Open Access
Translator Disclaimer
January 2018 $\delta$-homogeneity in Finsler geometry and the positive curvature problem
Ming Xu, Lei Zhang*
Osaka J. Math. 55(1): 177-194 (January 2018).


In this paper, we explore the similarity between normal homogeneity and $\delta$-homogeneity in Finsler geometry. They are both non-negatively curved Finsler spaces. We show that any connected $\delta$-homogeneous Finsler space is $G$-$\delta$-homogeneous, for some suitably chosen connected quasi-compact $G$. So $\delta$-homogeneous Finsler metrics can be defined by a bi-invariant singular metric on $G$ and submersion, just as normal homogeneous metrics, using a bi-invariant Finsler metric on $G$ instead. More careful analysis shows, in the space of all Finsler metrics on $G/H$, the subset of all $G$-$\delta$-homogeneous ones is in fact the closure for the subset of all $G$-normal ones, in the local $C^0$-topology (Theorem 1.1). Using this approximation technique, the classification work for positively curved normal homogeneous Finsler spaces can be applied to classify positively curved $\delta$-homogeneous Finsler spaces, which provides the same classification list. As a by-product, this argument tells more about $\delta$-homogeneous Finsler metrics satisfying the (FP) condition (a weaker version of positively curved condition).


Download Citation

Ming Xu. Lei Zhang*. "$\delta$-homogeneity in Finsler geometry and the positive curvature problem." Osaka J. Math. 55 (1) 177 - 194, January 2018.


Published: January 2018
First available in Project Euclid: 11 January 2018

zbMATH: 06848747
MathSciNet: MR3744979

Primary: 22E46 , 53C30

Rights: Copyright © 2018 Osaka University and Osaka City University, Departments of Mathematics


Vol.55 • No. 1 • January 2018
Back to Top