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Abstract
In this paper we study geometric properties of the slowness surface of the

system of crystal acoustics for cubic crystals. In particular we shall study curvature
properties of the surface and the behaviour of the surface near singular points. The
main result is that in the generic nearly isotropic case there are no planes which are
tangent to the surface along entire curves. This is in contrast with what happens for
the slowness surface of the system of crystal optics for bi-axial crystals. Geometric
information of the type we shall obtain is needed to understand the long-time
behaviour of global solutions of the system of crystal acoustics.

1. Introduction

The results in this paper are part of an attempt to understandthe long time be-
havior of global solutions of the homogeneous system of crystal acoustics for cubic
crystals. An essential part in this undertaking is to understand curvature properties
of the slowness surfaceS associated with the system and to have information on the
Gauss map (i.e., the map� → ~n(� ), where for� ∈ S, ~n(� ) is the normal toS in � )
defined onS. The main purpose of this paper is to provide this information. In prin-
ciple our results also show that in the generic nearly isotropic case there is no internal
conical refraction for acoustic waves in cubic crystals, but we shall not explain this
statement any further. What we shall show is essentially (for more precise statements,
see the theorems) that:
• when the crystal under consideration is not isotropic, thenthe total curvature of
the slowness surface will always vanish along a number of curves,
• in the nearly isotropic case the mean curvature vanishes nowhere,
• and, still in the nearly isotropic case and generically, there are no planes tangent
to S along entire curves.
The interest in results of this type in wave propagation for crystals has a long his-
tory. Indeed, in the case of crystal optics the surface corresponding to the slowness
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surface is Fresnel’s surface, and R.S. Hamilton discoveredin 1837 that for optically
biaxial crystals there are planes which are tangent to Fresnel’s surface along entire cir-
cles. (Cf. e.g., [1].) He inferred from this that for such crystals light rays which enter
a crystal will not always propagate inside the crystal alongone single straight ray, but
could split up, at least in certain specific situations, intocones of light. When this
phenomenon, which now goes under the name of “conical refraction”, was confirmed
experimentally a year later, it brought R.S. Hamilton instantaneous fame and led, still
in the 19-th century, to a long series of papers on Fresnel’s surface (both in the math-
ematical and in the physical literature.) A good reference for the history of the study
of Fresnel’s surface is [16]. Also see [9] for some more recent results in algebraic
geometry which have their origin in this kind of problems. Weare not aware of any
comparable efforts made for the slowness surfaces which appear in crystal acoustics.

As for the present paper, the starting point has been to studydecay estimates of
global solutions of the system of crystal acoustics for cubic crystals. Cubic crystals are
together with crystals from the hexagonal class the simplest non-isotropic crystals and
seem interesting enough to merit an independent study. Consequently, we shall in fact
only study the slowness surface for cubic crystals and we should say that we have not
seriously tried to understand what happens for crystals in other classes. We regard our
problem from a purely mathematical point of view, in the samevein in which decay
estimates have been studied for the related case of the wave equation� = �2

t −
∑n

j =1�2
x j

.
We also recall that decay estimates have been used to prove long-time existence for so-
lutions of non-linear perturbations of the wave equation (cf. [6], [7] and many other pa-
pers) and a similar study has been undertaken for non-linearperturbations of Maxwell’s
system for optically biaxial crystals (cf. [11], [17]). Among the many papers on re-
lated arguments we only mention [21], [26] and [28] (which treats hexagonal crystals),
respectively [3].

Rather than explaining the exact relation between decay estimates for solutions of
the system of crystal acoustics and curvature properties for the associated slowness sur-
face, we mention the following two results which are to some extend a preliminary step
in this link and which have an independent interest.

Theorem 1.1 (Hlawka 1950, [4], [5]). Let S⊂ Rn be a smooth compact surface
with nowhere vanishing total curvature. Also let u: S→ C be a smooth function on
S. Then there is a constant c> 0 such that the Fourier transform I(x) of u d� , d�
the surface element on S, defined by

(1.1) I (x) =
∫

S
exp[i 〈x, �〉]u(� ) d� (� ),

satisfies the estimate

(1.2) |I (x)| ≤ c(1 + |x|)−(n−1)=2.
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Proposition 1.2. Let S⊂ R3 be a smooth algebraic surface given by a poly-
nomial equation S= {� ∈ R3; p(� ) = 0}, let U′ b U ⊂ R3 be open and bounded and
assume that the following assumptions are satisfied:
a) ∇� p(� ) 6= 0 for � ∈ S∩U and the mean curvature of S∩U does not vanish,
b) there is no plane tangent to S along an entire curve.

Also consider some smooth function u: S→ C such that u(� ) = 0 if � =∈ U ′. Then
there is a natural number k≥ 2 such that I(x) =

∫
S exp[i 〈x, �〉]u(� ) d� (� ) (d� the

surface element on S) satisfies the estimate

(1.3) |I (x)| ≤ c(1 + |x|)−1=2−1=k.

(“∇” denotes here and later on the gradient of some functionf in the “natural
variables” of the function.)

In order to give a flavor of why results on curvature and tangent planes along
curves are related to decay estimates, we shall prove Proposition 1.2 in Section 2 be-
low. Theorem 1.1 on the other hand is the first of a long list of results on estimates
for Fourier (inverse) transforms of densities which live onsurfaces in higher dimen-
sions. (See [27].) In [4] it is used in a context of number theory (viz., the Gauss
“Kreisproblem”), but it is clearly also linked to the counting function in eigenvalue
problems for elliptic operators. Closer to the initial motivation for this paper is that
it is underlying the classical estimates on long time behavior of solutions of the wave
equation. The relation of Proposition 1.2 with decay estimates for solutions of the sys-
tem of crystal acoustics will be explained in a forthcoming paper.

We should mention from the very beginning that most of the results in this paper
shall be obtained by a perturbation argument starting from the isotropic case. It is for
this reason that we can only obtain results for the nearly isotropic case and the case
of general cubic crystals can probably only be treated usinga different approach.

We now recall the system of crystal acoustics (or “crystal-elasticity”) for cubic
crystals in some detail. Additional information on crystal-acoustics for crystals, cubic
or not, can be found e.g., in [2] and [19].

We are only interested in the homogeneous equation and in global solutions de-
fined on Rt × R3

x of the system. The system the solution will then satisfy has the
following form:

(1.4) P(D)u =



�2

t − a�2
x1
− c1 −b�x1�x2 −b�x1�x3

−b�x2�x1 �2
t − a�2

x2
− c1 −b�x2�x3

−b�x3�x1 −b�x3�x2 �2
t − a�2

x3
− c1






u1

u2

u3


 = 0

with 1 denoting here the Laplacian in the variablesx = (x1, x2, x3). (Later on, we shall
use the letter “1” for “discriminants”.)
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Correspondingly the characteristic polynomial of the system is given by detP(� ,� ),� ∈ R, � ∈ R3, where

(1.5) P(� , � ) = −



� 2− a�2

1 + c|� |2 −b�1�2 −b�1�3

−b�2�1 � 2− a�2
2 + c|� |2 −b�2�3

−b�3�1 −b�3�2 � 2− a�2
3 + c|� |2


.

The characteristic surface associated with the system is{(� , � ) ∈ R4; detP(� , � ) = 0}.
It is useful to write the characteristic polynomial in what is called “Kelvin’s” form.
We do so again only for the particular case of cubic crystals,when Kelvin’s form is
(cf. [2]):

(1.6)
b�2

1� 2− c|� |2 + (b− a)�2
1

+
b�2

2� 2− c|� |2 + (b− a)�2
2

+
b�2

3� 2− c|� |2 + (b− a)�2
3

= 1.

In all this thea, b, c are real constants which can be calculated in terms of the 3 “es-
sential” stiffness constants of a cubic crystal. (Cf. [2] and [13].) The fact that (1.6)
defines the characteristic surface of a cubic crystal gives some restrictions on thea,b,c.
Of these we mention that we must havec> 0, a 6= 0, a+c> 0, 3c−b+a> 0 (see e.g.,
[13]). As in [2] we shall often assume thatb > 0 (we shall justify this assumption in
a moment) but additional restrictions shall be introduced later on in this introduction.

We also mention that the crystal is isotropic if and only ifa = b. Recall that
in the isotropic case, acoustic, respectively elastic, phenomena can be understood in
terms of the Lamé constants “�” and “�”. Expressed in terms ofb and c they are� + 2� = c + b, � = c. As to the physical interpretation,

√� is the velocity of the
two shear waves, whereas

√� + 2� is the velocity of the pressure wave. (Shear waves
are also called transversal waves, whereas pressure waves are called longitudinal or
compression waves.) Since the velocity of the shear waves isbigger than that of the
pressure waves, in the isotropic case we must haveb> 0. (Cf. [10], Section 22, where
it is stated that we must have

√� + 2� ≥ √4�=3. See also the footnote nr. 2 there.)
We denoteb− a by d, so thatd becomes a measure for the anisotropy of the crys-
tal. While in (1.5) the “main” constants are visiblya, b, c, it may be argued that the
primary constants in (1.6) areb, c, d and we shall write down calculations in terms of
b, c, d henceforth.

The polynomial detP is immediately seen to be homogeneous in the variables
(� ,� ) and of degree six. The system (1.4) is a particular case of the system of elasticity
for elastic media and as such it is known to be hyperbolic withrespect to the time vari-
able (when some conditions on the stiffness constants are satisfied). “Hyperbolicity”
then implies that for every� ∈ R3 the equationP(� , � ) = 0 has 6 real roots� if multi-
plicities are counted, and it is obvious that for every fixed� 6= 0 three of them are pos-
itive and three negative. (Actually we shall always also assume that the roots are6= 0
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for � 6= 0.) Related to this is the fact that the surface defined byS= {� ∈ R3; q(� ) = 0},

(1.7) q(� ) =
3∏

j =1

(1− c|� |2 + d�2
j )−

3∑

j =1

b�2
j (1− c|� |2 + d�2

j +1)(1− c|� |2 + d�2
j +2)

(indices are counted modulo 3) is a closed bounded surface inR3.

DEFINITION 1.3. The surfaceS defined by the conditionq(� ) = 0 is called the
“slowness surface” of the crystal. It is essentially the intersection of the characteristic
surface{(� , � ) ∈ R4; det P(� , � ) = 0} with the plane� = 1.

When d = 0, the equation of the slowness surface reduces to (1− c|� |2)2(1− (c +
b)|� |2) = 0, and the slowness surface is the union of the “double sphere” (1−c|� |2)2 = 0
with the sphere 1− (b+c)|� |2 = 0. This is meaningful of course precisely whenc+b>
0, so in particular we see that from a mathematical point of view there are cases with
“b < 0” which make sense, although they may not have any physical interest.

REMARK 1.4. We say that some property holds in the nearly isotropic case, if
for fixed b0, c0 there is" > 0 such that the property holds when|b− b0| + |c− c0| +
|d| ≤ ".

REMARK 1.5. As is already clear from the preceding remarks, almost all entities
which we shall encounter later on depend on the value of the constantsb, c, d. How-
ever, if we would make these dependencies explicit in the notations, then the notations
would become rather heavy. If we consider some entity, as forexample some function�, which depends on the variables� and also on the constantsb, c, d, we shall then
write for example�(� , b, c, d), �(� , d) or �(� ), according to which, if any, of the
constantsb, c, d are relevant in the argument under consideration.

We now return to the discussion of some further restrictionson the constantsa, b,
c, d. One highly degenerate case is whenb = 0. In this case the slowness surface has
the form

{� ;
∏3

j =1(1−c|� |2+d�2
j ) = 0

}
, and the system is hyperbolic only whend < c.

More generally speaking, we shall call some triple of constants (b, c, d) “admis-
sible”, if the characteristic equation detP(� , � ) = 0 admits 3 strictly positive roots�
for every fixed� ∈ R3 \ {0}. (By continuity this implies that there is then a constant
c̃ > 0 such that|� | ≥ c̃|� | whenever detP(� , � ) = 0.) Thus “admissibility” refers in
this paper strictly to the mathematical question of studying the characteristic surface
associated with the systemP and is not a question of physical relevance. Since our
main interest in this paper is in the nearly isotropic case, we shall assume whenever
convenient thatd < c. (Note that this condition is also necessary if we want to work
with a condition ond which is independent of the value ofb.)
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Kelvin’s form of the characteristic equation is very usefulwhen we want to obtain
further information on the admissible region. This is basedon the following remark
(see [19] and also [13]): ifai , bi , i = 1, 2, 3 are strictly positive constants, 0< a1 <
a2 < a3, then the polynomial

(1.8) g(t) =
3∏

i =1

(t − ai )−
3∑

j =1

b j (t − a j +1)(t − a j +2),

is negative att = a1, t = a3 and positive att = a2, t =∞. It follows that it must have
three positive roots, one in each of the intervals (a1, a2), (a2, a3), (a3,∞). (Cf. [2] and
also [13]. A sharper statement is (6.5) below.) On the other hand, whenb j < 0, but
still a j ≥ 0, j = 1, 2, 3, then by a similar argument we shall have three strictly positive
roots precisely wheng(0) < 0. When we apply this fora j = c|� |2 − d�2

j , b j = b�2
j

and assumed < c, we conclude the following, provided� does not lie on one of the
axes and when we have

∏
i 6= j (|�i | − |� j |) 6= 0: in the caseb> 0 there are always three

positive roots; (we need no other condition, since thea j are positive by our assumption
c− d > 0) and in the caseb < 0 we have three strictly positive roots precisely when∏3

j =1(c|� |2 − (b − a)�2
j ) −

∑3
j =1 b�2

j (c|� |2 − (b − a)�2
j +1)(c|� |2 − (b − a)� j +2) > 0 for

every � ∈ R3, � 6= 0. (By continuity the results remain true then also when� lies on
one of the axes or if|�i | = |� j | for some i and j .) As a consequence, we conclude
that if b, c, d are admissible andb < 0, then also every (b′, c, d′) with d = d′, b < b′

is admissible.
We now want to recall some known facts about the slowness surface for cubic

crystals. To do so, we need two definitions from classical differential geometry.

DEFINITION 1.6 (Cf. [24]). Let S be a surface inR3 (definitions work equally
well in Rn) in which linear coordinates are denoted byy = (y1, y2, y3). We assume that
0 ∈ S and that in a neighborhood of 0,S is defined by an equation of form{y; f (y) =
0, y ∈ U} for some function f ∈ C∞(U ). Finally assume that∇ f (y) = 0 precisely
when y = 0 and denote byJk f (y) =

∑
|�|=k(1=�!) ��y f (0)y� the homogeneous part of

degreek in the Taylor expansion off at 0.
a) We say that 0 is a conical singularity if for a suitable choice of linear coordinates
J2 f has the formJ2 f (y) = y2

3 − y2
1 − y2

2.
b) 0 is called a uniplanar singularity (or also a “uniplanar node”) if the following
happens: we can find linear coordinates in which (�=�y3)2 f (0) 6= 0 and such thatf = 0
is locally equivalent to

y2
3 + A(y1, y2)y3 + B(y1, y2) = 0, with A(0) = 0, B(0) = 0,∇y A(0) = 0,

for someC∞-functions A, B. Moreover, we assume that if we denote by1 the quan-
tity 1 = A2(y1, y2)− 4B(y1, y2), then we have1(y1, y2) ∼ |(y1, y2)|4 for (y1, y2)→ 0.
Geometrically speaking,S is thus near the origin the union of the two sheetsS± =
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{y; y3 = (1=2)(−A(y1, y2) ±
√1(y1, y2))} which have y3 = 0 as a common tangent

plane at 0.

We now return to our discussion of the slowness surface. In fact, S will consist of
3 “sheets”, which we shall call the inner, middle and outer one. We can define them
in the following way: if we fix! ∈ R3 of length 1, then the polynomial� → q(�!)
is of degree 6 and is even in� . “Hyperbolicity” of P(D) gives that we shall have
three positive roots�3(!) ≤ �2(!) ≤ �1(!) and three negative roots, which actually are
−�i (!), i = 1, 2, 3. The sheetsSi are then parametrized bySi = {�i (!)!; ! ∈ R3, |!| =
1}, i = 1, 2, 3. The following geometric information is well-established (cf. e.g., [2],
[19], [13]):
• the inner sheet is strictly convex, (i.e., it is convex and noline intersects the inner
sheet in more that 2 points),
• when b 6= 0, d 6= 0, thenS has precisely 14 double points,
• 6 of these double points lie on the coordinate axes, exactly one on each semi-axis,
and are of uniplanar type, the singular points on the�3 axis being±(0, 0, 1=√c);
• the remaining 8 double points lie on the lines|�1| = |�2| = |�3|, in each octant of
R3 lying precisely one. The singularities of this type are conical and a point� ∈ S
with |�1| = |�2| = |�3| is singular precisely when|� j | = 1=√3c− d;

• in the caseb = 0, the slowness surface is
∏3

j =1(1− c|� |2 + d�2
j ) = 0. The singular

points are then more degenerate and we shall not consider this case, if not in some
comment. Also the cased = b (which means “a = 0”) is somewhat more degenerate,
and again, we shall not consider it in detail.

The plan of the paper is as follows. In the first part of the paper, we shall mainly
study properties of the slowness surface which are related to curvature. It turns out that
some of these properties are related to the structure of the singular points onS. We
shall therefore also study these singularities in some detail. The main emphasis when
doing so is to obtain estimates which are uniform ford→ 0, since we shall regard the
nearly isotropic case as a small deformation of the isotropic situation. We also mention
that the results on singularities which we obtain shall be useful in establishing decay
properties for the solutions of the system of crystal acoustics in a forthcoming paper.
In the last part of the paper we then turn to the study of the Gauss map.

Finally I would like to mention that a number of the argumentswhich shall be
used in this paper (must) have been folklore some decades ago. The reason why this
paper is written with many details is that part of them are notany more in the standard
curriculum of people who work in PDE.

2. Proof of Proposition 1.2

In the argument we shall use the method of stationary phase and a lemma related to
this method due to E. Stein, which, for the convenience of thereader, we now recall.
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Lemma 2.1 (E. Stein. Cf. [27]). Let ' be a real-valued function on the interval
[a, b] which is k times differentiable. Assume that k≥ 2 and that |'(k)(x)| ≥ 1. Also
consider ∈ C1[a, b]. Then it follows that

∣∣∣∣
∫ b

a
ei t'(x) (x) dx

∣∣∣∣ ≤ ckt−1=k[| (b)| +
∫ b

a
| ′(x)| dx

]
, for t > 0,

for some constant ck which does not depend on',  , a and b.

Proof of Proposition 1.2. We may argue locally near some fixedpoint �0 ∈ S∩
U ′. We also fix x0 and shall work forx in a small conic neighborhood ofx0. For
simplicity of notation we assume that�0 = 0, x0 = (0, 0, 1). Since we may restrict
attention to a conic neighborhood ofx0, we may assume that|x′| ≤ c′x3 for some
constantc′ > 0, wherex′ = (x1, x2). Correspondingly the estimate (1.3) can be written
as I (x) = O(|x3|−1=2−1=k) for x3→∞, |x′| ≤ c′x3.

If x0 is not normal toS at �0, then the phase function� → 〈x,�〉 is non-degenerate
for � in a neighborhood of�0 andx in a conic neighborhood ofx0 and decay estimates
are easy to obtain by standard partial integration. We may therefore assume thatx0 is
normal to S at �0. We can then parametrizeS in a neighborhood of 0 in the form
{� ∈ R3; �3 = g(�1, �2)} for some analytic functiong defined in a neighborhood of 0∈
R2. It follows in particular that we must haveg(0) = 0, ∇g(0) = 0. The fact that the
mean curvature ofS near 0 does not vanish gives that

∑
|�|=2 |��� ′g(�1, �2)| 6= 0, where� ′ = (�1, �2). It follows from this that we can find a directionv such that the second

directional derivative�2vg(0) 6= 0 and it is no loss of generality to assume thatv = (0, 1).
We can therefore find an analytic function (x, �1)→ h(x, �1), defined for�1 near�0

1 = 0
and for x in a conic neighborhoodG of x0 such thath(x0, 0) = 0, and

���1
(x1�1 + x2�2 + x3g(�1, h(x, �1)) = x2 +

���2
g(�1, h(x, �1))x3 ≡ 0.

We claim thatg(�1, h(x0, �1)) is not identically 0 near 0. Indeed, in the oppo-
site case it would follow that��1g(�1, h(x0, �1)) ≡ 0, so we could conclude that
(∇� ′g)(�1, h(x0, �1)) ≡ 0 for every�1 in a neighborhood of 0. Along the curve0 given
by �1→ (�1, h(x, g(�1, h(x0, �1)) the tangent planes toS would then all have normal
(0, 0, 1) and the entire curve0 were contained in the plane�3 = g(�1, h(x0, �1)) ≡ 0.
The existence of such curves is excluded by assumption, so our claim is established.
We conclude then that we can find some positive natural integer k ≥ 2 such that

(2.1)
�kg(�1, h(x0, �1))�� k

1

6= 0 at �1 = 0

and the same will then also hold when we letx run through a small conic neighbor-
hood, which we shall again denote byG, of x0.
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The rest is now easy. We may in fact apply the method of stationary phase in the
variable�2. (Cf. any textbook on asymptotic methods.) This gives if thesupport ofu
lies in a sufficiently small neighborhood of 0

(2.2)

I (x) = c|x|−1=2 ∫ exp[i �1x1 + x2h(x, �1) + x3g(�1, h(x, �1))]

× u(�1, h(x, �1), g(�1, h(x, �1))�(x, �1) d�1 + O(|x|−1),

for x→∞, x ∈ G,

for some function� which comes from the surface elementd� . For the integral in�1

we now apply Stein’s lemma. In fact, when|x2| ≤ c1x3 with some sufficiently small
constantc1 then (2.1) implies

∣∣∣∣
( ���1

)k[x2

x3
h(x, �1) + g(�1, h(x, �1))

]∣∣∣∣ ≥ c2.

We can therefore apply Stein’s lemma with large parameterx3 to estimate the integral
in (2.2) in the form O(|x3|−1=k). It follows that I (x) = O(|x|−1=2−1=k) + O(|x|−1) =
O(|x|−1=2−1=k) for large x, |x2| ≤ c1x3, x ∈ G.

3. Study of the discriminant: Preliminary remarks

Although in this paper we are foremost interested in geometric properties in the
smooth part of the slowness surface, it will be useful to understand also the singu-
larities of the surface in some detail. The reason is that near a singularity a surface
is bent in a way which can to some extend already be understoodin terms of some
rough information concerning the singularity itself. A clear example of this principle
is Proposition 7.3 below. In this section we shall start witha preliminary study of the
discriminant and of the “local discriminant” of the polynomial q near a singular point
of S. We shall work for the two singular points

(3.1)

(
0, 0,

1
√

c

)
, respectively

(
1

√
3c− d

,
1

√
3c− d

,
1

√
3c− d

)
,

(the first uniplanar, the second conical) for which the thirdcomponent is strictly posi-
tive. The situation is similar for all the other singular points.

REMARK 3.1. For completeness, we also mention that the regular points on S
on the semiaxis (0, 0,�3 > 0), respectively{t=√3, t=√3, t=√3; t > 0} are
(3.2)(

0, 0,
1

√
c− d + b

)
respectively

(
1

√
3c− d + 3b

,
1

√
3c− d + 3b

,
1

√
3c− d + 3b

)
.
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In particular, whenb> 0, then the conically singular points lie all onS1∩S2, whereas
when b< 0, they lie onS2∩ S3. Moreover, whenb = 0 or d = b we have triple points
for one or the other type of singular points. As already mentioned, we shall not discuss
these cases.

Near the singularities which we have singled out, the slowness surfaceS can be
parametrized by the variables� ′ = (�1, �2). Let us for this purpose denote by� ′ →� j (� ′), j = 1, 2, 3, 4, 5, 6, the roots of the polynomial�→ q(� ′, �) labelled in such a
way that

(3.3) �4(� ′) ≤ �5(� ′) ≤ �6(� ′) < 0< �3(� ′) ≤ �2(� ′) ≤ �1(� ′).
In particular the functions� j are continuous and we have

(3.4) q(� ′, � j (� ′)) ≡ 0.

We also observe that� j (� ′) =−� j +3(� ′) when indices are calculated modulo 3 and that� j (� ′) 6= � j +1(� ′) except when (� ′, � j (� ′)) and (� ′, � j +1(� ′)) are singular points.
Note that the functions� j depend on the variables� ′ and the parametersb,c,d. As

mentioned above in a more general context, we shall deliberately write them sometimes
as functions of� ′ or (� ′, d) alone, to stress the fact that in some specific argument we
are interested in the dependence on those variables, respectively parameters, and that
the other parameters may be considered fixed. The surfaceSj , j = 1, 2, 3, can then be
represented locally (“locally” means here “in the region�3 > 0”) near the singularities
mentioned above by the graph of the function� j .

It is now useful to writeq in a rather explicit form. In fact,q can be written as

(3.5) q(� ) = A0�6
3 + A1(� ′)�4

3 + A2(� ′)�2
3 + A3(� ′),

for some explicitly calculable coefficientsA j , which are polynomials of degree 2j in� ′ and also depend on the constantsb, c, d. The A j are easily calculated explicitly
and are:

A0 = bc2− c2(−c + d),

A1(� ′) = −b�2
1 c(−c + d)− b�2

2 (−c + d)c− bc(1− c(�2
1 + �2

2 ) + d�2
1 )

− bc(1− c(�2
1 + �2

2 ) + d�2
2 )

− (d − c)(−c(1− c(�2
1 + �2

2 ) + d�2
1 )− c(1− c(�2

1 + �2
2 ) + d�2

2 ))

− c2(1− c(�2
1 + �2

2 )),
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A2(� ′) = b(d − c)�2
1 (1− c(�2

1 + �2
2 ) + d�2

2 )− bc(�2
1 + �2

2 )(1− c(�2
1 + �2

2 ))

+ b�2
2 (−c + d)(1− c(�2

1 + �2
2 ) + d�2

1 )

+ b(1− c(�2
1 + �2

2 ) + d�2
1 )(1− c(�2

1 + �2
2 ) + d�2

2 )

− (1− c(x2
1 + �2

2 ) + d�2
1 )(1− c(�2

1 + �2
2 ) + d�2

2 )(−c + d)

− (−c(1− c(�2
1 + �2

2 ) + d�2
1 )− c(1− c(�2

1 + �2
2 ) + d�2

2 ))(1− c(�2
1 + �2

2 )),

A3(� ′) = b�2
1 (1− c(�2

1 + �2
2 ) + d�2

2 )(1− c(�2
1 + �2

2 ))

+ b�2
2 (1− c(�2

1 + �2
2 ))(1− c(�2

1 + �2
2 ) + d�2

1 )

− (1− c(�2
1 + �2

2 ) + d�2
1 )(1− c(�2

1 + �2
2 ) + d�2

2 )(1− c(�2
1 + �2

2 )).

Calculations can now be simplified if we take into account thefact that q depends
directly on �2

j . If we introduce the notation�2
3 = � , the polynomialq can be written as

(3.6) q̃(� ′, � ) = A0� 3 + A1(� ′)� 2 + A2(� ′)� + A3(� ′).
The most important instance of when this simplifies calculations is when we calculate
the discriminant ofq. We recall here that the discriminant ofq, when regarded as a
polynomial in�3 is given by A4

0

∏
i< j (�i (� ′)−� j (� ′))2. (The factorA0 is not interesting

from an analytic point of view. Note that anywayA0 6= 0.) We need some kind of
discriminant since we want to understand the behavior of�1−�2, in the case when the
singular sheet isS1, respectively�2 − �3, when the singular sheet isS3. The reason
why we resort to the discriminant, rather than directly to the expressions (�i − � j ),
comes from the remark that in principle the discriminant canbe calculated explicitly
in terms of the coefficients ofq. The expression of the discriminant of a polynomial
of degree six is however rather complicated and it is here that we can usẽq. Indeed,
if we denote�2

j (� ′) for j = 1, 2, 3, by� j (� ′), the discriminantD of q̃ is on one hand
equal to

(3.7) D = A4
0[(�1− �2)(�1− �3)(�2− �3)]2 = A4

0[(�2
1 − �2

2)(�2
1 − �2

3)(�2
2 − �2

3)]2,

and therefore already contains all information on�1− �2 (or �2− �3) which we need.
(The factor A4

0 is not interesting from an analytic point of view.) On the other hand,
q̃ being a polynomial of degree three, it is standard (cf. e.g. [29]) that, calculated in
terms of the coefficientsAi the discriminantD is also equal to

(3.8) D = A2
1A2

2 − 4A0A3
2 − 4A3

1A3− 27A2
0A2

3 + 18A0A1A2A3.

As for the “local discriminant” atT we define it whenT is one of the two singular
points in (3.1) by

1(� ′) = (�1(� ′)− �2(� ′))2.
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(More generally, ifS is a surface defined near�0 by an equation of form�2
3 + A(� ′)�3 +

B(� ′) = 0, with �0
3 a double root of�3 → �2

3 + A(� ′0)�3 + B(� ′0), then the local dis-
criminant of S is defined byA2(� ′)− 4B(� ′).)

Since (�1 − �2)(�2 − �3)(�3 − �1) is a symmetric combination of the roots of the
polynomial q̃(� ′,� ), it must be an analytic function ind and� ′. Moreover, D vanishes
identically whend = 0, so it must be divisible byd. It is however a positive function,
so it must actually vanish of order 2 atd = 0 and we have

(3.9) D(� ′, d) = d2D̃(� ′, d), 1(� ′, d) = d21̃(� ′, d),

for some analytic functionD̃, 1̃.
We shall now continue our study separately for the case of uniplanar and of con-

ical singularities.

4. Study of the discriminant near an uniplanar point

In this section we study the discriminant near the uniplanarpoint (0, 0, 1=√c). The
notations are as in the preceding section. We know already that the local discriminant
is of form 1(� ′, d) = d21̃(� ′, d) for some analytic functioñ1 defined for small (� ′, d).
The study of1 is here simplified by the fact that evaluation of the derivatives of some
polynomial at the origin is relatively easy. Moreover, it is known from uniplanarity that∑
|�|≤3

∣∣��� ′1(0, d)
∣∣ = 0 and therefore the first nontrivial term in the Taylor-expansion in� ′ at 0 is

(4.1) J41(� ′, d) =
∑

|�|=4

��� ′1(0, d)
� ′��!

.

In order to calculateJ41, we now turn our attention to the “full” discriminantD of
q̃, assuming, for the sake of the discussion, thatb > 0. We notice that inD only the
factor (�1− �2)2 vanishes at� ′ = 0. (See (3.7).) We conclude therefore that there is a
constant ˜
 so that

(4.2) J41 = A4
0
̃ J4D.

Of course ˜
 = [(�1 + �2)(0)(�2
1 − �2

3)(0)(�2
2 − �2

3)(0)]2, so we obtain in view of (3.1),
(3.2),

(4.3) 
̃ =

[
2√
c

(
1

c
− 1

a + c

)2]2

.


̃ 6= 0 in view of the conditiona 6= 0. The expression ofD can be calculated explicitly
using (3.8). Here all the coefficients depend explicitly on�2

1 , �2
2 and not directly on�1, �2. We conclude thatJ4D is a polynomial in�2

1 , �2
2 and we can calculateJ4D.
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What we get is (we have calculated it with St. Wolfram’s “Mathematica” and double-
checked with “Maple”):

J4D = c2d2[4b4 − 12b3d + 13b2d2− 6bd3 + d4](�4
1 + �4

2 )

− c2d2[4b4 + 16b3d − 22b2d2 + 12bd3 − 2d4]�2
1�2

2 .

(Note that ford = 0 J4D vanishes identically, as it should, since�1 ≡ �2 then.)
It is perhaps also worth noting that the main term ford → 0 is 4b4c2d2(�4

1 + �4
2 −�2

1�2
2 ), which has order of magnitudeb4c2d2(|�1|4 + |�2|4). This is of course already an

essential part of (3.9).

REMARK 4.1. We also conclude from our discussion thatD must have the form
D = d2[b4c2(�4

1 + �4
2 − �2

1�2
2 ) + d D1(� ′, d) + D2(� ′, d)], where D1 and D2 are poly-

nomials in (� ′, d), D1 with terms which are at least of degree 4 in� ′ and at least
of degree 5 in� ′ in the case ofD2. For the local discriminant1 this gives that1(� ′, d) = d2[1̃(� ′, d) + O(|� ′|5)] where 1̃(� ′, d) ≥ c1|� ′|4 for some constantc1 > 0
and 1̃ is a polynomial of degree four in� ′.

5. Study of the discriminant at a conical singularity

1. We denote by�0 = (1=√3c− d, 1=√3c− d, 1=√3c− d) the conically singular
point in the first octant on the slowness surfaceS. Our goal in this section is to eval-
uate the local discriminant in the variable�3 of the defining equationq(� ) = 0 at this
point. Calculations are in principle similar to those in thepreceding section, but tech-
nical details are more complicated since the fact that in Section 4 we had�1 = �2 = 0
simplified the situation there. We start with a comment on theHessian ofq. Since
the term

∏3
j =1(1− c|� |2 + d�2

j ) vanishes of order 3 at�0, the Hessian ofq is equalb
times the Hessian of

(5.1) F(� ) =
3∑

j =1

�2
j (1− c|� |2 + d�2

j +1)(1− c|� |2 + d�2
j +2).

(Indices are counted modulo 3.) This suggests that in order to calculate the Hessian
of the local discriminant ofq, we may as well calculate the Hessian of the local dis-
criminant of F . This is indeed the case and is based on some elementary remarks on
the Weierstrass preparation theorem, which we have stated in the following lemma.

Lemma 5.1. Let '(t , x) = t2 + A(x)t + B(x) where A and B are analytic functions
defined near0 ∈ C2 which vanish of order one, respectively of order two at0 and
consider some analytic function (t , x) defined for(t , x) near (t , x) = (0, 0), which
vanishes of order three in(t , x) at (0, 0). Also consider

(5.2) '(t , x) + (t , x) = Q(t , x)(t2 + Ã(x)t + B̃(x)),
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the decomposition of' + given by the Weierstrass preparation theorem applied with
respect to the variable t. Then Ã and B̃ vanish of order one, respectively two at0
and we have that Hxx(A2 − 4B)(0) = Hxx(Ã2 − 4B̃)(0). (Hxx f stands for the Hessian
of the function f in the variables x.)

(Calculations shall be for realx. The reason why we work with “analytic func-
tions” is that we did not want to invoke the Malgrange preparation theorem for a sit-
uation as simple as the one we really need.)

Proof of Lemma 5.1. We need to discuss some formal aspects of the Weierstrass
preparation theorem. This is facilitated by the fact that wealready know thatQ, Ã,
B̃ with (5.2) exist. We may assume thatn = 1, since the Hessian of a functionf is
well-determined by the second directional derivatives off . We also observe that if we
can show thatÃ vanishes of order one at 0 and thatB̃ vanishes of order two there,
then (d=dx)2(Ã2 − 4B̃)(0) = 2[(dÃ=dx)(0)]2 − 4(d=dx)2B̃(0). To prove the lemma it
suffices then to show that̃A(0) = 0, (d=dx)Ã(0) = (d=dx)A(0), B̃(0) = 0, (d=dx)B̃(0) =
0, (d=dx)2B̃(0) = (d=dx)2B(0).

The next remark is that (5.2) givesQ(t , 0) ≡ 1 + O(t), so that Q(0, 0) = 1. It
follows in particular that 0 =B(0) = Q(0, 0)B̃(0), whenceB̃(0) = 0. We shall now
calculate low order derivatives of̃B and Ã derivating the relation (5.2). This leads at
first to (d=dx)B(0) = (d=dx)Q(0, 0)B̃(0)+Q(0, 0)(d=dx)B̃(0) and gives (since we know
already thatB̃(0) = 0) (d=dx)B̃(0) = 0. A similar calculation shows that (d=dx)2B̃(0) =
(d=dx)2B(0) = 0 (if we use that we already know thatB̃(0) = (d=dx)B̃(0) = 0) and that
(d=dx)Ã(0) = (d=dx)A(0). (For the last equality we use again thatB̃(0) = (d=dx)B̃(0) =
0. The derivatives of order less than two inx of  vanish at (0, 0) and therefore have
no bearing on our calculations.) This concludes the argument.

We now continue with the calculation of the Hessian of the local discriminant of
q in the variable�3. By the above (applied near�0 rather than near 0, so the role of
the variables (t , x) is played by the variables� − �0), we may as well calculate the
Hessian of the local discriminant of the functionF . We apply the Weierstrass prepa-
ration theorem (the variables in which we apply the decomposition are (� , d); we need
to considerd as a “variable” since we want to know that the various functions which
are given by the decomposition depend in a smooth way ond) and can therefore write
F locally near (�0, 0) in the form

(5.3) F(� , d) = Q(� , d)[(�3 − �0
3 )2 + A(� ′, d)(�3− �0

3 ) + B(� ′, d)],

for some Q, A, B, which are defined and analytic near (�0, 0), respectively (�0′, 0).
We also haveA(�0′, d) = B(�0′, d) = 0, ∇� ′B(�0′, d) = 0. The local discriminant is1(� ′, d) = A2(� ′, d)− 4B(� ′, d).
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Derivating (5.1) and (5.3) we now obtain

�2F(�0, d)��2
j

=
8c(3c− 2d)

(3c− d)2
, j = 1, 2, 3,

�2F(�0, d)��i �� j
=

4(d2 − 4cd + 6c2)

(3c− d)2
, when i 6= j ,

Q(�0, d) =
1

2

�2F(�0, d)��2
3

=
4c(3c− 2d)

(3c− d)2
, ∇� ′A(�0′, d) =

1

Q(�0, d)
∇� ′ �F(�0, d)��3

,

�2B(�0, d)��i �� j
=

1

Q(�0, d)

�2F(�0)��i �� j
, i , j ∈ {1, 2}.

It follows that

�21(�0′, d)��2
1

=
2

Q2(�0, d)

((�2F(�0, d)��1��3

)2

−
(�2F(�0, d)��2

1

)2)

=
2

Q2(�0, d)

16d2(d2− 8cd + 12c2)

(3c− d)4

and

�21(�0′, d)��1��2
= 2

�A(�0′, d)��1

�A(�0′, d)��2
− 4

�2B(�0′, d)��1��2

=
2

Q2(�0, d)

�2F(�0, d)��1��3

(�2F(�0)��2��3
− 2Q(�0, d)

)

=
2

Q2(�0, d)

�2F(�0, d)��1��3

4d2

(3c− d)2

=
2

Q2(�0, d)

4(d2 − 4cd + 6c2)

(3c− d)2

4d2

(3c− d)2
.

It is visible from this that the Hessian of the local discriminant is divisible byd2 in
a smooth way. Actually, we know already from Section 3 that the local discriminant
itself is divisible by d2, but we claim that from the explicit expressions we can see
that H� ′� ′1(�0′, d)=d2 is strictly positive definite with an estimate from below which
does not depend ond when d is small. Indeed, it will suffice to check this withd = 0
when we have with the notationE(�0, d) = H� ′� ′1(�0, d)=(d2) that

E(�0, 0) =
2

Q2(�0, 0)(3c)4

(
192c2 96c2

96c2 192c2

)
=

64

Q2(�0, 0)33c2

(
2 1
1 2

)
.

In analogy with Section 4 we may thus write

(5.4) 1(� ′, d) = d2(1̃(� ′, d) +11(� ′, d))
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where1̃(� ′, d) is a positively definite quadratic form in� ′− �0′ with 1̃(� ′, d) ≥ c̃|� ′|2,
c̃ > 0, and11(� ′, d) vanishes of order three at� ′ = �0′.

6. Study of the discriminant and of curvature in the regular region

In this section we consider a regular direction�0 and a small open convex neigh-
borhood K of �0. In particular we may assume thatK contains no singular direction
and (after a renotation for the variables, and replacing, ifnecessary,�0 by −�0) that�3 ≥ c′|� | for � ∈ K . Our final goal is to show that we have

Proposition 6.1. Consider b0 6= 0, c0 > 0, and let (�0, K ) be as before. Then
there is a constant c′ so that if |b− b0|+ |c− c0|+ |d| < c′, then the total curvature of
the slowness surface S(b, c, d) associated with(b, c, d) is strictly positive for all points� ∈ S(b, c, d) ∩ K .

In the argument we shall assumeb > 0, the caseb < 0 being similar. Forb > 0
and d small compared withb the sheetS3 will stay away from the other two sheets
and its defining equation will depend (in view of the implicitfunction theorem) in an
analytic way on the parameters. Since ford = 0, S3 is a sphere, total curvature will
be strictly positive onS3 for small d. In the sequel we may therefore concentrate our
attention onS1 ∪ S2. The proof of Proposition 6.1 will be by a perturbation argument
in which we shall start from the isotropic cased = 0. It seems convenient to calcu-
late curvature in polar coordinates, so we shall basically study the derivatives of the
functions which correspond to the functions� j when in R3 we work with such coor-
dinates. Let us then denote by! = �=|� | and by � = |� |. Further, denote by� j (!),! ∈ R3, |!| = 1, j = 1, 2, 3, the positive roots of the polynomial� → q(�!) label-
led in such a way that�3(�=|� |) ≤ �2(�=|� |) ≤ �1(�=|� |). It follows in particular that� j (�=|� |) = 1=� j (�=|� |), where the� j are the positive roots of the characteristic equation
of the system of crystal optics labelled in such a way that 0< �1(� ) ≤ �2(� ) ≤ �3(� ).
We shall mainly be interested in the casej = 1, 2. The main step in the argument is
the following proposition, in which we write� j (!, d) for the roots (rather than� j (!))
in order to make the dependence of the� j on d explicit.

Proposition 6.2. Under the assumptions ofProposition 6.1there are constants
ci , i = 1, 2, 3,such that

(6.1) c1|d| ≤ |�1(!, d)− �2(!, d)| ≤ c2|d|, if |c− c0| + |b− b0|+ |d| < c3, ! ∈ K .

Note that�1 − �2 is an essential factor in the full discriminantD associated with
the polynomial defining the slowness surface, when the latter is calculated with respect
to the variable� and is expressed in the coordinates!. (For fixed d 6= 0, (�1 − �2)2

is not strictly speaking a “local discriminant” in terms of the terminology introduced
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above, but it is roughly speaking an object of this type when we consider alsod as a
“variable” and work in a neighborhood ofd = 0.)

It seems difficult to understand the analytic expression of the full discriminantD
given by the formula (3.8) in a generic regular direction. Weshall therefore use an
indirect argument. As a preparation we prove

Proposition 6.3. Let c1 > 0, c2 > 0, ai ∈ R, bi ∈ R, i = 1, 2, 3,be given such that

(6.2) a1 < a2 < a3, 0< b3 < b2 < b1, |ai | ≤ c2, c1 ≤ b2, bi ≤ c2.

Then we can find c3 > 0, c′, which depend only on c1, c2 and not on the ai , bi , such
that if |d| ≤ c′ is fixed and if t1 < t2 < t3 are the three roots of the polynomialg̃
defined(in analogy with(1.8)) by

(6.3) g̃(t) =
3∏

i =1

(t − dai )−
3∑

j =1

b j (t − daj +1)(t − daj +2),

then it follows that|ti − t j | ≥ c3|d| |a3 − a1|, if i 6= j .
Conversely, there is also a constant̃c such that

(6.4) min
i 6= j
|ti − t j | ≤ c̃|d|.

Proof. We shall show that the assumption min(t2 − t1, t3 − t2) < c3|d| |a3 − a1|
leads to a contradiction ifc3 is small enough. We may assume thatd > 0. It follows
(see the introduction for a similar situation) that

(6.5) da1 < t1 < da2 < t2 < da3 < t3.

This already proves (6.4). To prove the first statement, we have to examine four cases,
in which c4 stands for|a3 − a1|=2 (and is thus fixed throughout the argument):
a) a2 − a1 ≥ c4, t2 − t1 < 2c3c4d,
b) a2 − a1 ≥ c4, t3 − t2 < 2c3c4d,
c) a3 − a2 ≥ c4, t2 − t1 < 2c3c4d,
d) a3 − a2 ≥ c4, t3 − t2 < 2c3c4d,
and show that none of these cases can in fact hold ifd and c3 are small.

Incompatibility with the situation described respectively in a), b), c), d), will be
reached by looking at the conditioñg(ti ) = 0 for some suitablei . To do so, we shall
look at the expressionsI1(t) = −b1(t − da2)(t − da3), I2(t) = −b2(t − da3)(t − da1),
I3(t) =−b3(t−da1)(t −da2), I4(t) = (t −da1)(t −da2)(t −da3), in terms of whichg̃(t)
is build and shall show that in each of the cases a), b), c), d),one of the expressions
I j (ti ), j ≤ 3, will either dominate the others (ifi is suitable) or else will have the



190 O. LIESS

same sign with thoseIk which are not dominated by it. The mechanism by which this
will happen will be the following:
– one of the three terms (ti − da1), (ti − da2), (ti − da3), can be estimated by
2c3c4d and is therefore relatively small (when we say in this proof that some quan-
tity is “relatively small”, or that it is “relatively large”, then we mean that it is small,
respectively large, when compared with “d”; in particular relatively small terms can be
made small with respect tob2 and b1) when c3 is small,
– one of the terms can be estimated by 2c4(c3 + 1)d and is small for smalld, when
compared withb2, or b1,
– another term will in absolute value be larger than (c4 − 2c3c4)d and is therefore
relatively large whenc3 is small,
– the remaining term cannot always be estimated appropriately, but it will have the
“correct” sign.

CASE a). The relatively small factor in this case isda2 − t1 ≤ t2 − t1 ≤ 2c3c4d
(cf. (6.5)), t1 − da1 = da2 − da1 + t1 − da2 ≥ d(c4 − 2c3c4) is relatively large, and we
use thatg̃(t1) = 0. We have that�) |b1(t1− da2)(t1 − da3)| ≤ 2c2c3c4d|t1− da3|,�) b2(t1 − da1)(t1− da3) ≤ −c1d(c4− 2c3c4)|t1− da3|,
 ) b3(t1 − da1)(t1− da2) ≤ 0.

The term in�) dominates the term in�) for smallc3 and also the product
∏3

j =1(t1−
daj ). Since it has the same sign with the term in
 ), we get g̃(t1) < 0 when c3 is
small, a contradiction.

CASE b). The factort3 − da3 ≤ t3 − t2 is relatively small whereast3 − da1 is
relatively large, and we shall argue ong̃(t3) = 0. In view of what we just said,

∏3
j =1(t3−

daj ) is dominated for smallc3 by b2(t3 − da1)(t3 − da3). The other terms ing̃(t3)
are harmless, since they have the same sign withb2(t3 − da1)(t3 − da3) (in that 0≤
t3− dai , ∀i ).

CASE c). The relatively large factor now ist2 − da3, in that da3 − t2 = da3 −
da2 + da2− t2 ≥ (c4− 2c3c4)d and |t2− da2| ≤ t2− t1 ≤ 2c3c4d is relatively small with
c3. We shall argue oñg(t2) = 0. Observe then thatb2(t2 − da1)(t2 − da3) dominates∏3

j =1(t2− daj ) for small c3 and alsob3(t2− da2)(t2− da1). The termb1(t2− da2)(t2−
da3) gives no problems since it has the correct sign.

CASE d). In the present situationt3 − da1 ≤ c4d + t3 − t2 ≤ (c4 + 2c3c4)d. In
particular, t3 − da1 is dominated byb1 if d is small. We shall usẽg(t3) = 0. By the
preceding,

∏3
j =1(t3 − daj ) is dominated byb1(t3 − da2)(t3 − da3) for d small and the

other terms have the correct sign (again in view of 0≤ t3− dai , ∀i ).

REMARK 6.4. A similar result is valid ifa1 ≤ a2 ≤ a3, with only one of the
inequalities strict. If, e.g.,a1 = a2, then t1 = a1, and a discussion similar to Proposi-
tion 6.3 applies. It is also clear that the case considered inthis remark is somehow
a limit case for the case considered in the proposition. (Cf.[13].) It also follows if
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we take into account symmetries that without any restriction for the relative position
of the a j we have

|ti − t j | ≥ c3d

(∑

r 6= s

|ar − as|
)

.

We now turn to the proof of Proposition 6.2. We shall first study the positive roots� j of the characteristic equation of the system of crystal acoustics, which, as we may
recall, are labelled in such a way that 0< �1(� ) ≤ �2(� ) ≤ �3(� ). In particular, the� j thus satisfy Kelvin’s equation (1.6). We shall now apply Proposition 6.3. We may
assume (after a renotation of the variables, if necessary) that 0≤ �1 ≤ �2 ≤ �3 and since
we are not close to one of the axes, that�2=|� | > c1 for somec1 > 0. We next denote
by b j = b�2

j =|� |2 and bya j =−�2
j =|� |2. Also consider the auxiliary variablet = � 2− c.

If � j (�=|� |, d) is a solution of Kelvin’s equation,t j = � 2
j (�=|� |, d) satisfiesg̃(t j ) = 0,

where g̃ is the function associated in (6.3) with the choices ofa j , b j just mentioned.
Proposition 6.3 implies then at first that|� 2

1 (�=|� |, d)− � 2
2 (�=|� |, d)| ≥ c̃d and therefore

(since�1(!, d) + �2(!, d) ≤ c̃1) that

∣∣∣∣�1

( �
|� | , d

)
− �2

( �
|� | , d

)∣∣∣∣ ≥ c̃2d, if � ∈ K .

We shall now use the relation� j (!, d) = 1=� j (�=|� |, d) to rewrite this in order to
prove (6.1). We obtain at first|1=�1(!, d)− 1=�2(!, d)| ≥ c̃2d if ! ∈ K and then also
(since�1(!, d) ≥ c̃3, �2(!, d) ≥ c̃3) that

|�1(!, d)− �2(!, d)| ≥ c̃4d if ! ∈ K .

In the following corollary and in the remainder of this section we shall work with the
“local discriminant” defined with respect to polar coordinates. Thus we shall put (as-
suming, to make a choice,b > 0) 1(!, d) = (�1(!, d)− �2(!, d))2.

Corollary 6.5. There is a constant c1 such that for j= 1, 2, |∇!� j (!, d)| ≤ c1

for ! ∈ K .

Indeed, we can write for example�1(!, d) = [�1(!, d) + �2(!, d) +
√1(!, d)]=2

and clearly |∇![�1(!, d) + �2(!, d)]| ≤ c2. In addition, we have∇!√1(!, d) =
(1=2)(∇!1(!, d))=√1(!, d). We can therefore conclude the argument which estimates
|∇!� j (!, d)| by observing that|∇!1(!, d)=√1(!, d)| ≤ c3d.

A similar argument gives:

Corollary 6.6. |H!!√1(!, d)| ≤ c1d and also H!!(�1 + �2)(!, d) = H!!(�1 +�2)(!, 0) +dO(1).
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It follows that H!!(� j (!,d)) = (1=2)H!![(�1+�2)(!,d)±
√1(!, d)] = (1=2)H!!(�1+�2)(!, d)± H!!√1(!, d)=2 = (1=2)H!!(�1 + �2)(!, d)± dO(1).

This now implies that the second derivatives in! of � j (!, d) are ford small close
to those for the cased = 0. Since the total curvature is not vanishing ford = 0, it will
be non-vanishing in the nearly isotropic case. This concludes the proof of Proposi-
tion 6.1.

7. Curvature properties near the singular points

1. The curvature properties of the slowness surface of the system of crystal optics
(at smooth points of the surface) are well-established: cf.e.g., [1]. We have not found
information of a similar quality for the case of the system ofelasticity for crystals in
the literature. Cf. anyway [19] for some partial results. Inthis paper we are interested
mainly in the case of cubic crystals in the nearly isotropic case. The principal result
which we shall obtain in this section (also see the beginningof this paper) is the fol-
lowing:

Theorem 7.1. Assume b> 0.
a) When d6= 0, the total curvature will always vanish on entire curves in the smooth
part of S1 ∪ S2. It does not vanish however in the nearly isotropic case on S3. (Note
that when d is small compared with b, the sheet S3 will be smooth.)
b) The mean curvature will vanish nowhere in the smooth part of S, at least if we
are close to the isotropic case.

Similar results are true when b< 0, only that then the smooth sheet is S1 and the
conically singular points lie in S2 ∩ S3.

2. We shall assumeb > 0. The proof of Theorem 7.1. a) will be based on two
statements which are perhaps of independent interest:

Theorem 7.2. In the nearly isotropic case, the total curvature of S1 is
i) negative near conical points,
ii) positive near uniplanar points.

Once i) and ii) are established, we will of course also have proved part a) of The-
orem 7.1, since the regions where the total curvature is strictly positive must be sepa-
rated by non-trivial curves of vanishing total curvature from the regions where the total
curvature is negative. (The set where the total curvature vanishes must be algebraic and
is a subset of the slowness surface. Since the single sheets of the slowness surface are
not reducible, this set can not have geometric dimension twoand must therefore con-
sists of curves and possibly, some additional isolated points. We do not know if such
points are present.)
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That i) is true is a consequence of a simple remark on surfaceswhich have defin-
ing equations of the form considered in the following proposition. To increase read-
ability in calculations, we shall temporarily denote the coordinates inR3 by (x, y, z).

Proposition 7.3. Let Q1 = Q1(x, y, d), Q2 = Q2(x, y, d) be positive definite qua-
dratic forms in the variables(x, y) with coefficients which depend in aC∞ way on d
for small d and assume that there are constants c1 > 0, c2 > 0 such that

(7.1) Q1(x, y, d) ≥ c1(x2 + y2), Q2(x, y, d) ≥ c2(x2 + y2).

Also assume that f1, f2 are C∞-functions of (x, y, d), defined, say, for |x| + |y| < 1,
|d| < 1, such that

(7.2) �k
x� l

y fi (0) = 0 for k + l ≤ 2, i = 1, 2,

and denote byS̃ the surface

S̃ = {(x, y, z); z = −Q1(x, y, d) + f1(x, y, d) + |d|
√

Q2(x, y, d) + f2(x, y, d)}.

(Thus S̃ depends on d.) Then there is c> 0, which depends only on c1, c2, such that
the total curvature K(P) at any point P∈ S̃ is strictly negative when|P| + |d| < c.

Proof. We shall use (7.2) by writing that|�k
x� l

y fi (x, y, d)| ≤ c3(|x| + |y|)3−k−l for
k+ l ≤ 2. The proposition is intuitively clear and the proof is by direct calculation. Re-
call that for a surface represented as the graph of a functionof form (x, y)→ z(x, y),
the total curvatureK at the point (x, y, z(x, y)) is given byK = (zxxzyy−z2

xy)(x, y)=[(1+

z2
x + z2

y)(x, y)]2. In the present situation, we takez(x, y) = −Q1(x, y, d) + f1(x, y, d) +

|d|
√

Q2(x, y, d) + f2(x, y, d) and have to show that (zxxzyy− z2
xy)(x, y) < 0 for small

(x, y) 6= 0 and|d|. After an orthogonal (but not necessarily orthonormal) change of co-
ordinates, we may assume thatQ1(x, y,d) = c′(x2+y2), Q2(x, y,d) = �(d)x2+2�(d)xy+
 (d)y2 with c′ ≥ c1=2, �(d) > c4 > 0, �(d)
 (d)− �2(d) ≥ c5 > 0 if d is small. Then
we have

zx = −2c′x + f1,x +
|d|
2

Q2,x + f2,x√
Q2 + f2

,

zxx = −2c′ + f1,xx +
|d|
2

Q2,xx + f2,xx√
Q2 + f2

− |d|
4

(Q2,x + f2,x)2

(Q2 + f2)3=2 ,

zxy = f1,xy +
|d|
2

Q2,xy + f2,xy√
Q2 + f2

− |d|
4

(Q2,x + f2,x)(Q2,y + f2,y)

(Q2 + f2)3=2 .
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It follows that

zxxzyy− z2
xy =

[
−2c′ + f1,xx +

|d|
2

Q2,xx + f2,xx√
Q2 + f2

− |d|
4

(Q2,x + f2,x)2

(Q2 + f2)3=2
]

×
[
−2c′ + f1,yy +

|d|
2

Q2,yy + f2,yy√
Q2 + f2

− |d|
4

(Q2,y + f2,y)2

(Q2 + f2)3=2
]

−
[

f1,xy +
|d|
2

Q2,xy + f2,xy√
Q2 + f2

− |d|
4

(Q2,x + f2,x)(Q2,y + f2,y)

(Q2 + f2)3=2
]2

.

We next write

1

(Q2 + f2)1=2 =
1

Q1=2
2

(
1

1 + f2=Q2

)1=2
=

1

Q1=2
2

(1 + f3),

where | f3(x, y, d)| ≤ c5|(x, y)|. This gives that

zxxzyy− z2
xy =

[
−2c′ +

|d|
2

Q2,xx√
Q2
− |d|

4

Q2
2,x

Q3=2
2

+ d f4 + g4

]

×
[
−2c′ +

|d|
2

Q2,yy√
Q2
− |d|

4

Q2
2,y

Q3=2
2

+ d f5 + g5

]

−
[

f1,xy +
|d|
2

Q2,xy√
Q2
− |d|

4

Q2,x Q2,y

Q3=2
2

+ d f6 + g6

]2

,

where the f4, f5, f6, respectivelyg4, g5, g6, are functions of (x, y, d) which satisfy

| fi (x, y, d)| ≤ c, |gi (x, y, d)| ≤ c|(x, y)|, i = 4, 5, 6.

The most singular part for (x, y)→ 0 in this expression is apparently

L(x, y, d) = d2

{[
1

2

Q2,xx√
Q2
− 1

4

Q2
2,x

Q3=2
2

][
1

2

Q2,yy√
Q2
− 1

4

Q2
2,y

Q3=2
2

]
−
[

1

2

Q2,xy√
Q2
− 1

4

Q2,x Q2,y

Q3=2
2

]2}
.

However, a direct calculation shows thatL(x, y, d) ≡ 0.
(Since Q2 is a quadratic form we have the trivial relation [Q2,xxQ2=2−Q2

2,x=4]×
[Q2,yyQ2=2− Q2

2,y=4]− [Q2,xyQ2=2− Q2,x Q2,y=4]2 ≡ 0.)
The “next-most” singular part is

(−2c′ + d f4)

[
|d|
2

Q2,yy√
Q2
− |d|

4

Q2
2,y

Q3=2
2

]
+ (−2c′ + d f5)

[
|d|
2

Q2,xx√
Q2
− |d|

4

Q2
2,x

Q3=2
2

]

+ d f6

[ |d|
2

Q2,xy√
Q2
− |d|

4

Q2,x Q2,y

Q3=2
2

]
.
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For smalld, the dominant term is here

−2c′
|d|

Q3=2
2

[(�(d) + 
 (d))Q2 − (�(d)x + �(d)y)2− (�(d)x + 
 (d)y)2]

= −2c′
|d|

Q3=2
2

(�(d)
 (d)− �2(d))(x2 + y2).

The assumption had given that�(d)
 (d)−�2(d) > c5, so the curvature will be negative
for small (x, y) away from 0. This concludes the proof of Proposition 7.3 andtherefore
also the proof of part i) in Theorem 7.2 above.

A similar argument shows that the curvature ofz = −Q1 + f1 − |d|
√

Q2 + f2 is
positive for (x, y, d) small.

The argument to prove that total curvature is positive near uniplanar points (i.e.,
statement ii) in Theorem 7.2 above), e.g. onS1, is even simpler. We work near the
uniplanar point�0 = (0, 0, 1=√c) and parametrizeS1 near �0 by (�1, �2). It follows
from our study of the local discriminant that the defining equation for S1 can be written
(locally) in the form

�3 = f1(�1, �2, d) + |d|
√

Q4(�1, �2, d) + Q5(�1, �2, d)

where Q4 is homogeneous of fourth order in (�1, �2), |Q5(�1, �2, d)| ≤ c|(�1, �2)|5 and
Q4(�1, �2, d) ≥ c|(�1, �2)|4 for some c > 0 and small (�1, �2, d). Here the functions
f1, Q4 and Q5 depend smoothly on�1, �2 and d. Moreover, we know that the func-
tion Q4 + Q5 is strictly positive when (�1, �2) 6= 0. We also know that whend = 0,

then the defining equation ofS1 near P is simply �3 =
√

1=c− �2
1 − �2

2 . It follows in

particular from what we have said that second order derivatives of |d|
√

Q4 + Q5, cal-
culated at points (�1, �2) 6= 0, close to (0, 0) can be estimated byc̃|d|. This shows that
for (�1, �2) 6= 0 small and ford small, the total curvature ofS1 is close to the total
curvature in the isotropic case, which is of course positive.

REMARK 7.4. It is quite trivial to show that onS1 there are points of positive
total curvature when we make the additional assumption thatd > 0. In fact, it is ob-
vious that then the distance from the origin will increase near conical points to values
bigger than 1=√c− d=3 (which is the distance from the conically singular points to
the origin). Since the distance from the uniplanarly singular points to the origin is
1=√c, we conclude that the points̃P ∈ S1 farthest away from the origin must lie in
the smooth part ofS1. At such a pointP̃ the total curvature must be positive. (Con-
sider in fact such a point̃P and consider the sphere with center at the origin which
is tangent toS1 at this point. The total curvature ofS1 at P̃ is then bigger than that
of the sphere and is therefore strictly positive. This type of reasoning is standard in
classical differential geometry. Cf., e.g., [25].)
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Statement a) in Theorem 7.1 above is now proved, and we may turn to state-
ment b).

Theorem 7.5. Let G be a small convex open conic neighborhood of the conically
singular direction(1=√3, 1=√3, 1=√3) which stays away from the uniplanarly singular
direction (0, 0, 1). Then the mean curvature of points in the smooth part of S∩G does
not vanish in the nearly isotropic case.

(We should say that we have not checked what happens for general, not necessarily
small, d.)

The following remark is central in our argument:

REMARK 7.6. Let H (� ′, d) be a function which depends analytically on (� ′, d)
and such thatH (� ′, d) is of form H (� ′, d) = d2[Q2(� ′, d) + O(|� ′|3)] for � ′→ 0, where
Q2 is a positive definite quadratic form in� ′ with coefficients which may depend
analytically on d. Also fix (�, �) with �2 + �2 = 1 and consider the functiont →
f (�, �, d, t) =

√
H (�t , �t , d) defined for|t | small, the square roots being taken posi-

tive. Then the function

f̃ (�, �, d, t) =

{√
H (�t , �t , d) for t ≤ 0,

−
√

H (�t , �t , d) for t > 0,

depends analytically on (t , d). This is a consequence of the fact thatH (�t , �t , d) must
be of form g(�, �, d)t2 + O(t3) for some positive functiong(�, �, d).

Proof of Theorem 7.5. The singular point inS on the half-ray with direction
(1=√3, 1=√3, 1=√3) is �0 = (1=√3c− d, 1=√3c− d, 1=√3c− d). We shall assume
that b > 0, so the sheets which contain the singular point�0 are S1 and S2. We de-
note by�1(� ′, d), �2(� ′, d), �3(� ′, d), the functions considered in (3.3), respectively the
functions�i = �2

i . The sheetsSi , i = 1, 2, 3, are locally the graphs of the functions�i .
The �i are thus the roots of the polynomial� → A0� 3 + A1(� ′, d)� 2 + A2(� ′, d)� +

A3(� ′, d) introduced in (3.5).
The main steps in the argument are described in the followingremarks�), �), 
 )

and Æ).�) �3(� ′,d) is analytic (when we say in this section “analytic”, we always mean “real-
analytic”) in (� ′, d). This follows in fact from the implicit function theorem applied in
the variables (� , d) near the point (̃� = (1=√3c + 3b, 1=√3c + 3b, 1=√3c + 3b), d = 0).
Application of the implicit function theorem is possible since for d = 0 the defining
equation ofS is q(� ) = (1− c|� |2)2(1 − (c + b)|� |2) = 0 and therefore the derivative
(�=��3)q is not vanishing at (̃� , 0). This also shows that the derivatives in the variables� ′ of �3 for d 6= 0 are close to those of�3(� ′, 0) whend is small. We next mention that
for d = 0 we have�3(� ′, 0) = (c+b)−1(1−(c+b)(�2

1 +�2
2 )). Since the total curvature ofS3
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is non-vanishing whend = 0, we conclude that the total curvature ofS3 near the point
on the conically singular direction is non-vanishing. In the sequel of the argument we
may therefore concentrate on what happens onS1 and S2.�) �1(� ′, d) + �2(� ′, d), respectively�1(� ′, d)�2(� ′, d), is analytic for (� ′, d) close to
(�̃ ′, 0). This follows from�) and the Vietè relations for�1(� ′, d) +�2(� ′, d) +�3(� ′, d),
respectively�1(� ′, d)�2(� ′, d)+�2(� ′, d)�3(� ′, d)+�3(� ′, d)�1(� ′, d). For d = 0 we obtain�1(� ′, 0) +�2(� ′, 0) = c−1(2− 2c(�2

1 + �2
2 )), �1(� ′, 0)�2(� ′, 0) = c−2(1− c(�2

1 + �2
2 ))2. Note

incidentally that both quantities are strictly positive for � = �̃ and will therefore also
be strictly positive in the nearly isotropic case when� ′ − �̃ ′ is small.
 ) �1(� ′, d) + �2(� ′, d) is analytic in (� ′, d) in the nearly isotropic case if (� ′, d) is
close to (̃� ′, 0). This is clear from the fact that�1 + �2 > 0, respectively�1�2 > 0 and�1 + �2 = (�1 + �2 + 2

√�1�2)1=2, if square roots are taken positive.Æ) The discriminantD(� ′, d) in � of the polynomial� → A0(d)� 3 + A1(� ′, d)� 2 +
A2(� ′, d)� + A3(� ′, d) is a positive function in (� ′, d) of form d2D̃(� ′, d). We denote
the local discriminant (�1(� ′, d) − �2(� ′, d))2 by 1(� ′, d) and conclude that we must
have1(� ′, d) = d21̃(� ′, d), where 1̃ is analytic in (� ′, d) for small (� ′ − �̃ ′, d) and
is positive. If we fix a lineL in the (�1, �2)-plane of form{(�t , �t); t ∈ R}, �, �,
arbitrary constants with�2 +�2 = 1, then we can apply Remark 7.6 and find a function
F(t , d, �, �), which depends continuously on (�, �), such that

F(t , d, �, �) =
√1̃(�t , �t , d) for t ≤ 0,

and which is analytic int and continuous in (t , d) for (t , d) small. We conclude from all
this that for every fixed (�, �) the functions ˜�1(�t , �t , d) = [�1(�t , �t , d) +�2(�t , �t , d) +
F(t , d,�,�)]=2 and ˜�2(�t ,�t , d) = �̃1(�t ,�t , d)−F(t , d,�,�) are analytic int and con-
tinuous in (t , d) for (t , d) small and depend continuously on (�, �). The functions ˜� j

are thus analytic extensions to the linesL of the functions� j considered as functions
on the half-linesL− = {(�t , �t); t < 0} and the graphs{(�t , �t , � j (�t , �t , d); |t | small}
define analytic curves inS which depend in a continuous way ond. Clearly, when
d = 0 we are in the isotropic case and the curves which we obtain are portions of
circles.

The statement from Theorem 7.5 will now follow, if we observethat the plane
curvature of these curves above the linesL is non-vanishing in the isotropic case and
approximates the one for fixedd when d is small.

8. Study of the Gauss map: Preliminaries

In this section we shall repeatedly use the following

DEFINITION 8.1. Let S be a surface inR3 of form S = {(� ′, h(� ′)); � ′ ∈ U},
h ∈ C∞(U ) and let L be a line inR3 in some plane{(� ′, �3); �3 = const}, which has
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some point�0 in common with S. We say thatL has a contact of orderk with S
if when L is written asL = {�0 + tv; t ∈ R} for some suitablev ∈ R3 \ {0}, v3 = 0,
then we have (d=dt) j h(�0′ + tv′)|t=0 = 0 for j < k, (d=dt)kh(�0′ + tv′)|t=0 6= 0. (Forv = (v1, v2, v3) ∈ R3 we denote byv′ = (v1, v2). Note that we must havev3 = 0.)

We now turn our attention to the last statement made in the beginning of this pa-
per. In this section we shall collect some preliminary material. The first relates curves
on which the Gauss map degenerates, to curves of vanishing curvature.

Proposition 8.2. Let T be a smooth surface inR3 and assume that there is a
piecewise smooth curve0 in T and a plane6 which is tangent along0 to T. Then0 is a curve of vanishing total curvature of T.

Proof. This seems standard, but we shall give a complete proof since it is easy to
check. We may assume that the tangent plane is�3 = 0. Since0 is piecewise smooth
it is (by definition) smooth except for a finite number of points. We now take a point
P in the smooth portion of the curve and consider a local, smooth, parametrization
of the curvet → 
 (t) = (
1(t), 
2(t), 
3(t)), 
3(t) ≡ 0 near P. We may also assume
that P = 0 and that the tangent line3 to 0 at 0 is s→ (s, 0, 0). Finally, we assume
that T is given locally near 0 as the graph of some function� ′ → h(� ′), which will
satisfy∇� ′h(
1(t), 
2(t)) ≡ 0. It follows that 
̇1(0) 6= 0, 
̇2(0) = 0, h(
1(t), 
2(t)) ≡ 0.
We conclude from this that

0 =
d

dt
[∇� ′h(
1(t), 
2(t))]t=0 = H� ′,� ′h(0)

( 
̇1(0)
̇2(0)

)
.

This gives (�2=��2
1 )h(0, 0) = 0, (�2=��1��2)h(0) = 0. It follows that the total curvature

of S is zero at 0. Total curvature is therefore vanishing in the smooth part of0. It
must then vanish by continuity also in the singular points of0.

Our next concern is to understand what kind of curves can appear, if the curve is
to be such that there is a plane tangent to a given sextic alongit. We start with the
following simple (and classical) remark:

REMARK 8.3. If Q1 and Q2 are two polynomials in two variables�1, �2 which
have no common factors, then the set{(�1,�2) ∈ C2; Q1(�1,�2) = Q2(�1,�2) = 0} is finite.
(Indeed, after a linear change of variables we may assume that Q1 = a0��1 + Q̃1, where
a0 ∈ C, a0 6= 0, � is the degree ofQ1, and Q̃1 is a polynomial in (�1, �2) which, as a
polynomial in the variable�1, has degree strictly less than� . The resultantR in the
variable�1 of the two polynomials is a polynomial in�2, which is not identically zero,
since Q1 is irreducible. Common zeros ofQ1 and Q2 can only occur ifR(�2) = 0, so
we obtain a finite number of values�2 for which we can have common zeros. Actually,
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for every �2 with R(�2) = 0, we obtain� values of�1 (when multiplicities are counted)
such thatQ1(�1, �2) = 0 and conversely, the pairs (�1, �2) which appear in this way,
are precisely the common zeros ofQ1 and Q2. For the theory of resultants of two
polynomials see almost any textbook in algebra, e.g., [29].)

The following is an immediate consequence

REMARK 8.4. Let g̃ be an irreducible polynomial in two variables with real co-
efficients. Then the set of common real zeros ofg̃ and of (�=��1)g̃ is finite if (�=��1)g̃
is not identically vanishing.

For reference reasons, we mention the following trivial:

REMARK 8.5. Let f be a real-valued polynomial inR3 and denoteS = {� ∈
R3; f (� ) = 0}. Consider�0 ∈ S and assume thatf (�0) = 0, ��3 f (�0) 6= 0. Also de-
note g(� ′) = f (� ′, �0

3 ). Then 6 = {� , �3 = �0
3 } is tangent toS at �0 precisely when

∇� ′g(�0′) = 0.

Proposition 8.6. Let f be a real-valued polynomial onR3 such that except for
a finite number of points P1, : : : , Ps ∈ S = {� ∈ R3; f (� ) = 0} we have that f(� ) = 0
implies∇� f (� ) 6= 0. Assume that f is of degree6. We also assume that S is bounded
and that there is a plane6 which is tangent to S along a smooth curve0. Then6 is
tangent to S along an ellipse which contains0. In addition to this ellipse of tangency,
there can at most be finitely additional points at which6 is tangent to S.

Proof. We may assume that6 is given by�3 = 0 and denote byg(� ′) = f (�1, �2, 0).
In particular, g(� ′) = 0 implies that (� ′, 0)∈ S. Moreover, g is a polynomial of degree
at most 6. Also considerP ∈ R2. 6 is tangent to (P, 0)∈ S precisely wheng(P) = 0,
∇� ′g(P) = 0. (See Remark 8.5.) We denote by

∏s
j =1 q j , the decomposition ofg into

irreducible, possibly multiple, real factors. In particular, s≤ 6. SinceS, and therefore
also0, is bounded, no factor can be first or third order and therefore in particular the
number of factors is actually at most 3. (Whenq′ is a polynomial of odd degree, with
real coefficients then its set of zeros is unbounded.)

We now also claim that the number of factors (i.e.,s) must at least be two. In-
deed, if there were only one irreducible factor, i.e., ifg itself were irreducible, then
it could have only finitely many zeros in common with∇� ′g (see Remark 8.4), so we
could not have an entire curve of tangency. Actually, by thissame argument it is also
clear that, except for a finite number of points in0, the points in0 must be zeros of at
least two factorsqi , q j , i 6= j , since only in this way can we make sure that generically
simultaneouslyqi (� ′)q j (� ′) = 0 and∇� ′ [qi (� ′)q j (� ′)] = 0. This excludes the possibility
that we have an irreducible factor of degree 4. Indeed, in view of Remark 8.4, the set
of common zeros of such a factor with the remaining factor of degree 2 would have
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to be finite and could not be an entire curve. We are finally leftwith the case of two
or three factors of degree two. In the first case, the sets of zeros of q1 and of q2 must
be ellipses and these ellipses must both contain0 as a subset. It follows that actually
the two ellipses coincide and the set of tangency of6 with S must be this common
ellipse. Moreover, in this case the two factorsq1, q2 will have to be proportional. The
other case is when we have three factors of degree two. Again we obtain two fac-
tors which must vanish on a common ellipse, which contains0 as a subset and along
which 6 is tangent toS. As for the third factor, it may give rise to a finite number
of additional points along which6 is tangent toS.

Let us also give an example of a situation when6 is tangent along a circle and
is, in addition, also tangent at a point in6 which lies outside this circle. The example
thus shows that the last case considered in the proof of Proposition 8.6 can effectively
occur.

REMARK 8.7. Let P̃(� ,� ) be the characteristic polynomial of the system of crys-
tal optics for some fixed biaxial crystal and letQ1(� ) = P̃(1,� ) be the polynomial defin-
ing the corresponding slowness surface. Then it is known that Q1 is fourth order and
that there are 4 circles imbedded inS = {� ∈ R3, Q1(� ) = 0} such that for each of
these circles there is a tangent plane which is tangent toS along the respective circle.
(For the explicit form ofP̃, of S, and information about the four circles see, e.g., [1].)
Let 6 be one of these planes, denote byC the corresponding circle and letQ2 a poly-
nomial of form |� − �0|2−1 such that the sphereS′ = {� ; |� − �0|2−1 = 0} is also tan-
gent to6 in a point �̃ which does not lie onC. Then the polynomialQ1(� )Q2(� ) is a
polynomial of degree six such that6 is tangent to the surfacẽS= {� ; Q1(� )Q2(� ) = 0}
for all points in C ∪ {�̃ }.

9. Study of the Gauss map

In this section we shall use the term “curve” in a somewhat non-orthodox way: a
curve shall be a finite union of otherwise piecewise smooth standard curves. Parame-
trizations shall be defined for the single smooth pieces of which our curves are made.
We shall denote by�0 the conically singular point�0

1 = �0
2 = �0

3 = 1=√3c− d. In par-
ticular, �0 depends on the parametersc and d.

In some arguments it will be necessary to work simultaneously with more than one
set of parametersb, c, d. To distinguish between the various situations, we shall denote
the corresponding slowness surfaces often (but not always)by S(b, c, d), rather than by
S. Accordingly, S1(b, c, d), S2(b, c, d), S3(b, c, d) are then the outer, middle and inner
sheet of the slowness surface for some givenb, c, d. We shall say that some property
P holds “generically for (b, c, d) near some (b0, c0, d0)” if we can find a neighborhood
U of (b0, c0, d0), a non-vanishing algebraic function': U → R, and a constant̃c such
that the propertyP holds for (b, c, d) ∈ U when '(b, c, d) 6= c̃. We shall say, more
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generally, that the propertyP holds generically if it holds generically near (b0, c0, d0)
for any (b0, c0, d0) under consideration. The “property” which we have in mind is that
for given (b, c, d) there are no planes6 which are tangent toS(b, c, d) along entire
curves.

Our main result is

Theorem 9.1. If we are sufficiently close to the isotropic case, then for generic
values of b, c, d no plane6 which is tangent to S along an entire curve can exist.

(We have no idea if the result remains true for arbitraryb, c, d, but clearly the
methods of proof used in this paper do not suffice to study the general case.)

REMARK 9.2. Let K be an open convex cone in the first octant inR3 which
contains the singular direction (1=√3, 1=√3, 1=√3). In the nearly isotropic case the
total curvature of the surfacesSi (b, c, d) is strictly positive in the first octant as long
as we remain in the complement ofK . (See Proposition 6.1 and Theorem 7.2.) In
fact, we have seen that both in the regular region and close tothe uniplanarly singular
directions,S(b,c,d) has non-vanishing total curvature. It follows in the nearly isotropic
case, that if a plane6 is for some value ofb, c, d, tangent toS(b, c, d) along an
entire curve0 with points in the first octant then every connected component of 0
with points in the first octant must lie inK . Actually we also know that0 must be
an ellipse, so it can have only one connected component.

Proof of Theorem 9.1. We shall only discuss the physically interesting caseb >
0, the caseb < 0 being similar. Since we shall work in the nearly isotropic case, we
may assume then thatS3 is smooth and strictly convex. In follows from the remark
that for suitable (�, �), �2 + �2 = 1, 0 must intersect the curve{� ∈ S1(b, c, d) ∪
S2(b, c, d); �(�1− �0

1 ) = �(�2− �0
2 )}. (Note that�0 will depend on (b, c, d), and when

we need to specify this, we shall write�0(b, c, d) rather than�0.) To continue our
argument, it will now be necessary to obtain some minimal information about such
intersections.

To begin this study, we look at the family of curves

L(�, �) = {� ∈ S1(b, c, d) ∪ S2(b, c, d); �(�1− �0
1 ) = �(�2− �0

2 ), �i > 0, i = 1, 2, 3}

with �, � ∈ R, �2 + �2 = 1.
(Note that the pairs (�, �) and (−�, −�) define the same curve in this family.

Since the argument is always about some fixed (�,�) this does not lead to ambiguities.)
The curvesL(�, �) are singular at� = �0. We also mention thatL(�, �) depends on
(b, c, d), but since we shall work for a fixed (b, c, d), we do not make this explicit in
the notation.
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Theorem 9.3. Fix b0, c0. If |b−b0|+ |c−c0|+ |d| is sufficiently small, the curves
L(�, �) admit no inflection points in their smooth portions.

Proof. We denote by�0(b, c, d) the conically singular point for some given (b, c, d)
for which |b− b0| + |c− c0| + |d| is sufficiently small.

When |�| ≥ √1=2, we parametrize the curvesL(�, �) by �2, otherwise by�1. In-
deed, working e.g., for the case|�| ≥ √1=2 it is reasonable to write�1 in terms of�2: �1 = �0

1 (b, c, d) + (�=�)(�2 − �0
2 (b, c, d)). �3, on the other hand, can be calculated

from the defining equation ofS1(b, c, d) ∪ S2(b, c, d). Since we want to use a pertur-
bation argument in the parametersb, c, d, we study at first the defining equations of
S1(b, c, d) ∪ S2(b, c, d) in a neighborhood of the singular point�0(b, c, d). We shall
assume that we are working in the first octant inR3. Applying the Weierstrass prepa-
ration theorem to the six-th order polynomial with parameters (b, c, d), which defines
the S(b, c, d) in a neighborhood of (�0, b0, c0, d0) we see thatS1(b, c, d)∪ S2(b, c, d)
can be defined locally by an equation of form̃q(� , b, c, d) = 0,

(9.1) q̃(� , b, c, d) = �2
3 + g1(�1, �2, b, c, d)�3 + g2(�1, �2, b, c, d),

where thegi are holomorphic in�1, �2, b, c, d, and 1 = g2
1 − 4g2 is the local dis-

criminant. In terms of the roots�3,1, �3,2 of the polynomial�3 → q̃(� , b, c, d) the
local discriminant is (�3,1(�1, �2, b, c, d) − �3,2(�1, �2, b, c, d))2. It is important here
that the functionsg1 and g2 are defined on a neighborhood of (�0

1 , �0
2 ) which is in-

dependent of (b, d) if (b, d) is close to (b0, 0) for some previously fixedb0. (Note
that �0(b, c, d) depends on (b, c, d), but we have applied the Weierstrass preparation
theorem at (�0, b0, c0, 0), so the functionsg1, g2 have the indicated domains of defini-
tion.) This gives for every�, � and everyb, c, d with |b− b0| + |c− c0| + |d| small,
two solutions�3,i , i = 1, 2, which depend on (�1, �2, b, c, d). As a function of the two
variables�1, �2 these functions have to be singular at�0(b, c, d), but along each of the
lines �1− �0

1 (b, c, d) = (�=�)(�2− �0
2 (b, c, d)) we can define solution-functions in such

a way that they depend analytically on�2, �, �, b, c, d. Indeed, if

(9.2)

�3,± =
−g1(�0

1 (b, c, d) + (�=�)(�2− �0
2 (b, c, d)), �2, b, c, d)

2

±

√1(�0
1 (b, c, d) + (�=�)(�2− �0

2 (b, c, d)), �2, b, c, d)

2
,

are the two standard roots of the polynomial�3 → q̃(� , b, c, d) (square roots are to
be taken positive), then we set�3,1 = �3,+ when �2 < �0

2 (b, c, d) and �3,1 = �3,− when�2 ≥ �0
2 (b, c, d). (Also cf. here Remark 7.6.) The function�3,2 is then defined similarly.

We know from Section 5 that1 = d2(1̃(� ′, d)+11(� ′, d)) where1̃(� ′, d) is a positively
definite quadratic form in� ′ with 1̃(� ′, d) ≥ c̃|� ′|2, c̃ > 0 and11(� ′, d) vanishes of
order three at� ′ = �0′.
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Fig. 1. Part of the section ofS∩{�1 = �2} with and without com-
mon tangent in the casec = 1, b = 0.5, d = 0.25. The two points
of tangency must be separated by the double point on the curve.

Since our curves have no inflection points in the isotropic case, we can conclude
that in the nearly isotropic case there are no inflection points in the smooth portions
of the curvesL(�, �) near the singular direction. Away from the singular directions,
we again obtain that there are no inflection points in the nearly isotropic case, since
the curvesL(�, �) are analytic functions which depend analytically on the parameters
b, c, d.

Now assume that for some (b,c,d) there is a plane6 which is tangent toS(b,c,d)
along an entire curve0 of which some portion is contained in the first octant. We
know from Remark 9.2 that if we fix some open convex coneK ⊂ R3 containing
(1=√3, 1=√3, 1=√3) and if we are sufficiently close to the isotropic case, then0 must
lie completely inK . It will then also intersect for some suitable�,� the curvesL(�,�)
considered above. Actually, since the curvesL(�, �) have no inflection points, then
generically any curve which intersects0 must have at least two distinct points on0
and the lineL which is determined by these two points will be tangent to thecurve
L(�, �). This is only possible if the singular point�0 separates the two points of
L(�, �)∩6 on L(�, �), i.e., these points lie on different connected componentsof the
curve L(�, �) \ {�0(b, c, d)}. This shows that the only way to have a plane6 which
is tangent along an entire curve0 on S(b, c, d) and has points in the first octant, is
when0 contains the conically singular direction�0(b, c, d) in its “interior”. It is then
also clear that0 must intersect the curvesL(�, �) for every�, � in two points which
lie on S1(b, c, d). (For part of this, see Fig. 1.)

To see that planes6 tangent toS1(b, c, d) along curves can not exist generically
(for the exact statement, see Theorem 9.1), we argue now by considering the inter-
section ofS1(b, c, d) ∪ S2(b, c, d) with �1 = �2. This is a curve of typeL(�, �) with� = � = 1=√2, but the structure ofL(1=√2, 1=√2) is quite easy to understand, so
it may be worthwhile to say a few things about it. The sextic defining T = {� ∈
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S(b, c, d); �1 = �2} can be factored in the form

(9.3)
(1− 2c�2

1 − c�2
3 + d�2

1 )[2b�2
1 (1− 2c�2

1 − c�2
3 + d�2

3 ) + b�2
3 (1− 2c�2

1 − c�2
3 + d�2

1 )

− (1− 2c�2
1 − c�2

3 + d�2
1 )(1− 2c�2

1 − c�2
3 + d�2

3 )].

(This is checked by direct verification.) The double points on this sextic clearly satisfy
the equation of the ellipse associated with the first factor in (9.3), so that the quartic
defined by the second factor has no double points. It is therefore a smooth curve and
the double points of the sexticT corresponding to the conically singular points onS
come from the intersection of this curve with the ellipse 1− 2c�2

1 − c�2
3 + d�2

1 = 0.

The idea to conclude the proof of Theorem 9.1 is now as follows. We know that
if we assume that6 were for some fixed valuesb = b0, c = c0, d = d0, d0 sufficiently
small, a tangent plane toS1(b0, c0, d0) along a curve0 in the first octant, then it must
intersect the curves{� ∈ S1(b0, c0, d0); � j = �k, �i > 0}, k 6= j , in two points for every
j 6= k. Since the situation is symmetric with respect to permutations of the variables�i ,
we see that the normal to the plane6 must be (1=√3, 1=√3, 1=√3). When we restrict
to the plane�1 = �2 we conclude that the lineL = {(�1, �3); � ∈ 6, �1 = �2} must have
normal~n0 = (2, 1)=‖(2, 1)‖. We call this~n0 the “correct normal”. Let us now denote
by P+ and P− the points of tangency ofL and {(�1, �3); (�1, �1, �3) ∈ S(b0, c0, d0)}.

To bring in the perturbation argument, we now change point ofview slightly and
look at the intersection ofS1(b, c, d) with the plane�1 = �2 for generic values of (b, c, d).
We parametrize the plane�1 = �2 by its natural coordinates (�1, �3). We may assume
that in the first quadrant the pieces of algebraic curves3+ = {(�1, �3) ∈ R2; (�1, �1, �3) ∈
S1(b, c, d), �3 > �0

3 (b, c, d)} and3− = {(�1, �3) ∈ R2; (�1, �1, �3) ∈ S1(b, c, d), �3 <�0
3 (b, c, d)} are defined respectively byq+(�1, �3, b, c, d) = 0 and byq−(�1,�3, b, c, d) = 0.

We changed the notations for the variables (from� to �) in the region{� ∈ R3; �3 <�0
3 (b, c, d)} in order to make it easier to distinguish the contributions of this region

from the contributions of its complement.S1(b, c, d) is here calculated for the values
(b,c,d) under consideration. Arguing as above (or using the explicit form of the factors
in (9.3)) we can show that in the nearly isotropic case the curvature of the curves3±
may be assumed non-vanishing. The two curves have exactly one common tangent line
with points of tangencyP+ = (�̃1, �̃3) and P− = (�̃1, �̃3) in the first quadrant, whereP+

is chosen in the region�3 > �0
3 (b, c, d) and P− in �3 < �0

3 (b, c, d). (See again Fig. 1.)
We claim thatP+ and P− are algebraic functions of theb, c, d. Indeed, in terms

of the defining equationsq+ = 0 andq− = 0, considered above, the conditions forP+

and P− are

(9.4)
q+(P+, b, c, d) = 0, q−(P−, b, c, d) = 0,

〈∇q+(P+, b, c, d), P+ − P−〉 = 0, 〈∇q−(P−, b, c, d), P+ − P−〉 = 0,

and all these equations are polynomial. We have here four equations for the four coor-
dinates (in the (�1, �3)-plane) of P+, P−. Since in the nearly isotropic case the solutions
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P+ and P− are locally unique, we can solve these equations to obtainP+ and P− as
algebraic functions of (b, c, d). This is indeed a consequence of the implicit function
theorem. To see this, it is convenient to make a linear changeof coordinates in which
∇q+(P+, b, c, d) and∇q−(P−, b, c, d) are parallel to (1, 0). It also follows that in these
coordinates we must havẽ�1 = �̃1 and therefore also that̃�3 6= �̃3. Since the curvatures
of 3+, 3− were assumed non-vanishing, we must have (�=��3)2q+(P+, b, c, d) 6= 0,
(�=��3)2q−(P−, b, c, d) 6= 0. To see that the implicit function theorem is applicable it
remains then to calculate the Jacobian (in the variables (�1, �3, �1, �3)) of the map

(�1, �3, �1, �3)→




q+(�1, �3, b, c, d)
〈∇q+(�1, �3, b, c, d), (�1, �3)− (�1, �3)〉

q−(�1, �3, b, c, d)
〈∇q−(�1, �3, b, c, d), (�1, �3)− (�1, �3)〉




and show that it is nonsingular at (P+, P−). This is immediate in our special coordi-
nates.

The normal to the line in the plane�1 = �2 which is tangent to the curve{(�1, �1, �3) ∈
S1(b, c, d); �1 = �2} in two points P+, P− in the first quadrant as above, is an alge-
braic function of the parameters (since it is determined by the two pointsP+, P− which
depend algebraically on the parameters). To conclude the argument, it will then suf-
fice to show that for generic choices of the constantsb, c, d, we do not get the “cor-
rect normal”. Many ways to show this are available. For example, it is already clear
from graphical evidence that the directions of the normals in question are not constant,
and therefore there must also be instances where the direction of the normal is not the
correct one. Although we have explored this (using “Maple”),we think that this ap-
proach is not necessarily convincing enough for everybody.Another possibility is to
study what happens whenb, c, d move in the admissible region towards the boundary
of the admissible region. Finally, we can try to calculate the normals for special values
of the parameters chosen in such a way that calculations become simple. The simplest
such choice is whenb = 0, when the equation of the slowness surface is the product of
three second order polynomials. Since we have generally sticked in this paper to val-
uesb 6= 0 we shall here argue for the casea = −2b, which is closer to the physically
interesting situations and where moreover results are somewhat more precise than in
the general generic case. The first remark is that whena = −2b, then the condition
a + c > 0 reduces toc > 2b. We shall assume thatb > 0, so the only remaining re-
striction on parameters is (see the introduction)c− d + b > 0. In particular, we may
also consider the nearly isotropic case fora =−2b, although it has perhaps no physical
interest. The main remark is now that for the case�1 = �2, the polynomialq factors
into the product of three polynomials. This is based on the fact that for a = −2b the
characteristic surface can be written as

(9.5) (� 2 − c|� |2)[(� 2 + (b− c)|� |2)2 − b2(�4
1 + �4

2 + �4
3 − �2

1�2
2 − �2

1�2
3 − �2

2�2
3 )] = 0.
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(See e.g., [20].) The most interesting part of the slowness surface is then in some
sense

(9.6) f (� , b, c) = (1 + (b− c)|� |2)2− b2(�4
1 + �4

2 + �4
3 − �2

1�2
2 − �2

1�2
3 − �2

2�2
3 ) = 0.

When e.g.�1 = �2, the equation (9.6) reduces to

(9.7) (1 + (b− c)(2�2
1 + �2

3 ))2− b2(�2
1 − �2

3 )2 = 0.

This can also be written as

(9.8) [(1 + (b− c)(2�2
1 + �2

3 ))− b(�2
1 − �2

3 )] × [(1 + (b− c)(2�2
1 + �2

3 )) + b(�2
1 − �2

3 )] = 0,

so all in all, we obtain

(9.9)
q(�1, �1, �3) = (1− 2c�2

1 − c�2
3 )[(1 + (b− c)(2�2

1 + �2
3 ))− b(�2

1 − �2
3 )]

× [(1 + (b− c)(2�2
1 + �2

3 )) + b(�2
1 − �2

3 )].

(Notice thatq(�1, �1, �3) is a polynomial in the two variables (�1, �3).) The problem
is then reduced to see whether the common tangent in the first quadrant to the two
ellipses3′, 3′′ in the (�1, �3) plane

(9.10)
3′ = {(�1, �3); (b− 2c)�2

1 + (2b− c)�2
3 + 1 = 0},

3′′ = {(�1, �3); (3b− 2c)�2
1 − c�2

3 + 1 = 0},

has the correct normal. It is3′ which has intersection point with the�3-axis farther
away from the origin whenb > 0.

Since we are dealing with ellipses, this common tangent can be calculated effectively.
Let us briefly describe how this is done.

In fact, we may search the common tangent to the ellipses3′, 3′′, in the form�1 = m�3 + n where m and n have to be determined. We denote byP+ = (�̃1, �̃3),
respectivelyP− = (�̃1, �̃3), the points of tangency of the tangent with3′, respectively3′′, in the quadrant�1 ≥ 0, �3 ≥ 0. We have in particular that

(9.11)
�̃1 = m�̃3 + n, �̃1 = m�̃3 + n, (and thereforẽ�1−m�̃3 = �̃1−m�̃3)

(b− 2c)�̃2 + (2b− c)�̃3
2 + 1 = 0, (3b− 2c)�̃1

2− c�̃3
2 + 1 = 0.

The notations are here chosen as above, in thatP+ will have to lie in the region�3 > �1

and P− in the region�3 < �1. (Recall that3′ intersects the�3-axis in a point far-
ther away from the origin than the point of intersection of3′′ with the �3-axis and
therefore P+ will have to lie in �3 > �1.) We still have to add the condition that�1 = m�3 +n is tangent to3′, respectively3′′. To make “tangency” explicit, we choose
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two locally defined functions'1 and '2 which parametrize3′, respectively3′′, near
P+, respectivelyP−. Thus

(9.12) (b− 2c)'2
1(�3) + (2b− c)�2

3 + 1 = 0, (3b− 2c)'2
2(�3)− c�2

3 + 1 = 0,

and �̃1 = '1(�̃3), �̃1 = '2(�̃3). By derivating (9.12) we obtain (with “dots” indicating
derivatives) for ˙'1(�̃3), '̇2(�̃3) the expressions:

(9.13) '̇1(�̃3) =
(c− 2b)�̃3

(b− 2c)�̃1
, '̇2(�̃3) =

c�̃3

(3b− 2c)�̃1
.

We could now continue to calculatẽ�1, �̃3, �̃1, �̃3 from these conditions, but actually we
are only interested in showing that when we assume thatm =−1=2, (which is the value
corresponding to the correct normal) then we cannot find�̃1, �̃3, �̃1, �̃3 which satisfy all
the conditions.

Indeed, with this value form the �̃1, �̃3, �̃1, ỹ3 must satisfy the following conditions:

�̃1 +
1

2
�̃3 = �̃1 +

1

2
�̃3,(9.14)

−1

2
=

(c− 2b)�̃3

(b− 2c)�̃1
=

c�̃3

(3b− 2c)�̃1
,(9.15)

(b− 2c)�̃2
1 + (2b− c)�̃2

3 + 1 = 0, (3b− 2c)�̃2
1 − c�̃2

3 + 1 = 0.(9.16)

We have here five equations for four unkowns, and we shall see that these relations
are not compatible.

The equations (9.15) give in fact

�̃3 =
1

2

(b− 2c)�̃1

2b− c
, �̃3 =

1

2

(2c− 3b)�̃1

c
.

When we insert this into the equations of3′ and3′′, we obtain the two equations

(
b− 2c +

1

4

(b− 2c)2

2b− c

)�̃2
1 + 1 = 0,

(
3b− 2c− 1

4

(3b− 2c)2

c

)�̃2
1 + 1 = 0.

We solve these equations explicitly to get (remember that weare looking for solutions
in the first quadrant)

�̃1 =
2

3

√
−(−24bc+ 9b2 + 12c2)(−c + 2b)

−8bc+ 3b2 + 4c2
=

2√
3

√
c− 2b√

4c2− 8bc+ 3b2

�̃1 =
2

3

√
3
√

(−8bc+ 3b2 + 4c2)c

−8bc+ 3b2 + 4c2
=

2
√

3

√
c

√
4c2 − 8bc+ 3b2

.
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We now insert this in the first relation in (9.14) to obtain (after dividing both sides by

the common factor 2=√3(−8bc+ 3b2 + 4c2)):

√
c− 2b =

√
c.

This shows that the system (9.14), (9.15), (9.16) is compatible only whenb = 0. Since
we must also have thata = 0 in this case, we are in the completely degenerate situation
when S, the full slowness surface, is a triple sphere. Not even in this case there are
planes which are tangent toS on complete curves however. This completes the proof
of Theorem 9.1.
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