Open Access
Translator Disclaimer
April 2019 Uniform well-posedness for a time-dependent Ginzburg-Landau model in superconductivity
Jishan Fan, Bessem Samet, Yong Zhou
Osaka J. Math. 56(2): 269-276 (April 2019).

Abstract

We study the initial boundary value problem for a time-dependent Ginzburg-Landau model in superconductivity. First, we prove the uniform boundedness of strong solutions with respect to diffusion coefficient 0 < $\epsilon$ < 1 in the case of Coulomb gauge. Our second result is the global existence and uniqueness of the weak solutions to the limit problem when $\epsilon=0$.

Citation

Download Citation

Jishan Fan. Bessem Samet. Yong Zhou. "Uniform well-posedness for a time-dependent Ginzburg-Landau model in superconductivity." Osaka J. Math. 56 (2) 269 - 276, April 2019.

Information

Published: April 2019
First available in Project Euclid: 3 April 2019

zbMATH: 07080084
MathSciNet: MR3934975

Subjects:
Primary: 35K55, 35Q35

Rights: Copyright © 2019 Osaka University and Osaka City University, Departments of Mathematics

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.56 • No. 2 • April 2019
Back to Top