Translator Disclaimer
March 2010 Solutions ramifiées à croissance lente de certaines équations de Fuchs quasi-linéaires
Patrice Pongérard
Osaka J. Math. 47(1): 157-176 (March 2010).

Abstract

We consider a class of quasilinear fuchsian operators $Q$ of order $m\geq 1$, holomorphic in a neighborhood of the origin in $\mathbf{C}_{t} \times \mathbf{C}_{x}^{n}$, and having a simple characteristic hypersurface transverse to $S$: $t=0$. Under an assumption on the linear part of $Q$, we construct solutions of the problem $Qu=v$ in spaces of ramified functions of slow growth. The result is an extension of [15] to the quasilinear case.

Citation

Download Citation

Patrice Pongérard. "Solutions ramifiées à croissance lente de certaines équations de Fuchs quasi-linéaires." Osaka J. Math. 47 (1) 157 - 176, March 2010.

Information

Published: March 2010
First available in Project Euclid: 19 February 2010

zbMATH: 1201.35012

Subjects:
Primary: 35A07
Secondary: 35A20

Rights: Copyright © 2010 Osaka University and Osaka City University, Departments of Mathematics

JOURNAL ARTICLE
20 PAGES


SHARE
Vol.47 • No. 1 • March 2010
Back to Top