandles are right orderable and semi-latin.

Proof. It is known that the free group Fn = 〈x1, x2, . . . , xn〉 is orderable [33, 13]. Conse-
quently, Conj(Fn) is right orderable by Proposition 3.4, and hence the free quandle FQn is
right orderable being a subquandle of Conj(Fn).

Let us prove that FQn is semi-latin. If n = 1, then FQn is the one-element trivial quandle
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and assertion is evident. Suppose that n > 1 and there are elements x, y, z ∈ FQn such that
x � y and z ∗ x = z ∗ y. Using the interpretation of elements of FQn as elements in Fn, we
can assume that

z = xz0
i , x = xx0

j , y = xy0
k , z0, x0, y0 ∈ Fn,

where ab := b−1ab. The identity z ∗ x = z ∗ y gives the equality

xz0 x−1
0 x j x0

i = xz0y
−1
0 xky0

i

in the free group Fn, which is equivalent to

xz0 x−1
0 x j x0y

−1
0 x−1

k y0z−1
0

i = xi.

But it is possible in Fn if and only if

(3.0.1) z0x−1
0 x jx0y

−1
0 x−1

k y0z−1
0 = xαi

for some integer α. Take the quotient of Fn by its commutator subgroup, the previous equal-
ity gives

x j · xk
−1
= xi

α,

where x j, xk, xi are the generators of the free abelian group Fn/F′n. Hence, j = k and α = 0.
Thus, (3.0.1) has the form

z0x−1
0 x jx0y

−1
0 x−1

j y0z−1
0 = 1.

Conjugating both sides by z0 gives

x−1
0 x jx0y

−1
0 x−1

j y0 = 1,

or

[x−1
j , y0x−1

0 ] = 1,

where [a, b] = a−1b−1ab. This equality holds if and only if y0x−1
0 = xβj for some integer β,

i.e. y0 = xβj x0. Hence, the elements z, x, y have the form

z = xz0
i , x = xx0

j , y = xx0
j ,

i.e. x = y. This contradiction proves that FQn is a semi-latin quandle. �

It is interesting to have an answer to the following question.

Question 3.6. Does there exists an infinite non-commutative bi-orderable quandle?

It is easy to see that a right or left orderable group must be infinite. But, this is not
true for quandles since any finite trivial quandle is right orderable. However, the following
properties hold.

Proposition 3.7. Let Q be a quandle. Then the following hold:

(1) If Q is right orderable, then the 〈Sy〉-orbit of x is infinite for all x, y ∈ Q with
Sy(x) � x.
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(2) If Q is left orderable, then it is semi-latin and the set {Ln
y(x)}n=0,1,... is infinite for

x � y ∈ Q, where

L0
y(x) = x, Li+1

y (x) = y ∗ (Li
y(x)), i = 0, 1, . . . .

Proof. If x < Sy(x) and the 〈Sy〉-orbit of x is finite, then right orderability of Q implies
that

x < Sy(x) < S2
y(x) < · · · < Sn

y(x) = x

for some integer n, which is a contradiction. Similarly, the assertion follows if Sy(x) < x.
Suppose that there are elements x, y, z ∈ Q with y � z, say y < z, such that x ∗ y = x ∗ z.

This is a contradiction to left orderability of Q, and hence Q must be semi-latin. Further, if
x � y are two elements of Q such that x = Ly(x), then x ∗ x = y ∗ x, which contradicts the
second quandle axiom. Hence, x < Ly(x) or Ly(x) < x. Suppose that x < Ly(x). Since Q is
left orderable, we have

x < Ly(x) < L2
y(x) < · · · < Ln

y(x) < · · · ,
and hence {Ln

y(x)}n=0,1,... is infinite. The case Ly(x) < x is similar. �

Corollary 3.8. If G is a non-trivial group, then Conj(G) is not left orderable and Core(G)
is not right orderable.

Proof. Since Conj(G) is not semi-latin and Core(G) is involutary, the assertions follow
from Proposition 3.7. �

If φ ∈ Aut(G) is an involution, then Alex(G, φ) is involutary and we obtain

Corollary 3.9. If G is a non-trivial group and φ ∈ Aut(G) an involution, then the quandle
Alex(G, φ) is not right orderable.

It is known that the group ring of a right orderable group has no zero-divisors [27, Chapter
13]. On the other hand, a trivial quandle with more than one element is right orderable and
its quandle ring always has zero-divisors. However, for semi-latin quandles we have the
following result, which is a quandle analogue of [27, Chapter 13, Lemma 1.7] and also
answers Question 3.2.

Proposition 3.10. Let Q be a semi-latin quandle. If Q is right or left orderable, then Q
is a t.u.p-quandle. In fact, if A and B are non-empty finite subsets of Q, then there exist
b′, b′′ ∈ B such that the product amaxb′ and aminb′′ are uniquely represented in AB, where
amax denotes the largest element in A and amin the smallest.

Proof. Suppose that Q is a semi-latin and right orderable quandle. Let

A = {amin = a1 < a2 < · · · < an = amax}, n ≥ 2,

and

B = {b1 < b2 < · · · < bm}
be two finite subsets of Q. We write the elements of the product AB in the tabular form
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　 a1b1 < a2b1 < · · · < anb1,

a1b2 < a2b2 < · · · < anb2,
...

...
...

...
...
...

...

a1bm < a2bm < · · · < anbm,

where the inequalities in the rows follow from the right ordering of Q. Since Q is semi-latin,
it follows that all the entries in each column are distinct.

Let bi ∈ B be the element such that a1bi is the minimal element in the first column. Let us
prove that we can take b′′ = bi, i.e. aminb′′ = a1bi is uniquely represented in AB. It suffices
to prove that a1bi < akbl for any pair (k, l) � (1, i). If k = 1, then the inequality a1bi < a1bl,
l � i, follows from the choice of bi. If k > 1, then a1bi ≤ a1bl and the inequalities in the l-th
row imply that a1bi < akbl.

Let b j ∈ B be the element such that anb j is the maximal element in the last column. We
prove that one can take b′ = b j, that is, akbl < anb j for each (k, l) � (n, j). If k = n, then the
inequality follows from the choice of b j. If k < n, then inequalities in the l-th row gives

akbl < anbl ≤ anb j.

Hence, the product amaxb′ = anb j is uniquely represented in AB. The case when Q is left
orderable is similar. �

Propositions 3.3 and 3.10 together yield the following result.

Theorem 3.11. Let Q be a semi-latin quandle. If Q is right or left orderable, then R[Q]
has no zero-divisors.

Theorem 3.5 and Theorem 3.11 leads to the following result.

Corollary 3.12. Quandle rings of free quandles have no zero-divisors.

As a consequence of Proposition 3.4, Proposition 3.7(2) and Theorem 3.11, we have the
following results.

Corollary 3.13. If G is an orderable group, then the quandle ring R[Core(G)] has no
zero-divisors.

Corollary 3.14. If G is an orderable group and φ ∈ Aut(G) an order reversing automor-
phism, then the quandle ring R[Alex(G, φ)] has no zero-divisors.

Proposition 3.1 and Theorem 3.11 suggest the following analogue of Kaplansky’s zero-
divisor conjecture for quandles.

Conjecture 3.15. Let R be an integral domain and Q a non-inert semi-latin quandle. Then
the quandle ring R[Q] has no zero-divisors.

It is known that all link groups are left orderable [10], whereas not all knot groups are
bi-orderable [28]. For example, the group of the figure-eight knot is bi-orderable and the
group of a non-trivial cable of an arbitrary knot is not bi-orderable. Since knot quandles are
deeply related to knot groups, the following problem seems interesting.

Problem 3.16. Determine which link quandles are left, right or bi-orderable.
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4. Idempotents in quandle rings

4. Idempotents in quandle rings
The computation of idempotents is an important problem in ring theory. The study of

idempotents in quandle rings is also motivated by the search for new quandles contained in
quandle rings. To compute the set I(R[Q]) of non-zero idempotents in a given quandle ring
R[Q], we begin with some general observations. First notice that each quandle element is,
by definition, an idempotent in its quandle ring and we refer to them as trivial idempotents.

It is well-known that integral group rings do not have non-trivial idempotents (see [20,
p. 123] or [27, p. 38]). In sharp contrast, in extended quandle rings, the identity element is
trivially an idempotent, and therefore the elements e − x, with x ∈ Q, are idempotents too.

Since the augmentation map ε : R[Q] → R is a ring homomorphism, it maps idempotent
in R[Q] to idempotents in R. Since R is an integral domain, ε(z) = 0 or ε(z) = 1 for each
idempotent z of R[Q]. In the first case z ∈ ΔR(Q), and in the second case z = x + δ for some
x ∈ X and δ ∈ ΔR(Q).

Proposition 4.1. If T is a trivial quandle, then I(R[T]) = x0 + ΔR(T), where x0 ∈ T is a
fixed element.

Proof. Since T is trivial, by Theorem 2.1, Δ2
R(T) = 0. It follows that non-zero idempotents

do not lie in ΔR(T). Hence, a non-zero idempotent has the form z = x0 + δ, where δ ∈ ΔR(T)
and x0 ∈ T some fixed element. Indeed,

z2 = x2
0 + x0δ + δx0 + δ

2 = x0 + δ = z

since x2
0 = x0, x0δ = δ

2 = 0 and δx0 = δ. �

Observe that, if a quandle Q = Q1  Q2 is a disjoint union of two subquandles, then

(4.0.2) I(R[Q]) ⊇ I(R[Q1]) ∪ I(R[Q2]).

The inclusion is, in general, not an equality, as we see from the following result.

Proposition 4.2. Let Cs(4) be the 3-element singular cyclic quandle given by

Cs(4) =
〈
x, y, z | x2 = x, y2 = y, z2 = z, xy = x, xz = y, yx = y, yz = x, zx = z, zy = z

〉
.

Then I(Z[Cs(4)]) =
{
(1 − β)x + βy, αx + αy + (1 − 2α)z | β, α ∈ Z}.

Proof. The quandle Cs(4) is a disjoint union of two trivial subquandles, i.e. Cs(4) =
{x, y}  {z}. If w = αx + βy + γz ∈ Z[Cs(4)], then

w2 = (α2 + αβ + βγ)x + (αβ + β2 + αγ)y + (αγ + βγ + γ2)z.

Thus, w is an idempotent if and only if the system of equations

α = α2 + αβ + βγ,

β = β2 + αβ + αγ,

γ = γ2 + αγ + βγ,

is simultaneously solvable over integers. Suppose that γ = 0. Then we have the equations

α = α2 + αβ, β = β2 + αβ.
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If α = 0, then β = 0 or β = 1. In the first case w = 0, and in the second case w = y. If α � 0,
then α = 1 − β and we have idempotents

w = (1 − β)x + βy, β ∈ Z.
These are idempotents of the quandle ring Z[{x, y}].

Suppose further that γ � 0. Then the third equation of the system gives γ = 1 − α − β.
Substituting this expression in the first and the second equations gives

(α − β)(α + β) = (α − β).
If α − β � 0, then we have the same idempotent as in the previous case. If α − β = 0, then
we have idempotents

w = αx + αy + (1 − 2α)z, α ∈ Z.
Thus, we have

I(Z[Cs(4)]) =
{
(1 − β)x + βy, αx + αy + (1 − 2α)z | β, α ∈ Z}.

�

The preceding example shows that

I(Z[Cs(4)]) � I(Z[{x, y}]) ∪ I(Z[{z}]),
and hence the inclusion in (4.0.2) is, in general, strict.

Let Rn = {a0, a1, . . . , an−1} be the dihedral quandle of order n, where ai ∗ a j = a2 j−i (mod n).
We examine idempotents in Z[Rn] for 1 ≤ n ≤ 4. Note that R1 and R2 are trivial quandles.

Proposition 4.3. I(Z[R3]) = {a0, a1, a2}.
Proof. Let z = α0a0 + α1a1 + α2a2 ∈ Z[R3] be an idempotent. Then ε(z) = 0 or ε(z) = 1.

Case 1. ε(z) = 0, i.e. α0 = −α1 − α2. Then z = α1e1 + α2e2, where ei = ai − a0. The
elements e1 and e2 generate Δ(R3) and have the following multiplication table.

· e1 e2

e1 e1 − 2e2 −e1 − e2

e2 −e1 − e2 −2e1 + e2

Thus,

z2 = (α2
1 − 2α1α2 − 2α2

2)e1 + (α2
2 − 2α1α2 − 2α2

1)e2.

The equality z2 = z leads to the equations

α1 = α
2
1 − 2α1α2 − 2α2

2, α2 = α
2
2 − 2α1α2 − 2α2

1.

Subtracting the second equation from the first yields

α1 − α2 = 3(α1 − α2)(α1 + α2).

It is not difficult to see that in this case the system of equations has only zero solution αi = 0
for i = 0, 1, 2.
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Case 2. ε(z) = 1. In this case α0 = 1 − α1 − α2. Then z = a0 + α1e1 + α2e2 and we get

z2 = a2
0 + (2α2 + α

2
1 − 2α1α2 − 2α2

2)e1 + (2α1 + α
2
2 − 2α1α2 − 2α2

1)e2.

From z2 = z, we obtain the equations

α1 − 2α2 = α
2
1 − 2α1α2 − 2α2

2, α2 − 2α1 = α
2
2 − 2α1α2 − 2α2

1.

Subtracting the second from the first gives

α1 − α2 = (α1 − α2)(α1 + α2).

If α1 = α2, then the system is equivalent to the equation α1 = 3α2
1, which has only zero

solution (α1, α2) = (0, 0). Thus, α0 = 1, and hence z = a0 in this case. If α1 � α2, then the
system has solutions (α1, α2) = (1, 0) or (0, 1). In this case α0 = 0, and hence z = a1 or a2.

�

Since R4 is disconnected and is disjoint union of its two trivial subquandles {a0, a2} and
{a1, a3}, we obtain

I(Z[R4]) ⊇ I(Z[{a0, a2}]) ∪ I(Z[{a1, a3}]).
In fact, we have equality in this case.

Proposition 4.4. I(Z[R4]) =
{
t
(
a0+α(a2−a0)

)
+(1−t)

(
a1+β(a3−a1)

) | t ∈ {0, 1}, α, β ∈ Z}.
Proof. If z = α0a0 + α1a1 + α2a2 + α3a3 ∈ Z[R4], then a straightforward computation

gives

z2 = (α2
0 + α0α2 + α1α2 + α2α3)a0 + (α2

1 + α0α3 + α1α3 + α2α3)a1

+(α2
2 + α0α1 + α0α2 + α0α3)a2 + (α2

3 + α0α1 + α1α2 + α1α3)a3.

The equality z2 = z holds if and only if the following system of equations

α0 = α2
0 + α0α2 + α1α2 + α2α3,

α1 = α2
1 + α0α3 + α1α3 + α2α3,

α2 = α2
2 + α0α1 + α0α2 + α0α3,

α3 = α2
3 + α0α1 + α1α2 + α1α3,

has integral solutions. We use the observation from the beginning of this section and con-
sider two cases:

Case 1. ε(z) = 0, i.e. z ∈ Δ(R4). In this case

z = αe1 + βe2 + γe3 for some α, β, γ ∈ Z,
where ei = ai − a0, i = 1, 2, 3. Using the multiplication table below, we obtain

z2 = (α2 − γ2)e1 − (α2 + 2αβ + 2αγ + 2βγ + γ2)e2 + (−α2 + γ2)e3.
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· e1 e2 e3

e1 e1 − e2 − e3 0 e1 − e2 − e3

e2 −2e2 0 −2e2

e3 −e1 − e2 + e3 0 −e1 − e2 + e3

The element z is an idempotent if and only if

α = α2 − γ2,

β = −(α2 + 2αβ + 2αγ + 2βγ + γ2),

γ = −α2 + γ2.

Adding the first and third equations gives α + γ = 0, i.e. γ = −α. Then it follows from the
system of equations that α = β = γ = 0. Thus, Δ(R4) does not have non-zero idempotents.

Case 2. ε(z) = 1, i.e. z = a0 + δ, where δ ∈ Δ(R4) and

δ = αe1 + βe2 + γe3 for some α, β, γ ∈ Z.
We have z2 = a0+δa0+a0δ+δ

2. Since Δ(R4) is a two-sided ideal, we have δa0, a0δ ∈ Δ(R4).
Using the formulas

e1a0 = e3, e2a0 = e2, e3a0 = e1, a0e1 = e2, a0e2 = 0, a0e3 = e2,

we obtain

δa0 = αe3 + βe2 + γe1, a0δ = αe2 + γe2.

Using the expression for δ2 from Case 1 gives

z2 = a0 + (γ + α2 − γ2)e1 + (β + α + γ − α2 − γ2 − 2αγ − 2αβ − 2βγ)e2 + (α − α2 + γ2)e3.

Now z is an idempotent if and only if the system of equations

α = γ + α2 − γ2,

0 = α + γ − α2 − γ2 − 2αβ − 2αγ − 2βγ,

γ = α − α2 + γ2,

has integral solutions. The first equation has the form

(α − γ) = (α − γ)(α + γ).
Suppose that α = γ, then the second equation has the form 0 = α(1 − 2α − 2β). If α = 0,
then for arbitrary β we have the idempotent z = a0 + β(a2 − a0). If α � 0, then the second
equation does not have solutions.

Suppose that α � γ, then γ = 1 − α and the second equation gives β = 0. Hence, for
arbitrary α we have the idempotent z = a3 + α(a1 − a3). �

Remark 4.5. Note that T3, R3 and Cs(4) are, up to isomorphism, all the quandles of order
3, which we have considered in this section. Since the number of quandles grow rapidly
with order (see [16, Table 1]), for example, there are 7 quandles of order 4 and 22 quandles
of order 5, computation of idempotents seems, in general, a challenging problem. Further,
Proposition 4.3 deals with a connected quandle whereas Propositions 4.1 and 4.4 consider
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disconnected quandles. This makes us suspect that probably connected quandles have only
trivial idempotents.

5. Maximal quandles in quandle rings

5. Maximal quandles in quandle rings
Recall that mq(R[Q]) denotes the set of non-zero maximal quandles in the quandle ring

R[Q]. Obviously, {0} is a trivial quandle in R[Q], called the zero quandle. Further, if some
quandle X in R[Q] contains {0}, then X = {0}. We begin by determining maximal quandles
in the quandle ring R[T].

Proposition 5.1. mq(R[T]) =
{{x0 + ΔR(T)}}, where x0 ∈ T is a fixed element.

Proof. By Proposition 4.1, x0 + ΔR(T) is the complete set of idempotents of R[T]. It
remains to prove the quandle axioms Q2 and Q3. Taking z = x0 + δ and w = x0 + δ

′, where
δ, δ′ ∈ Δ(Tn), we see that

zw = (x0 + δ)(x0 + δ
′) = x0 + δx0 + x0δ

′ + δδ′ = x0 + δ = z.

Thus, the two axioms hold, and x0 + ΔR(T) is, in fact, a trivial quandle. �

As a direct consequence of Proposition 4.3, we obtain

Proposition 5.2. mq(Z[R3]) = {R3}.
Regarding R4, which is disconnected, we prove the following.

Theorem 5.3. The quandle ring Z[R4] contains a unique maximal quandle, namely,

M =
{
t
(
a0 + α(a2 − a0)

)
+ (1 − t)

(
a1 + β(a3 − a1)

) ∣∣∣ t ∈ {0, 1}, α, β ∈ Z
}
.

Proof. By Proposition 4.4, M is the complete set of idempotents in Z[R4]. Therefore any
quandle in Z[R4] must be contained in M. Thus, to prove the theorem, we need to show that
M is itself a quandle. We write M = M1  M2, where

M1 =
{
a0 + α(a2 − a0) | α ∈ Z},

M2 =
{
a1 + β(a3 − a1) | β ∈ Z}.

A direct check shows that each Mi is a trivial quandle. Further, for u = a0 +α(a2 − a0) ∈ M1

and v = a1 + β(a3 − a1) ∈ M2, we have

uv = (a0 + α(a2 − a0))(a1 + β(a3 − a1)) = a0 + (1 − α)(a2 − a0) ∈ M1

and

vu = (a1 + β(a3 − a1))(a0 + α(a2 − a0)) = a1 + (1 − β)(a3 − a1) ∈ M2.

Thus, M is closed under multiplication. The proof would be complete once we show that the
map Su : M → M given by Su(w) = wu is an automorphism of M for each u ∈ M. Suppose
that u ∈ M1. Then Su|M1 is the identity automorphism of M1. If w = a1 + β(a3 − a1) ∈ M2,
then

Su(w) = a1 + (1 − β)(a3 − a1).
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Thus, Su|M2 is the automorphism of M2 that is induced by the automorphism of the subquan-
dle {a1, a3} permuting the elements, and hence Su is an automorphism of M.

Now suppose that u ∈ M2. A direct check shows that Su|M2 is the identity automorphism.
If w = a0 + α(a2 − a0) ∈ M1, then

Su(w) = a0 + (1 − α)(a2 − a0).

Thus, Su|M1 is the automorphism of M1 induced by the automorphism of the quandle {a0, a2}
permuting the elements, and Su is an automorphism of M in this case as well. �

Theorem 5.4. mq(Z[Cs(4)]) = {N1,N2}, where

N1 =
{
z, (1 − β)x + βy | β ∈ Z}

and

N2 =
{
αx + αy + (1 − 2α)z | α ∈ Z}.

Proof. Note that N1 and N2 are subsets of I(Z[Cs(4)]) which, by Proposition 4.2, is the
complete set of idempotents in Z[Cs(4)]. A direct check shows that both N2 and the set{
(1 − β)x + βy | β ∈ Z} are trivial quandles. Further,

z((1 − β)x + βy) = z

and

((1 − β)x + βy)z = βx + (1 − β)y.
Thus, the map Sz : N1 → N1 act by permuting the elements x, y and fixing the element z,
which shows that N1 is also a quandle. It remains to show that N1 and N2 are maximal.

For each u ∈ I(Z[Cs(4)]), consider the map Su : I(Z[Cs(4)]) → I(Z[Cs(4)]) given by
Su(w) = wu. If u = (1 − β)x + βy, then a direct check shows that Su is the identity map on
I(Z[Cs(4)]). And, if u = αx + αy + (1 − 2α)z, then Su|N2 is the identity map. On the other
hand, for elements of the form w = (1 − β)x + βy, we have

Su(w) = ((1 − β)x + βy)(αx + αy + (1 − 2α)z) = (1 − β′)x + β′y,

where β′ = 1 − β − 2α + 4αβ. Although it follows that Su(vw) = Su(v)Su(w) for all v, w ∈
I(Z[Cs(4)]), it turns out that Su is surjective if and only if u = z. In fact, given (1 − γ)x + γy,
there exists (1 − β)x + βy such that Su((1 − β)x + βy) = (1 − γ)x + γy if and only if β =
(γ + 2α − 1)/(4α − 1). This equation admits an integral solution for each γ if and only if
α = 0. Thus, N1 and N2 are the only two maximal quandles in Z[Cs(4)]. �

Theorem 5.5. mq(Z2[R3]) =
{
{a0 + a1 + a2}, R3, {a0 + a1, a0 + a2, a1 + a2}

}
,

where R3 � {a0 + a1, a0 + a2, a1 + a2}.
Proof. By Proposition 5.2, mq(Z[R3]) = {R3}. We use the mod 2 reduction homomor-

phism ϕ2 : Z[R3] → Z2[R3] to determine mq(Z2[R3]). The quandle ring Z2[R3] contains 8
elements and a direct check shows that all its elements are idempotents. Denote

zε0,ε1,ε2 = ε0a0 + ε1a1 + ε2a2, εi ∈ {0, 1},
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and set Sε0,ε1,ε2 : Z2[R3] → Z2[R3] be the right multiplication by the element zε0,ε1,ε2 . Then
the maps S1,0,0, S0,1,0 and S0,0,1 are automorphisms of order 2 since they are automorphisms
of R3. We now determine actions of the other maps.

The maps S1,1,0 acts by the rules:

S1,1,0(a0) = a0 + a2, S1,1,0(a1) = a2 + a1, S1,1,0(a2) = a1 + a0, S1,1,0(a0 + a1) = a0 + a1,

S1,1,0(a0 + a2) = a1 + a2, S1,1,0(a1 + a2) = a0 + a2, S1,1,0(a0 + a1 + a2) = 0.

The maps S1,0,1 acts by the rules:

S1,0,1(a0) = a0 + a1, S1,0,1(a1) = a2 + a0, S1,0,1(a2) = a1 + a2, S1,0,1(a0 + a1) = a1 + a2,

S1,0,1(a0 + a2) = a0 + a2, S1,0,1(a1 + a2) = a0 + a1, S1,0,1(a0 + a1 + a2) = 0.

The maps S0,1,1 acts by the rules:

S0,1,1(a0) = a2 + a1, S0,1,1(a1) = a1 + a0, S0,1,1(a2) = a0 + a2, S0,1,1(a0 + a1) = a0 + a2,

S0,1,1(a0 + a2) = a0 + a1, S0,1,1(a1 + a2) = a1 + a2, S0,1,1(a0 + a1 + a2) = 0.

The maps S1,1,1 acts by the rules:

S1,1,1(a0) = a0+a2+a1, S1,1,1(a1) = a2+a1+a0, S1,1,1(a2) = a1+a0+a2, S1,1,1(a0+a1) = 0,

S1,1,1(a0 + a2) = 0, S1,1,1(a1 + a2) = 0, S1,1,1(a0 + a1 + a2) = a0 + a1 + a2.

Looking at the images of these maps, we see that the only possible maximal quandles in
Z2[R3] are {a0 + a1 + a2}, R3, and {a0 + a1, a0 + a2, a1 + a2}, where R3 is clearly isomorphic
to {a0 + a1, a0 + a2, a1 + a2}. �

An immediate consequence of Theorem 5.5 and Proposition 5.2 is the following.

Corollary 5.6. The map mq(Z[R3]) → mq(Z2[R3]) induced by the mod 2 reduction ho-
momorphism Z[R3]→ Z2[R3] is not surjective.

6. Automorphisms of quandle algebras

6. Automorphisms of quandle algebras
For a quandle Q denote by Aut(R[Q]) the group of R-algebra automorphisms of R[Q],

that is, ring automorphisms of R[Q] that are R-linear. It is evident that Aut(Q) ≤ Aut(R[Q]).
Further, if Q is a finite quandle with n elements, then Aut(R[Q]) ≤ GLn(R).

Note that any φ ∈ Aut(R[Q]) is defined by its action on elements of Q. Suppose that
Q = {x1, x2, . . . , xn}. Then each φ(xi) is an idempotent of R[Q] and the quandle φ(Q) is
isomorphic to Q. Using these facts we determine the automorphism groups of quandle
algebras of some quandles of small orders.

Let Tn = {x1, x2, . . . , xn} be the n-element trivial quandle. We know that Aut(Tn) is iso-
morphic to the symmetric group Σn. Since the group Aut(Z[T1]) is trivial, we assume that
n > 1. If φ ∈ Aut(Z[Tn]), then φ(Tn) is an n-element trivial quandle and φ is an isomorphism
of the Z-module Z[Tn]. Since each φ(xi) is an idempotent, by Proposition 4.1, we have
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φ(x1) = x1 + α11(x2 − x1) + α21(x3 − x1) + · · · + αn−1,1(xn − x1),

φ(x2) = x1 + α12(x2 − x1) + α22(x3 − x1) + · · · + αn−1,2(xn − x1),

...

φ(xn) = x1 + α1n(x2 − x1) + α2n(x3 − x1) + · · · + αn−1,n(xn − x1),

and the main problem is to find such integers αi j such that the matrix [φ] has determinant
±1.

For the case n = 2 we have

Theorem 6.1. Aut(Z[T2]) � Z � Z2.

Proof. For any automorphism φ ∈ Aut(Z[T2]), by the preceding discussion, we have

φ :
{

x1 �−→ (1 − α)x1 + αx2,

x2 �−→ (1 − β)x1 + βx2,

for some integers α and β. We first determine α and β for which φ is an automorphism of
the Z-module Z[T2]. For that to hold, if

[φ] =
(

1 − α 1 − β
α β

)
,

then det([φ]) = β − α must be equal to ±1.
If det([φ]) = 1, then β − α = 1 and

Aα := [φ] =
(

1 − α −α
α 1 + α

)
.

If det([φ]) = −1, then β − α = −1 and

Bα := [φ] =
(

1 − α 2 − α
α α − 1

)
.

A direct check shows that the automorphism φ corresponding to Aα, Bα preserve the ring
multiplication in Z[T2]. Thus, we have

Aut(Z[T2]) =
{
Aα, Bα | α ∈ Z}.

It is easy to see that A0 = I is the identity matrix, and for arbitrary integers α, β the following
formulas holds

AαAβ = Aα+β, BαBβ = Aα−β.

It follows from the first formula that {Aα | α ∈ Z} is the infinite cyclic group with generator
A1. The second formula gives Bβ = Aβ−1B1, and hence Aut(Z[T2]) is generated by A1 and
B1. The matrix B1 has order 2 and it is permutation of x1 and x2. Since B1AαB1 = A−α, the
subgroup 〈A1〉 is normal in Aut(Z[T2]), and we have the desired result. �

Theorem 6.2. Aut(Z[Cs(4)]) � Z2.
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Proof. Let φ ∈ Aut(Z[Cs(4)]). Since image of an idempotent under φ is an idempotent,
by Proposition 4.2, we have

{φ(x), φ(y), φ(z)} ⊂ {
(1 − β)x + βy | β ∈ Z} ∪ {

αx + αy + (1 − 2α)z | α ∈ Z}.
A direct check shows that the images of all the three generators cannot be of the same type,
else φ would not be a bijection. If

φ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x �−→ (1 − α)x + αy,
y �−→ βx + βy + (1 − 2β)z,
z �−→ (1 − γ)x + γy,

then the relation xz = y gives 1 = 2β, a contradiction. Similarly, if

φ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x �−→ αx + αy + (1 − 2α)z,
y �−→ (1 − β)x + βy,
z �−→ γx + γy + (1 − 2γ)z,

then the relation yz = x gives 1 = 2α, again a contradiction. Interchanging roles of x
and y, we see that φ(y) and φ(z) cannot be of the same type. Thus, only φ(x) and φ(y) are
idempotents of the same type. Arguments as above show that the only possibility is

φ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x �−→ (1 − α)x + αy,
y �−→ (1 − β)x + βy,
z �−→ γx + γy + (1 − 2γ)z.

Computing det([φ]) and equating to ±1 gives (1−2γ)(β−α) = ±1. This implies that γ = 0, 1
and β = α + ε, where ε = ±1.

If γ = 0, then evaluating φ on the relation xz = y gives 2α = 1 − ε. For ε = 1, we see that
[φ] is the identity matrix. On the other hand, ε = −1 gives

A := [φ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

In fact, A is induced by the quandle automorphism x �→ y, y �→ x, z �→ z, which obviously
preserve the ring multiplication.

Similarly, if γ = 1, then evaluating φ on the relation xz = y gives 2α = 1− ε. In this case,
ε = 1 gives

B1 := [φ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 1
0 1 1
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and ε = −1 gives

B2 := [φ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 1
1 0 1
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

An easy check shows that Bi(x)Bi(z) � Bi(y) for i = 1, 2 although xz = y in Z[Cs(4)]. Thus,
only A gives a desired automorphism, and hence Aut(Z[Cs(4)]) � Z2. �
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Proposition 6.3. Aut(Z[R3]) � Σ3 � Aut(R3).

Proof. If φ ∈ Aut(Z[R3]), then, by Proposition 4.3,

{φ(a0), φ(a1), φ(a2)} = {a0, a1, a2}.
Thus, φ is represented by a permutation matrix, which lies in Σ3. Conversely, a direct check
shows that any R-module automorphism φ represented by a permutation matrix satisfies
φ(aia j) = φ(ai)φ(a j), and hence φ ∈ Aut(Z[R3]). �

Theorem 6.4. Aut(Z[R4]) � (Z2 × Z2) � Z2.

Proof. Note that the quandle R4 = {a0, a1, a2, a3} is a disjoint union of trivial subquandles
{a0, a2} and {a1, a3}. Since an algebra automorphism maps idempotents to idempotents, it
follows from Proposition 4.4 that any φ ∈ Aut(Z[R4]) is of the form φ(ai) = (1−αi)a0+αia2

or (1− αi)a1 + αia3 for each i. It is clear that no three or more φ(ai) can be of the same form
else φ would not be a bijection. Thus, exactly two φ(ai) are of one form and the remaining
two of the other form. If φ(a0) and φ(a1) are of the same form, then evaluating φ on a0a1 = a2

gives a contradiction. Similar arguments show that φ(a0) and φ(a3) cannot be of the same
form. Thus, we must have

φ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 �−→ (1 − α)a0 + αa2,

a1 �−→ (1 − β)a1 + βa3,

a2 �−→ (1 − γ)a0 + γa2,

a3 �−→ (1 − δ)a1 + δa3,

or

φ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 �−→ (1 − α)a1 + αa3,

a1 �−→ (1 − β)a0 + βa2,

a2 �−→ (1 − γ)a1 + γa3,

a3 �−→ (1 − δ)a0 + δa2,

for some integers α, β, γ, δ. One can check that the second automorphism can be obtained
by composing the first with τ, where τ is the algebra automorphism induced by the quandle
automorphism of R4 given by

τ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 �−→ a1,

a1 �−→ a0,

a2 �−→ a3,

a3 �−→ a2.

Thus, it is enough to consider φ to be of first type. If we write

[φ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − α 0 1 − γ 0
0 1 − β 0 1 − δ
α 0 γ 0
0 β 0 δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then det([φ]) = ±1 implies that (γ − α)(δ − β) = ±1. Thus, we can write γ = α + ε1 and
δ = β + ε2, where εi = ±1.

Applying φ on the identity a0a1 = a2 gives 1 − ε1 = 2α. Thus, ε1 = 1 yields α = 0
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and γ = 1, whereas ε1 = −1 yields α = 1 and γ = 0. Similarly, applying φ on the identity
a1a0 = a3 gives 1 − ε2 = 2β. In this case, ε2 = 1 gives β = 0 and δ = 1, whereas ε2 = −1
gives β = 1 and δ = 0. Thus, we obtain four matrices {I, A, B, AB}, where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A direct check shows that all the four Z-module automorphisms corresponding to these
matrices preserve the ring multiplication in Z[R4]. Further, A2 = B2 = I, AB = BA and
[τ]A[τ] = B, where [τ] is the matrix of τ. Thus, Aut(Z[R4]) �

(〈A〉 × 〈B〉) � 〈
[τ]

〉
�

(Z2 × Z2) � Z2. �

Problem 6.5. Compute automorphism groups of integral quandle rings of all trivial,
dihedral and free quandles.

7. Commutator width in quandle algebras

7. Commutator width in quandle algebras
Let Q be a quandle and R a commutative and associative ring with unity. Define the

commutator of elements u, v ∈ R[Q] as the element

[u, v] = uv − vu.
Then the commutator subalgebra R[Q]′ of R[Q] is the R-algebra generated by the set of
all commutators in R[Q]. If Q is a commutative quandle, then the commutator subalgebra
R[Q]′ = {0}. Since ε([u, v]) = 0 for each commutator [u, v] ∈ R[Q]′, we obtain

Lemma 7.1. R[Q]′ ≤ ΔR(Q).

The equality in the preceding lemma does not hold in general. For example, the dihedral
quandle R3 is commutative, and hence Z[R3]′ = 0. On the other hand, Δ(R3) = 〈e1, e2〉 � 0.

We define the commutator length cl(u) of an element u ∈ R[Q]′ as

cl(u) = min

⎧⎪⎪⎨⎪⎪⎩n

∣∣∣∣∣∣ u =
n∑

i=1

αi[ui, vi],where αi ∈ R, ui, vi ∈ R[Q]

⎫⎪⎪⎬⎪⎪⎭ .
The commutator width cw(R[Q]) is defined as

cw(R[Q]) = sup
{
cl(u) | u ∈ R[Q]′

}
.

In the remainder of this section, we compute the commutator width of a few quandle
rings. We remark that the analogous problem of computation of commutator width of free
Lie rings [3], free metabelian Lie algebras [29] and absolutely free and free solvable Lie
rings of finite rank [30] has been considered in the literature.
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It follows from the definition of commutator width that a quandle Q is commutative if
and only if cw(R[Q]) = 0. Consequently, we have cw(R[R3]) = 0.

We say that a quandle Q is strongly non-commutative if for every pair of distinct elements
x, y ∈ Q there exist elements a, b ∈ Q such that ab = x and ba = y. Obviously, every strongly
non-commutative quandle is non-commutative.

Theorem 7.2. Let Q be a strongly non-commutative quandle or a non-commutative quan-
dle admitting a 2-transitive action by Aut(Q). Then the following hold:

(1) R[Q]′ = ΔR(Q).
(2) If Q has order n, then 1 ≤ cw(R[Q]) ≤ n − 1.

Proof. In view of Lemma 7.1, we only need to show that ΔR(Q) ≤ R[Q]′. Since ΔR(Q) is
generated as an R-module by elements of the form x−y, where x, y ∈ Q are distinct elements,
it suffices to show that each such element is a commutator. Suppose first that Q is strongly
non-commutative. Let x, y ∈ Q be two distinct elements. Then, by definition of a strongly
non-commutative quandle, there exist a, b ∈ Q such that x − y = ab − ba = [a, b] ∈ R[Q]′.
Now, suppose that Q is non-commutative. Then, there exist elements c, d ∈ Q such that
cd � dc. By 2-transitivity of Aut(Q) action on Q, there exists φ ∈ Aut(Q) such that φ(cd) = x
and φ(dc) = y. This gives x − y = φ(cd) − φ(dc) = [φ(c), φ(d)] ∈ R[Q]′, which proves
assertion (1).

Let Q = {x0, x1, . . . , xn−1}. Since R[Q]′ = ΔR(Q) by (1), any u ∈ R[Q]′ is of the form
u =

∑n−1
i=1 (xi − x0), where each (xi − x0) is a commutator as shown in the proof of (1). Since

Q is non-commutative we obtain 1 ≤ cw(R[Q]) ≤ n − 1. �

Corollary 7.3. Let G be an elementary abelian p-group with p > 3 and φ ∈ Aut(G) act
as multiplication by a non-trivial unit of Zp. Then 1 ≤ cw

(
R[Alex(G, φ)]

) ≤ |G| − 1.

Proof. The quandle Alex(G, φ) is non-commutative for p > 3 and admit a 2-transitive
action by Aut(Q) [4, Theorem 6.4]. �

We remark that a complete description of finite 2-transitive quandles has been given in
a recent work of Bonatto [9] by extending results of Vendramin [32]. The following result
shows that the bounds in Theorem 7.2 are not sharp.

Theorem 7.4. The following statements hold:

(1) If T is a trivial quandle, then cw(R[T]) = 1.
(2) cw(R[R4]) = 1.
(3) cw(R[Cs(4)]) = 1.

Proof. By Theorem 7.2, R[T]′ = ΔR(T), and hence any element of R[T]′ has the form
u =

∑n
i=1 αi(xi − x0). Taking v = (1 −∑n

i=1 αi)x0 +
∑n

i=1 αixi and w = x0, we see that

[v, w] = vw − wv
= ε(w)v − ε(v)w
= (1 −

n∑
i=1

αi)x0 +

n∑
i=1

αixi − x0
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=

n∑
i=1

αi(xi − x0) = u,

and hence cw(R[T]) = 1, which proves (1).
By Lemma 7.1, R[R4]′ ≤ ΔR(R4). We know that ΔR(R4) is generated by {e1, e2, e3}, where

ei = ai − a0 for i = 1, 2, 3. Let us find the commutators of the generators. One can check
that the elements

e1 = [a3, a2], e2 = [a2, a0], e3 = −[a2, a1],

lie in R[R4]′, i.e. R[R4]′ = ΔR(R4). We write an element w = αe1 + βe2 + γe3 ∈ ΔR(R4) as

w = [a2, βa0 − γa1 − αa3].

Thus, any element w ∈ R[R4]′ is a commutator, and hence cw(R[R4]) = 1, which proves (2).
The augmentation ideal ΔR(Cs(4)) is generated by e1 = y − x and e2 = z − x. Further,

multiplication rules in Cs(4) show that e1 = yx− xy and e2 = zy− yz, and hence R[Cs(4)]′ =
ΔR(Cs(4)). Let w = γ1e1 + γ2e2 ∈ ΔR(Cs(4)), where γi ∈ R. A direct check gives

e1x = e1, e2x = e2, xe1 = 0, xe2 = e1.

Now taking u = x + (γ1 + γ2)e1 + γ2e2 and v = x, we see that

[u, v] = uv − vu = w,
and hence cw(R[Cs(4)]) = 1, which establishes assertion (3). �

Problem 7.5. Compute commutator width of quandle algebras of dihedral and free quan-
dles.

8. Relation of quandle algebras with other algebras

8. Relation of quandle algebras with other algebras
A group algebra is associative and for studying it we can use methods of associative

algebras. But the quandle algebras are not associative for non-trivial quandles. On the other
hand, some classes of non associative algebras, for instance, alternative algebras, Jordan
algebras and Lie algebras, are well studied. Thus, it is interesting to know whether quandle
algebras belong to these classes of algebras. We conclude the paper by commenting on this
aspect here.

We recall some definitions (see, for example [34]). Let A be an algebra over a commuta-
tive and associative ring R with unity. Then A is called an alternative algebra if

a2b = a(ab) and ab2 = (ab)b for all a, b ∈ A;

A is called a Jordan algebra if it commutative and

(a2b)a = a2(ba) for all a, b ∈ A;

A is called a Lie algebra if

a2 = 0 and (ab)c + (bc)a + (ca)b = 0 for all a, b, c ∈ A;

A is called power-associative if every element of A generates an associative subalgebra of A
[1], and A is called an elastic algebra if
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(xy)x = x(yx) for all x, y ∈ A.

For example, any commutative or associative algebra is elastic. In particular quandle alge-
bras of trivial quandles are elastic being associative. It was proved in [6, Proposition 7.3]
that quandle algebras of dihedral quandles are not power-associative over rings of character-
istic other than 2. The result was generalised to quandle algebras of all non-trivial quandles
over rings of characteristic other than 2 and 3 [16, Theorem 3.4].

Proposition 8.1. Let Q be a non-trivial quandle. If R is a ring of characteristic other
than 2 and 3, then R[Q] cannot be an alternative, an elastic or a Jordan algebra.

Proof. By [16, Theorem 3.4], the quandle algebra R(Q) is not power-associative. On the
other hand, any Jordan algebra is power-associative [34, Chapter 2], and by Artin’s theorem
any alternative algebra is also power-associative [34, Chapter 2]. Further, if R[Q] is elastic,
then (xx)x = x(xx) and (xx)(xx) =

(
(xx)x

)
x for all x ∈ R[Q], and hence R[Q] is power-

associative. �

Remark 8.2. If Q is a quandle, then the third quandle axiom implies that (xy)x = x(yx)
for all x, y ∈ Q. Thus, all quandles satisfy the elasticity condition which, by Proposition 8.1,
is in contrast to their quandle algebras.

There are two natural constructions on any algebra A = 〈A;+, ·〉. Define an algebra
A(−) = 〈A;+, ◦〉 with multiplication

x ◦ y = xy − yx.
If A is an associative algebra, then A(−) is a Lie algebra. If R contains 1/2, then we define
A(+) = 〈A;+,�〉 with multiplication given by

x � y = 1
2

(xy + yx).

If A is an associative algebra, then A(+) is a Jordan algebra. We conclude with the following
result.

Theorem 8.3. Let T = {x1, x2, . . .} be a trivial quandle with more than one element,
A = R[T], L = A(−) the corresponding Lie algebra and J = A(+) the corresponding Jordan
algebra. If Lk is the subalgebra of L generated by products of k elements of L, then the
following hold:

(1) L2 = L3 and this algebra has a basis

{x1 − x2, x2 − x3, . . .}.
In particular, if T = Tn contains n elements, then L has rank n − 1.

(2) (L2)2 = 0, i.e. L is a metabelian algebra.
(3) J2 = J.

Proof. The algebra L2 is generated by the products xi ◦ x j = xi − x j, i < j. Denote
ei = xi − xi+1 and show that any product xi ◦ x j is a linear combination of ei. Indeed, if
j = i + 1, then this product is ei. If j − i > 1, then
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xi − x j = ei + ei+1 + · · · + e j−1.

On the other hand, it is easy to see that elements e1, e2, . . . are linearly independent. To
determine L3, we compute the products

ei ◦ x j = ei,

x j ◦ ei = −ei.

Hence, L2 ⊆ L3 and assertion (1) follows.
The algebra (L2)2 is generated by the products ei ◦ e j. Straightforward computation gives

ei ◦ e j = eie j − e jei = (xi − xi+1)(x j − x j+1) − (x j − x j+1)(xi − xi+1) = 0,

which is assertion (2).
For (3), since

xi � x j =
1
2

(xix j + x jxi) =
1
2

(xi + x j),

it follows that J2 contains elements xi = xi � xi, and hence J2 = J. �
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