Liess, O.
Osaka J. Math.
45 (2008), 173-210

CURVATURE PROPERTIES OF THE SLOWNESS SURFACE
OF THE SYSTEM OF CRYSTAL ACOUSTICS
FOR CUBIC CRYSTALS

To the memory of Tetsuya Sonobe

OTTO LIESS

(Received August 1, 2006, revised February 26, 2007)

Abstract

In this paper we study geometric properties of the slownesface of the
system of crystal acoustics for cubic crystals. In paréicwe shall study curvature
properties of the surface and the behaviour of the surfaee siagular points. The
main result is that in the generic nearly isotropic caseettsge no planes which are
tangent to the surface along entire curves. This is in centsth what happens for
the slowness surface of the system of crystal optics forxl@itarystals. Geometric
information of the type we shall obtain is needed to undaedstéhe long-time
behaviour of global solutions of the system of crystal atioss

1. Introduction

The results in this paper are part of an attempt to understia@dong time be-
havior of global solutions of the homogeneous system oftatyacoustics for cubic
crystals. An essential part in this undertaking is to un@eid curvature properties
of the slowness surfac8 associated with the system and to have information on the
Gauss map (i.e., the map— (&), where foré € S, 1i(¢) is the normal toS in &)
defined onS. The main purpose of this paper is to provide this informmatitn prin-
ciple our results also show that in the generic nearly igitraase there is no internal
conical refraction for acoustic waves in cubic crystalst twe shall not explain this
statement any further. What we shall show is essentially rffore precise statements,
see the theorems) that:

e when the crystal under consideration is not isotropic, then total curvature of

the slowness surface will always vanish along a number ofesyr

e in the nearly isotropic case the mean curvature vanishehem@y

e and, still in the nearly isotropic case and genericallyrehare no planes tangent
to S along entire curves.

The interest in results of this type in wave propagation forstals has a long his-
tory. Indeed, in the case of crystal optics the surface spoeding to the slowness
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surface is Fresnel’s surface, and R.S. Hamilton discovareti337 that for optically

biaxial crystals there are planes which are tangent to Efsssurface along entire cir-
cles. (Cf. e.g., [1].) He inferred from this that for such stils light rays which enter
a crystal will not always propagate inside the crystal along single straight ray, but
could split up, at least in certain specific situations, intmes of light. When this
phenomenon, which now goes under the name of “conical t&rdc was confirmed

experimentally a year later, it brought R.S. Hamilton insé@eous fame and led, still
in the 19-th century, to a long series of papers on Fresnetfaee (both in the math-
ematical and in the physical literature.) A good referenmethe history of the study
of Fresnel's surface is [16]. Also see [9] for some more réagesults in algebraic
geometry which have their origin in this kind of problems. e not aware of any
comparable efforts made for the slowness surfaces whickaapp crystal acoustics.

As for the present paper, the starting point has been to sfiedpy estimates of
global solutions of the system of crystal acoustics for cudrystals. Cubic crystals are
together with crystals from the hexagonal class the simhples-isotropic crystals and
seem interesting enough to merit an independent study. égaestly, we shall in fact
only study the slowness surface for cubic crystals and weldhsay that we have not
seriously tried to understand what happens for crystalsheroclasses. We regard our
problem from a purely mathematical point of view, in the saweé in which decay
estimates have been studied for the related case of the waregienTl = 97— >"7_; 35 .
We also recall that decay estimates have been used to progdiioe existence for so-
lutions of non-linear perturbations of the wave equatidn [@], [7] and many other pa-
pers) and a similar study has been undertaken for non-lipedurbations of Maxwell's
system for optically biaxial crystals (cf. [11], [17]). Amg the many papers on re-
lated arguments we only mention [21], [26] and [28] (whickatis hexagonal crystals),
respectively [3].

Rather than explaining the exact relation between decamaists for solutions of
the system of crystal acoustics and curvature propertiethoassociated slowness sur-
face, we mention the following two results which are to somiered a preliminary step
in this link and which have an independent interest.

Theorem 1.1 (Hlawka 1950, [4], [5]). Let Sc R" be a smooth compact surface
with nowhere vanishing total curvatureAlso let u: S— C be a smooth function on
S. Then there is a constant € 0 such that the Fourier transform(x) of u do, do
the surface element on, 8efined by

(1.1) 109= [ explix, £)u(e) dore)
S
satisfies the estimate

(1.2) IH(X)] < c(1+|x|)~"=22,
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Proposition 1.2. Let Sc R® be a smooth algebraic surface given by a poly-
nomial equation S (& € R3; p(¢) =0}, let U € U c R® be open and bounded and
assume that the following assumptions are satisfied
a) Vep() #Z0for £ e SNU and the mean curvature of (SU does not vanish
b) there is no plane tangent to S along an entire curve

Also consider some smooth function $i— C such that (&) =0if & ¢ U’. Then
there is a natural number k 2 such that (x) = [gexpli(x, §)Ju(§) do(§) (do the
surface element on)Satisfies the estimate

(1.3) 11(x)] < c(L+|x[)~¥2 Yk,

(“V” denotes here and later on the gradient of some functiom the “natural
variables” of the function.)

In order to give a flavor of why results on curvature and tahgdanes along
curves are related to decay estimates, we shall prove Htiopo&.2 in Section 2 be-
low. Theorem 1.1 on the other hand is the first of a long listefults on estimates
for Fourier (inverse) transforms of densities which live surfaces in higher dimen-
sions. (See [27].) In [4] it is used in a context of number tigefviz., the Gauss
“Kreisproblem”), but it is clearly also linked to the coumgi function in eigenvalue
problems for elliptic operators. Closer to the initial nvation for this paper is that
it is underlying the classical estimates on long time betraef solutions of the wave
equation. The relation of Proposition 1.2 with decay est@wdor solutions of the sys-
tem of crystal acoustics will be explained in a forthcomiraper.

We should mention from the very beginning that most of theultssn this paper
shall be obtained by a perturbation argument starting froenisotropic case. It is for
this reason that we can only obtain results for the nearlyrapic case and the case
of general cubic crystals can probably only be treated uairtifferent approach.

We now recall the system of crystal acoustics (or “crystatcity”) for cubic
crystals in some detail. Additional information on crysaagbustics for crystals, cubic
or not, can be found e.g., in [2] and [19].

We are only interested in the homogeneous equation and imalgkolutions de-
fined onR; x R? of the system. The system the solution will then satisfy Hees t
following form:

92 —adz —cA —bay, dy, —bady, dy, Uy
(1.4) P(D)u= —bdg,dy,  02—ad2 —CA  —bdy,dy, u, | =0
—boy, x, —bady, dy, 92 —adi, —cA Us

with A denoting here the Laplacian in the variables (x;, X2, X3). (Later on, we shall
use the letter A” for “discriminants”.)
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Correspondingly the characteristic polynomial of the sgsis given by de®(z, &),
T e R, £ € R®, where

T2 — ag? +cl¢|? —b&1&> —b&1&3
(1.5) P(r,§)=— —béE; 12 — agZ +clg|? —bésks
—b&sé —bé&zé> 12 — agZ +clg|?

The characteristic surface associated with the systeftris) € R*; detP(z, &) = 0}.
It is useful to write the characteristic polynomial in what ¢alled “Kelvin's” form.
We do so again only for the particular case of cubic crystalsen Kelvin's form is

(cf. [2]):

bs? . bs? . bé? _
2—clgP+(b—a)E? t2—clEP+(b—a)l t2—Cclé?+(b—a)s?

(1.6)

In all this thea, b, ¢ are real constants which can be calculated in terms of thes3 “e
sential” stiffness constants of a cubic crystal. (Cf. [2HdA3].) The fact that (1.6)
defines the characteristic surface of a cubic crystal gieesesrestrictions on the, b, c.

Of these we mention that we must have- 0, a # 0, a+c > 0, Ic—b+a > 0 (see e.g.,
[13]). As in [2] we shall often assume that> 0 (we shall justify this assumption in
a moment) but additional restrictions shall be introducatgrl on in this introduction.

We also mention that the crystal is isotropic if and onlyaif= b. Recall that
in the isotropic case, acoustic, respectively elastic,nphreena can be understood in
terms of the Lamé constants.™ and “u”. Expressed in terms ob and c they are
A+2u=c+b, u=c. As to the physical interpretation,/u is the velocity of the
two shear waves, whereagi + 2u is the velocity of the pressure wave. (Shear waves
are also called transversal waves, whereas pressure wavesalled longitudinal or
compression waves.) Since the velocity of the shear wavdsgiger than that of the
pressure waves, in the isotropic case we must eaved. (Cf. [10], Section 22, where
it is stated that we must havga + 2u > /4/3. See also the footnote nr. 2 there.)
We denoteb — a by d, so thatd becomes a measure for the anisotropy of the crys-
tal. While in (1.5) the “main” constants are visibyy; b, ¢, it may be argued that the
primary constants in (1.6) aie, ¢, d and we shall write down calculations in terms of
b, ¢, d henceforth.

The polynomial deP is immediately seen to be homogeneous in the variables
(r,&) and of degree six. The system (1.4) is a particular caseeofyistem of elasticity
for elastic media and as such it is known to be hyperbolic wétpect to the time vari-
able (when some conditions on the stiffness constants disfiesd). “Hyperbolicity”
then implies that for everg e R® the equationP(z, £) =0 has 6 real roots if multi-
plicities are counted, and it is obvious that for every fixeg O three of them are pos-
itive and three negative. (Actually we shall always alsouass that the roots arg 0
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for £ #0.) Related to this is the fact that the surface define®by(¢ € R3; q(&) = 0},

3 3
@L.7)  a@) =]Ja—-clg?+d&?) = D> beP(1 - clgl* +del )1 — clg* + dED,)

j=1 =1
(indices are counted modulo 3) is a closed bounded surfad.in

DEerINITION 1.3. The surfaceS defined by the conditiom(¢) = 0 is called the
“slowness surface” of the crystal. It is essentially theeisection of the characteristic
surface{(r, £) € R* detP(z, £) = 0} with the planer = 1.

Whend = 0, the equation of the slowness surface reduces te ¢E|?)?(1 — (c +
b)|£]%) =0, and the slowness surface is the union of the “doublersplig—c|&|?)2 =0
with the sphere % (b+c)|&|? = 0. This is meaningful of course precisely whenb >
0, so in particular we see that from a mathematical point efwihere are cases with
“b < 0” which make sense, although they may not have any physitalest.

REMARK 1.4. We say that some property holds in the nearly isotropgeg if
for fixed b°, c° there ise > 0 such that the property holds whéim— b°| + |c — c%| +
|d] < e.

REMARK 1.5. As is already clear from the preceding remarks, almibsndities
which we shall encounter later on depend on the value of tmstaatsb, ¢, d. How-
ever, if we would make these dependencies explicit in thatmots, then the notations
would become rather heavy. If we consider some entity, agXample some function
o, which depends on the variablésand also on the constanks ¢, d, we shall then
write for examplep(§, b, ¢, d), p(&, d) or p(§), according to which, if any, of the
constantsh, ¢, d are relevant in the argument under consideration.

We now return to the discussion of some further restrictionghe constants, b,
¢, d. One highly degenerate case is wher 0. In this case the slowness surface has
the form {§; H?zl(l—c|§|2+d§j2) =0}, and the system is hyperbolic only when< c.
More generally speaking, we shall call some triple of cortstdp, c, d) “admis-
sible”, if the characteristic equation de{r, £) = 0 admits 3 strictly positive roots
for every fixeds € R®\ {0}. (By continuity this implies that there is then a constant
€ > 0 such that|z| > €|£| whenever deP(z, &) = 0.) Thus “admissibility” refers in
this paper strictly to the mathematical question of stugyihe characteristic surface
associated with the systefd and is not a question of physical relevance. Since our
main interest in this paper is in the nearly isotropic case, shall assume whenever
convenient thatd < c. (Note that this condition is also necessary if we want tokwor
with a condition ond which is independent of the value of)
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Kelvin's form of the characteristic equation is very usefiien we want to obtain
further information on the admissible region. This is basedthe following remark
(see [19] and also [13]): if, by, i =1, 2, 3 are strictly positive constants,<0a; <
a, < ag, then the polynomial

3

3
(1.8) gt) = [t —a) = D bjt —aj)(t — ajs2),

i=1 j=1

is negative at = a;, t = ag and positive at = ap, t = co. It follows that it must have
three positive roots, one in each of the intervalsg &), (a2, ag), (as, o). (Cf. [2] and
also [13]. A sharper statement is (6.5) below.) On the ottardh whenb; < 0, but
still a; >0, j =1, 2,3, then by a similar argument we shall have three ktnmisitive
roots precisely wherg(0) < 0. When we apply this for; = cl§|* — d&7, bj = b&?
and assumel < ¢, we conclude the following, provided does not lie on one of the
axes and when we hayg; ,;(l& | — |§j]) # 0: in the caséb > O there are always three
positive roots; (we need no other condition, since ghere positive by our assumption
c—d > 0) and in the cas® < 0 we have three strictly positive roots precisely when
[T.1(clg? — (b — a)€?) — 305_, beA(clE|? — (b — a)&2,)(ClE|? — (b — a)&j+2) > O for
every£ e R3, £ #0. (By continuity the results remain true then also wi§ehies on
one of the axes or if§| = |&;| for somei and j.) As a consequence, we conclude
that if b, ¢, d are admissible anth < 0, then also everyl(, c, d’) with d=d’, b < b’
is admissible.

We now want to recall some known facts about the slownessacirfor cubic
crystals. To do so, we need two definitions from classicdedihtial geometry.

DEFINITION 1.6 (Cf. [24]). LetS be a surface irR® (definitions work equally
well in R") in which linear coordinates are denoted Yy (y1, V2, ¥3). We assume that
0 e S and that in a neighborhood of G is defined by an equation of forgy; f(y)=
0, y € U} for some functionf e C>*°(U). Finally assume tha¥ f(y) = O precisely
wheny =0 and denote byl f(y) = z|a|=k(1/a!) ay f(0)y* the homogeneous part of
degreek in the Taylor expansion of at 0.

a) We say that 0 is a conical singularity if for a suitable cleodf linear coordinates
Jf has the formJ f (y) = y2 — y? — y2.

b) O is called a uniplanar singularity (or also a “uniplanarde”) if the following
happens: we can find linear coordinates in whigfdfs)? f (0) # 0 and such thaf =0
is locally equivalent to

yZ+ A(y1, Y2)Ya + B(y1, ¥2) =0, with A(0) =0, B(0) =0, VyA(0) = 0,

for someC-functions A, B. Moreover, we assume that if we denote hythe quan-

tity A = A%(y1, y2) — 4B(y1, y2), then we haveA(yi, y2) ~ |(y1, y2)I* for (y1, y2) = O.
Geometrically speakingS is thus near the origin the union of the two she&ts =
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{y; vz = (1/2)(—A(y1, ¥2) £ ~/A(y1, ¥2))} which havey; = 0 as a common tangent
plane at 0.

We now return to our discussion of the slowness surface. dfy fawill consist of
3 “sheets”, which we shall call the inner, middle and outee.olVe can define them
in the following way: if we fixw € R® of length 1, then the polynomia — q(fw)
is of degree 6 and is even if.. “Hyperbolicity” of P(D) gives that we shall have
three positive root®s(w) < 62(w) < 61(w) and three negative roots, which actually are
—6i(w), i =1,2,3. The sheet§ are then parametrized t§ = {6 (w)w; w € R3, || =
1}, i =1, 2,3. The following geometric information is well-eslighed (cf. e.g., [2],
[19], [13]):

e the inner sheet is strictly convex, (i.e., it is convex andline intersects the inner
sheet in more that 2 points),

e whenb #0, d #0, thenS has precisely 14 double points,

e 6 of these double points lie on the coordinate axes, exaciyan each semi-axis,
and are of uniplanar type, the singular points on §hexis being+(0, 0, 1/,/c);

e the remaining 8 double points lie on the lingg| = |&| = |&3|, in each octant of
R3 lying precisely one. The singularities of this type are cahiand a pointt € S
with |&1] = |&2| = |&3| is singular precisely whefg;| = 1/+/3c —d;

e in the caseb =0, the slowness surface H?zl(l —clE|2+ dgj?) = 0. The singular
points are then more degenerate and we shall not considercéise, if not in some
comment. Also the casd = b (which means & = 0”) is somewhat more degenerate,
and again, we shall not consider it in detail.

The plan of the paper is as follows. In the first part of the pape shall mainly
study properties of the slowness surface which are relateditvature. It turns out that
some of these properties are related to the structure ofitlgrilar points onS. We
shall therefore also study these singularities in someildefhe main emphasis when
doing so is to obtain estimates which are uniform dor 0, since we shall regard the
nearly isotropic case as a small deformation of the isotrggiuiation. We also mention
that the results on singularities which we obtain shall befulsin establishing decay
properties for the solutions of the system of crystal adgosish a forthcoming paper.
In the last part of the paper we then turn to the study of thes&amap.

Finally 1 would like to mention that a number of the argumentsich shall be
used in this paper (must) have been folklore some decades |go reason why this
paper is written with many details is that part of them are amot more in the standard
curriculum of people who work in PDE.

2. Proof of Proposition 1.2

In the argument we shall use the method of stationary phade d&mma related to
this method due to E. Stein, which, for the convenience ofréaeler, we now recall.
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Lemma 2.1 (E. Stein. Cf. [27]). Let ¢ be a real-valued function on the interval
[a, b] which is k times differentiableAssume that k= 2 and that|¢®(x)| > 1. Also
considery e Cl[a, b]. Then it follows that

b b
/ @y (x) dx Sth—l/l<[|1r/,(b)|+/ |1p’(x)|dx], for t >0,

for some constantycwhich does not depend ap, ¢, a and h

Proof of Proposition 1.2. We may argue locally near some figeiht £ € SN
U’. We also fixx°? and shall work forx in a small conic neighborhood of°. For
simplicity of notation we assume thgf = 0, x° = (0, 0, 1). Since we may restrict
attention to a conic neighborhood af, we may assume thak’| < c¢'x3 for some
constantc’ > 0, wherex’ = (xg, Xp). Correspondingly the estimate (1.3) can be written
as 1 (x) = O(|xz|~Y2~V/K) for x3 — o0, |X/| < C'Xa.

If x°is not normal toS at £°, then the phase functidh— (x,£) is non-degenerate
for &£ in a neighborhood of° andx in a conic neighborhood of° and decay estimates
are easy to obtain by standard partial integration. We mayetbre assume tha® is
normal to S at £°. We can then parametriz8 in a neighborhood of 0 in the form
{& € R3; & = g(£1, &)} for some analytic functiory defined in a neighborhood of &
R?. It follows in particular that we must havg(0) = 0, Vg(0) = 0. The fact that the
mean curvature ofs near 0 does not vanish gives ”@m:z [05:9(51, &2)| # 0, where
& = (&, &). It follows from this that we can find a directiom such that the second
directional derivatived?g(0) # 0 and it is no loss of generality to assume that (0, 1).
We can therefore find an analytic functior, £1) — h(x, £1), defined for¢; near&; =0
and for x in a conic neighborhood of x° such thath(x°, 0) =0, and

I xakr + xok2 + Xag(En, (X, £1)) = %o + —— (€1, (X, E))Xs = O,
&1 082

We claim thatg(£1, h(x?, £1)) is not identically 0 near 0. Indeed, in the oppo-
site case it would follow that,g(&1, h(x%, &)) = 0, so we could conclude that
(Veg)(€1, h(X0, £1)) = O for every£; in a neighborhood of 0. Along the curie given
by & — (€1, h(x, g(€1, h(x°, &) the tangent planes t6 would then all have normal
(0, 0, 1) and the entire curvE were contained in the plang = g(£1, h(x%, &)) = 0.
The existence of such curves is excluded by assumption, s@laim is established.
We conclude then that we can find some positive natural intkge 2 such that

3*g(&1, h(x°, &)

2.1) 6

#0 at £=0

and the same will then also hold when we Jetun through a small conic neighbor-
hood, which we shall again denote &, of x°.
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The rest is now easy. We may in fact apply the method of statjiophase in the
variable&,. (Cf. any textbook on asymptotic methods.) This gives if support ofu
lies in a sufficiently small neighborhood of 0O

|(x) = clx| 2 / expliEx + Xoh(x, £2) + Xag(Ex, (X, £2)]
x U(E1, h(X, £1), 9(&1, h(x, £1))x (X, &) d& + O(Ix|7Y),

for x = o0, X e G,

2.2)

for some functiony which comes from the surface elemeht. For the integral ing;
we now apply Stein’s lemma. In fact, whéry| < c1x3 with some sufficiently small
constantc; then (2.1) implies

k
](i) [ﬁh(x, £2) + gle, hix, sl))]

> Co.
061) | X3

We can therefore apply Stein’'s lemma with large parameteto estimate the integral
in (2.2) in the form O(|xs|~Y/%). It follows that I (x) = O(|x|~¥2~Y%) + O(|x|™%) =
O(|x|~Y2=1/%) for large X, |Xo| < C1X3, X € G. O

3. Study of the discriminant: Preliminary remarks

Although in this paper we are foremost interested in gedmgtroperties in the
smooth part of the slowness surface, it will be useful to usided also the singu-
larities of the surface in some detail. The reason is that mesingularity a surface
is bent in a way which can to some extend already be understoderms of some
rough information concerning the singularity itself. A ateexample of this principle
is Proposition 7.3 below. In this section we shall start vatlpreliminary study of the
discriminant and of the “local discriminant” of the polyn@hq near a singular point
of S. We shall work for the two singular points

1 . 1 1 1
3.1 (0, 0, %) respectively (\/30 =3 734’ /3= d)’

(the first uniplanar, the second conical) for which the thimiponent is strictly posi-
tive. The situation is similar for all the other singular ipisi.

REMARK 3.1. For completeness, we also mention that the regulartaon S
on the semiaxis (0, G3 > 0), respectively{t/~/3, t/+/3, t/4/3; t > 0} are
3.2)

(0, 0, ;) respectively ( ! , ! , ! )
c—d+b J/3c—d+3b /3c—d+3b /3c—d+3b
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In particular, wherb > 0, then the conically singular points lie all 8N S?, whereas
whenb < 0, they lie onS*N S®. Moreover, wherb =0 ord = b we have triple points
for one or the other type of singular points. As already nuer@d, we shall not discuss
these cases.

Near the singularities which we have singled out, the sl@snsurfaceS can be
parametrized by the variables = (&, &). Let us for this purpose denote by —
pj€), 1=1,2,3,4,5, 6, the roots of the polynomial— q(¢’, o) labelled in such a
way that

(3.3) pa(€’) < ps(&’) < pe(E") < 0 < p3(&) < p2(8) < p1(&).

In particular the functiong; are continuous and we have

(3.4) a¢’, pj(§)) =0.

We also observe thad;j(§') = —pj+3(§") when indices are calculated modulo 3 and that
P (&) # pj+1(&") except whenq’, pj(£)) and €', pj+1(¢")) are singular points.

Note that the functiong; depend on the variablgs and the parameteifgc,d. As
mentioned above in a more general context, we shall detdgrarite them sometimes
as functions oft’ or (¢/,d) alone, to stress the fact that in some specific argument we
are interested in the dependence on those variables, tesheparameters, and that
the other parameters may be considered fixed. The suBac¢ =1, 2, 3, can then be
represented locally (“locally” means here “in the regign> 0”) near the singularities
mentioned above by the graph of the functiop

It is now useful to writeq in a rather explicit form. In factg can be written as

(3.5) q(8) = Acks + Au(E))Es + AalE))ES + As(8),

for some explicitly calculable coefficientd;, which are polynomials of degreej 2n
¢’ and also depend on the constahbixc, d. The A; are easily calculated explicitly
and are:
Ay =bc® — c(—c+d),
Au(€') = —bsfc(—c+d) — b&Z(—c +d)c — bo(L — o&7 +£5) + d&7)

— bo(1 - c(§] + £5) + d&3)

— (d = )(—C(1 — c(§7 + &5) + d&]) — o(1 — c(&f +&3) + d&3)

— CA(L—c(5f +82)),
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Ao(E) = b(d — Q)E2(1 — (&7 + £3) + d&2) — bo(g? +£2)(1 — c(é7 +£3))

+bgd(—c+d)(1 — c(&? +£2) + d&?)

+b(1 — c(& + &) + d&7)(1 — c(&] + &) + dgf

— (1 —c(x} +£2) + d&D)(1 — c(&] + £2) + d&2)(—c +d)

— (—C(1 — (g7 + £2) + d&?) — c(1 — c(£? + £2) + dE))(1 — (&7 + £2)),
Ag(&") = bEX(L — (&7 + £3) + d&2)(1 — c(67 + £2))

+bEJ(1 — c(&7 + £5))(1 — c(&7 + £2) + d&])

— (1 —c(&7 +&2) + dED)(1 — c(&7 +&2) + dEZ)(1 — c(£7 + £2)).

Calculations can now be simplified if we take into account thet thatq depends
directly on sz_ If we introduce the notatio§s = o, the polynomialg can be written as

(3.6) A, 0) = Ago® + Ay(E)a? + Ax(E)o + Ag(E)).

The most important instance of when this simplifies caldotes is when we calculate
the discriminant ofg. We recall here that the discriminant qf when regarded as a
polynomial in&s is given byAg]_[i<j(pi (£")—p;j (€))% (The factorAg is not interesting
from an analytic point of view. Note that anywaf, # 0.) We need some kind of
discriminant since we want to understand the behaviags,6f p,, in the case when the
singular sheet isS!, respectivelyp, — p3, when the singular sheet i§°. The reason
why we resort to the discriminant, rather than directly te #xpressionso{ — p;),
comes from the remark that in principle the discriminant @@ncalculated explicitly
in terms of the coefficients off. The expression of the discriminant of a polynomial
of degree six is however rather complicated and it is heré weacan usdj. Indeed,
if we denotepf(g’) for j =1, 2, 3, byo;(&), the discriminantD of § is on one hand
equal to

(3.7) D = Ajl(01 — 02)(01 — 03)(02 — 03)]? = AGl(0F — p3)(P? — P3)(05 — P,

and therefore already contains all information @n— p, (or p2 — p3) which we need.
(The factor A} is not interesting from an analytic point of view.) On the etthand,
§ being a polynomial of degree three, it is standard (cf. €28])[that, calculated in
terms of the coefficientg\ the discriminantD is also equal to

(3.8) D = ATAS — 4A A3 — 4A3 A, — 2TASAS + 18A0A; ApAs.

As for the “local discriminant” afl we define it whenT is one of the two singular
points in (3.1) by

AE) = (01(8") — p2(€)).
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(More generally, ifSis a surface defined negf by an equation of forn§2+ A(£')&s +
B(¢) = 0, with ég a double root oftz — 532 + A(E)&; + B(£?), then the local dis-
criminant of S is defined byA2(¢) — 4B(¢').)

Since 61 — 02)(02 — 03)(03 — 07) IS @ symmetric combination of the roots of the
polynomial §(¢’, o), it must be an analytic function id and&’. Moreover, D vanishes
identically whend =0, so it must be divisible byl. It is however a positive function,
so it must actually vanish of order 2 dt=0 and we have

(3.9) D(&',d)=d?D(&’, d), A&, d)=d?A(, d),

for some analytic functiorD, A.
We shall now continue our study separately for the case dgflamar and of con-
ical singularities.

4. Study of the discriminant near an uniplanar point

In this section we study the discriminant near the uniplarant (0, 0, ¥./c). The
notations are as in the preceding section. We know alreaalytkte local discriminant
is of form A(g’, d) = d2A(¢’, d) for some analytic functiom\ defined for small £, d).
The study ofA is here simplified by the fact that evaluation of the derixegiof some
polynomial at the origin is relatively easy. Moreover, it isckvn from uniplanarity that
Z|ﬁ|§3|a£’A(O’d)| =0 and therefore the first nontrivial term in the Taylor-exgian in
& at0is

B
(4.1) JAE, d) = |ﬂz|—:4 IN( d)z—!.

In order to calculatel4sA, we now turn our attention to the “full” discriminar® of

d, assuming, for the sake of the discussion, that 0. We notice that inD only the
factor (o1 — p»)? vanishes a€’ = 0. (See (3.7).) We conclude therefore that there is a
constanty”so that

4.2) A = Ad7 34D,

Of coursey™= [(p1 + p2)(0)(07 — p2)(0)(03 — p3)(0)]?, SO we obtain in view of (3.1),
(3.2),

2 (1 1 )\%?
4.3 g=| —[ = — .
“3 ’ [ﬁ:(c a+0) ]
y #0 in view of the conditiona # 0. The expression oD can be calculated explicitly

using (3.8). Here all the coefficients depend explicitly &fh &2 and not directly on
&1, £&. We conclude thatl;D is a polynomial inéf, 522 and we can calculatd,D.
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What we get is (we have calculated it with St. Wolfram’s “Mattegica” and double-
checked with “Maple”):

34D = 2d?[4b* — 126%d + 1362 — 6bc® + d*](£2 + £7)
— c2d?[4b* + 160°%d — 220°d° + 12bd® — 2d*)622.

(Note that ford = 0 J;D vanishes identically, as it should, singe = p, then.)
It is perhaps also worth noting that the main term &> 0 is 4o*c?d?(¢) + &5 —
£2£2), which has order of magnitude*c?d?(|&,]* +|&2]%). This is of course already an
essential part of (3.9).

REMARK 4.1. We also conclude from our discussion tammust have the form
D = d?[b*c?(&] + &5 — £2£2) + d Dy (¢, d) + Do(¢/, d)], where D; and D, are poly-
nomials in €¢’, d), D; with terms which are at least of degree 4 §h and at least
of degree 5 ing’ in the case ofD,. For the local discriminantA this gives that
A(g, d) = d?[AE, d) + O(&'|°)] where A(¢/, d) > ¢,|¢'|* for some constant; > 0
and A is a polynomial of degree four ig'.

5. Study of the discriminant at a conical singularity

1. We denote by° = (1/+/3c —d, 1/4/3c — d, 1/+/3c — d) the conically singular
point in the first octant on the slowness surfé&&eOur goal in this section is to eval-
uate the local discriminant in the variable of the defining equatiom(¢) = 0 at this
point. Calculations are in principle similar to those in fmeceding section, but tech-
nical details are more complicated since the fact that inti®@®sel we hadé; =& =0
simplified the situation there. We start with a comment on Iltfessian ofg. Since
the term]‘[?zl(l— clg|? +d§j2) vanishes of order 3 a°, the Hessian ofj is equalb
times the Hessian of

3
(5.1) F(€) = D 82(1—cls|? + d&2,)(1 — clg| +dg2y).

j=1

(Indices are counted modulo 3.) This suggests that in omlaratculate the Hessian
of the local discriminant ofj, we may as well calculate the Hessian of the local dis-
criminant of F. This is indeed the case and is based on some elementarykeeorar
the Weierstrass preparation theorem, which we have statdei following lemma.

Lemma 5.1. Letg(t, x) =t?+ A(X)t + B(x) where A and B are analytic functions
defined near0 e C? which vanish of order onerespectively of order two af and
consider some analytic functiotr(t, x) defined for(t, x) near (t, x) = (0, 0), which
vanishes of order three ift, x) at (0, 0). Also consider

(5.2) o(t, X) + ¥ (t, X) = Q(t, X)(t* + A(X)t + B(x)),
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the decomposition op + given by the Weierstrass preparation theorem applied with
respect to the variable.t Then A and B vanish of order onerespectively two aD
and we have that (A2 — 4B)(0) = Hyx(A2 — 4B)(0). (Hy,f stands for the Hessian
of the function f in the variables.x

(Calculations shall be for reat. The reason why we work with “analytic func-
tions” is that we did not want to invoke the Malgrange preparatheorem for a sit-
uation as simple as the one we really need.)

Proof of Lemma 5.1. We need to discuss some formal aspectsediVeierstrass
preparation theorem. This is facilitated by the fact that alieady know thatQ, A,

B with (5.2) exist. We may assume that= 1, since the Hessian of a functioh is
well-determined by the second directional derivativesf ofWe also observe that if we
can show thatA vanishes of order one at 0 and tHAtvanishes of order two there,
then @/dx)2(A2 — 4B)(0) = 2[(dA/dx)(0)]2 — 4(d/dx)2B(0). To prove the lemma it
suffices then to show thak(0) = 0, (d/dx)A(0) = (d/dx)A(0), B(0) =0, d/dx)B(0) =
0, (d/dx)2B(0) = (d/dx)2B(0).

The next remark is that (5.2) give®(t, 0) = 1 + O(t), so thatQ(0, 0) = 1. It
follows in particular that 0 =B(0) = Q(0, 0)B(0), whenceB(0) = 0. We shall now
calculate low order derivatives d and A derivating the relation (5.2). This leads at
first to (d/dx)B(0) = (d/dx)Q(0, 0)B(0)+Q(0, 0)d/dx)B(0) and gives (since we know
already thatB(0) = 0) (d/dx)B(0) = 0. A similar calculation shows thati(dx)2B(0) =
(d/dx)2B(0) = 0 (if we use that we already know thB(0) = (d/dx)B(0) = 0) and that
(d/dx)A(0) = (d/dx)A(0). (For the last equality we use again tH&(0) = (d/dx)B(0) =
0. The derivatives of order less than two»nof ¢ vanish at (0, 0) and therefore have
no bearing on our calculations.) This concludes the argtimen

We now continue with the calculation of the Hessian of thealadiscriminant of
q in the variable£s. By the above (applied ned® rather than near 0, so the role of
the variables t( x) is played by the variables — £°), we may as well calculate the
Hessian of the local discriminant of the functith We apply the Weierstrass prepa-
ration theorem (the variables in which we apply the decoritiposare €, d); we need
to considerd as a “variable” since we want to know that the various fundiavhich
are given by the decomposition depend in a smooth wag)oand can therefore write
F locally near £°, 0) in the form

(5.3) F(& d) = QE, d)[(5 — £9)° + A(€', d)(&s — &) + B(€', d)],

for some Q, A, B, which are defined and analytic nea&®(0), respectively 7, 0).
We also haveA?, d) = B(¢Y,d) =0, VoB(%,d) = 0. The local discriminant is
A&, d) = A&, d) — 4B(¢, d).
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Derivating (5.1) and (5.3) we now obtain

92F(£°, d) _ 8c(3c — 2d)

P o)
92F (£9,d) _ 4(d? — 4cd + 6¢c2) o
dgoE;  (Bc—d2 when 1 71,
o w_ 102F(E% d) _ 4c(3c— 2d) o n_ 1 9F(£°, d)
D=3 T Tee—ap A VT o s
2 0 2 0
PBEA) 1 PFE)

0§05 Q0 d) 0505
It follows that
0?AE%, d) _ 2 ((aZF(gO, d))2 _ (a2F(sO, d))z)
087 Q3(&°, d) 951063 €7
2 16d%(d? — 8cd + 12c?)
© Q&% d) (3c—d)*

and
82A(§°’, d) _ 28A(§°’, d) 8A(§°/, d) B 4828(50/, d)
0£10&2 0&1 &2 0£108,
2 92F (&9, d)(aZF(gO) 0 )
= -2 ,d
Q2(&0,d) 0£10&3 082083 Q™. d)
2 9%F(£%d) 4d?
Q2% d) 9&3& (3c—d)?
2 4(d?—4cd+6c) 4d?
T QXe%d) (3c—d)2 (3c—d)?

It is visible from this that the Hessian of the local discmait is divisible byd? in

a smooth way. Actually, we know already from Section 3 that kbcal discriminant
itself is divisible by d?, but we claim that from the explicit expressions we can see
that Hg A(§?, d)/d? is strictly positive definite with an estimate from below whi
does not depend od whend is small. Indeed, it will suffice to check this witth= 0
when we have with the notatioB (£, d) = Hg¢ A(£°, d)/(d?) that

E£°, 0) = 2 19c?  96¢? \ _ 64 2 1
" T Q2% 0)(@)F \ 962 192 ) T Q2(e0, P2\ 1 2 )
In analogy with Section 4 we may thus write

(5.4) A, d) = d* (A, d) + Ax(, d))
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where A(¢', d) is a positively definite quadratic form ief — &% with A&/, d) > &|&'|%,
¢ >0, andA4(¢/, d) vanishes of order three gt = £7. O]

6. Study of the discriminant and of curvature in the regular region

In this section we consider a regular directigh and a small open convex neigh-
borhood K of £°. In particular we may assume thkt contains no singular direction
and (after a renotation for the variables, and replacingeifessary® by —&£9) that
&3 > C'|&| for & € K. Our final goal is to show that we have

Proposition 6.1. Consider B # 0, c® > 0, and let (¢°, K) be as before Then
there is a constant’cso that if [b—b%| +|c—c® +|d| < ¢/, then the total curvature of
the slowness surface(lg c, d) associated withHb, c, d) is strictly positive for all points
& e b, c,d)NK.

In the argument we shall assurbe> 0, the casé < 0 being similar. Forb > 0
andd small compared witth the sheetS® will stay away from the other two sheets
and its defining equation will depend (in view of the impliéitnction theorem) in an
analytic way on the parameters. Since tbe 0, S® is a sphere, total curvature will
be strictly positive onS® for small d. In the sequel we may therefore concentrate our
attention onS' U S%. The proof of Proposition 6.1 will be by a perturbation argumn
in which we shall start from the isotropic cagse= 0. It seems convenient to calcu-
late curvature in polar coordinates, so we shall basicallglys the derivatives of the
functions which correspond to the functiops when in R® we work with such coor-
dinates. Let us then denote by=£/|¢| and by6 = |£]. Further, denote by;(w),
we RS |wl =1, j=1,2,3, the positive roots of the polynomial— q(fw) label-
led in such a way thaf;(£/|£]) < 62(£/1€]) < 01(£/]&])- It follows in particular that
0;i(&/1&1) = 1/7;(€/1£]), where ther; are the positive roots of the characteristic equation
of the system of crystal optics labelled in such a way that 8(¢) < 72(§) < t3(£).

We shall mainly be interested in the cape 1, 2. The main step in the argument is
the following proposition, in which we writé;(w, d) for the roots (rather thaf; ())
in order to make the dependence of #eon d explicit.

Proposition 6.2. Under the assumptions dProposition 6.1there are constants
G,i =1, 2, 3,such that

(6.1) c1|d| < |61(w, d) — Oa(w, d)| < cold|, if |c—c|+|b—b°|+|d| <C3, weK.

Note thatd; — 6, is an essential factor in the full discriminabt associated with
the polynomial defining the slowness surface, when therlitealculated with respect
to the variabley and is expressed in the coordinates (For fixedd # 0, (b1 — 62)?
is not strictly speaking a “local discriminant” in terms dfet terminology introduced
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above, but it is roughly speaking an object of this type whenaoensider alsa as a
“variable” and work in a neighborhood af = 0.)

It seems difficult to understand the analytic expressionhef full discriminantD
given by the formula (3.8) in a generic regular direction. ¥eall therefore use an
indirect argument. As a preparation we prove

Proposition 6.3. Let¢g >0,c,>0,8 €R, bj e R, i =1,2,3,be given such that
(6.2) a<ay<az 0O0<bz<b,<b, |a| < cp, c1<b, b<c.

Then we can find«<> 0, ¢/, which depend only on;¢c, and not on the g by, such
that if |d] < ¢’ is fixed and if 1 < t, < t3 are the three roots of the polynomidl
defined(in analogy with(1.8)) by

3

3
(6.3) gt) = [ [ —da) = D" bj(t — day.a)(t — day),

i=1 j=1

then it follows that|ti —tj| > c3|d| |ag — &y, if i # j.
Converselythere is also a constart such that

(6.4) minl — | < &jdl.
i7]

Proof. We shall show that the assumption rin t;, t3 — t2) < c3|d| |ag — ay|
leads to a contradiction i€; is small enough. We may assume tlat- 0. It follows
(see the introduction for a similar situation) that

(65) da]_ <t < daQ <t < d83 < ts.

This already proves (6.4). To prove the first statement, we la examine four cases,
in which ¢4 stands forlag — a;]/2 (and is thus fixed throughout the argument):

a) ay—a; > Cy th — 1ty < 2c3C4d,

b) a;—a; > ¢y, t3 —tr < 2c3C4d,

C) ag—ap > Cy, th —t1 < 2c3C4d,

d) az—ap >y, t3— 1t < 2c3C4d,

and show that none of these cases can in fact hottl ahd cz are small. ]

Incompatibility with the situation described respectwéh a), b), c), d), will be
reached by looking at the conditidjj(tj) = O for some suitablé. To do so, we shall
look at the expression(t) = —by(t — da)(t — dag), I2(t) = —byo(t — dag)(t — day),
I3(t) = —bs(t —dag)(t —dap), l4(t) = (t —da)(t —da)(t —dag), in terms of which§(t)
is build and shall show that in each of the cases a), b), c)ok, of the expressions
li(t), j <3, will either dominate the others (if is suitable) or else will have the
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same sign with thosé which are not dominated by it. The mechanism by which this
will happen will be the following:

— one of the three termg; (— da;), (t — da&), (t — dag), can be estimated by
2csc4d and is therefore relatively small (when we say in this prdwdttsome quan-
tity is “relatively small”, or that it is “relatively large” then we mean that it is small,
respectively large, when compared witll”; in particular relatively small terms can be
made small with respect tb, and b;) whencz is small,

— one of the terms can be estimated my(2; + 1)d and is small for smalt, when
compared withb,, or by,

— another term will in absolute value be larger thay € 2csc,)d and is therefore
relatively large whercs is small,

— the remaining term cannot always be estimated approfyidiat it will have the
“correct” sign.

CASE a). The relatively small factor in this casedsp, —t; < tp — t; < 2c3¢,d
(cf. (6.5)), t1 —da; =da — da +t; — da > d(cs — 2c3¢4) is relatively large, and we
use thatgj(t;) = 0. We have that
a) |by(ty — dap)(t1 — dag)| < 2coCacyd|t; — dag|,

B) bo(ty — dag)(ty — dag) < —c1d(Cs — 2C3Cs) |ty — dag,
y) bs(ts —day)(ts —da) < 0.

The term ing) dominates the term i) for smallcsz and also the prodqu[?:l(tl —
da;). Since it has the same sign with the termjif, we get§(t;) < O whencs is
small, a contradiction.

CASE b). The factorts — dag < t3 — tp is relatively small whereas; — da; is
relatively large, and we shall argue §ft3) = 0. In view of what we just said[[?:l(tg —
da;) is dominated for smalks by b(t3 — day)(ts — dag). The other terms inj(ts)
are harmless, since they have the same sign ity — dag)(t; — dag) (in that 0<
ts —da, Vi).

CAsE c¢). The relatively large factor now i — dag, in thatdag — t, = dag —
dap+da, —ty > (€4 — 2¢c3¢4)d and |t, — dap| <ty —t; < 2c3c4d s relatively small with
c3. We shall argue orgj(t;) = 0. Observe then thdt,(t, — da)(t, — dag) dominates
H?ﬂ(tz —da;) for small cz and alsobs(t, — da)(tz — day). The termby(t; — dap)(tz —
dag) gives no problems since it has the correct sign.

CaAske d). In the present situatioty — da; < c4d +t3 — t < (€4 + 2c3¢4)d. In
particular, t3 — da; is dominated byb; if d is small. We shall uséj(t3) = 0. By the
preceding,]‘[?ﬂ(tg —da;) is dominated byb;(tz — day)(ts — dag) for d small and the
other terms have the correct sign (again in view of & — da, Vi).

REMARK 6.4. A similar result is valid ifa; < a, < ag, with only one of the
inequalities strict. If, e.g.a; = a2, thent; = a;, and a discussion similar to Proposi-
tion 6.3 applies. It is also clear that the case considerethigh remark is somehow
a limit case for the case considered in the proposition. [C3].) It also follows if
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we take into account symmetries that without any restricfior the relative position
of the a; we have

It —t] > 03d(z la — asl)-

r#s

We now turn to the proof of Proposition 6.2. We shall first stilde positive roots
7; of the characteristic equation of the system of crystal sticg, which, as we may
recall, are labelled in such a way that<071(¢) < 2(¢) < 73(¢). In particular, the
7j thus satisfy Kelvin's equation (1.6). We shall now apply psition 6.3. We may
assume (after a renotation of the variables, if necesshay)< &; < & < &3 and since
we are not close to one of the axes, that|&| > ¢, for somec; > 0. We next denote
by b; =b&?/|£|* and bya; = —£7/|£|>. Also consider the auxiliary variable= z* —c.
If 7;(¢/I£], d) is a solution of Kelvin's equationt; = rjz(s/lél, d) satisfiesg(t;) = O,
where § is the function associated in (6.3) with the choicesapf b; just mentioned.
Proposition 6.3 implies then at first thet?(€/|&], d) — t2(£/|€], d)| > &d and therefore
(since 11(w, d) + 12(w, d) < €;) that

79)—=(5-9)
| —=—,d]) -1 =,d
l(lél gl
We shall now use the relatiofij(w, d) = 1/7j(£/|£|, d) to rewrite this in order to

prove (6.1). We obtain at fir§tl/01(w, d) — 1/62(w, d)| > &d if @ € K and then also
(sinceby(w, d) > €3, O2(w, d) > &) that

> &od, if & e K.

61(w, d) — Ox(w, d)] > Ead if e K.

In the following corollary and in the remainder of this seatiwe shall work with the
“local discriminant” defined with respect to polar coordesm Thus we shall put (as-
suming, to make a choicdy > 0) A(w, d) = (A1(w, d) — Oo(w, d))>.

Corollary 6.5. There is a constant,csuch that for j=1, 2, |V,0j(w, d)| < ¢
for w € K.

Indeed, we can write for exampl(w, d) = [f1(w, d) + 62(w, d) + V/A(w, d)]/2
and clearly |V, [01(w, d) + 6(w, d)]| < ;. In addition, we haveV,/A(w, d) =
(1/2)(V, A(w, d))/v/A(w, d). We can therefore conclude the argument which estimates
|V0j(w, d)| by observing thatV,A(w, d)/vA(w, d)| < czd.

A similar argument gives:

Corollary 6.6. |waﬂ(w, d)] < cd and also H,, (61 + 62)(w, d) = Hg,e (61 +
62)(w, 0) +d O(1).
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It follows that H,,, (0} (@, d)) = (1/2)Hee[(01+02)(w, d) £/ Aw, d)] = (1/2)He (01 +
62)(@, d) £ Huwv/Alw, d)/2 = (1/2)Hu (61 + 62)(w, d) £ d O(2).

This now implies that the second derivativesaof 6 (w, d) are ford small close
to those for the casd = 0. Since the total curvature is not vanishing tbe 0, it will
be non-vanishing in the nearly isotropic case. This coreduthe proof of Proposi-
tion 6.1.

7. Curvature properties near the singular points

1. The curvature properties of the slowness surface of teeesy of crystal optics
(at smooth points of the surface) are well-establishedegf., [1]. We have not found
information of a similar quality for the case of the systemetdsticity for crystals in
the literature. Cf. anyway [19] for some partial results.this paper we are interested
mainly in the case of cubic crystals in the nearly isotropasec The principal result
which we shall obtain in this section (also see the beginmhthis paper) is the fol-
lowing:

Theorem 7.1. Assume b> 0.
a) When d# 0, the total curvature will always vanish on entire curves i ttmooth
part of SU S?. It does not vanish however in the nearly isotropic case én (Slote
that when d is small compared with the sheet Swill be smooth)
b) The mean curvature will vanish nowhere in the smooth part patSeast if we
are close to the isotropic case

Similar results are true when & 0, only that then the smooth sheet i$a®d the
conically singular points lie in 3N S°.

2. We shall assumé > 0. The proof of Theorem 7.1. a) will be based on two
statements which are perhaps of independent interest:

Theorem 7.2. In the nearly isotropic casethe total curvature of Sis
i) negative near conical points
i) positive near uniplanar points

Once i) and ii) are established, we will of course also haweveu part a) of The-
orem 7.1, since the regions where the total curvature istlgtppositive must be sepa-
rated by non-trivial curves of vanishing total curvaturenfr the regions where the total
curvature is negative. (The set where the total curvatunéstias must be algebraic and
is a subset of the slowness surface. Since the single shietite slowness surface are
not reducible, this set can not have geometric dimensioname must therefore con-
sists of curves and possibly, some additional isolatedtpoiWe do not know if such
points are present.)
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That i) is true is a consequence of a simple remark on surfatésh have defin-
ing equations of the form considered in the following prdfos. To increase read-
ability in calculations, we shall temporarily denote theoxbnates inR* by (x, vy, 2).

Proposition 7.3. Let Q; = Q1(X, Yy, d), Q2= Q2(X, Y, d) be positive definite qua-
dratic forms in the variablegx, y) with coefficients which depend in@&*° way on d
for small d and assume that there are constants-@, c, > 0 such that

(7.1) Qu(x, y, d) > ci(x*+y?), Qa(x, Y, d) > co(x? +y?).

Also assume that,f f, are C*°-functions of (x, y, d), defined say for |x| +|y| < 1,
|d| < 1, such that

(7.2) oy fi(0)=0 for k+l<2i=1,2,

and denote byS the surface

S=1{(x, ¥, 2); z=—Qu(x, y, d) + fi(x, y, d) +d]v/Qz(X, y, d) + fo(x, y, d)}.

(Thus S depends on.Ji Then there is ¢ 0, which depends only om ccp, such that
the total curvature KP) at any point Pe S is strictly negative whepP| +|d| < c.

Proof. We shall use (7.2) by writing thaaa, fi(x, y, d)| < ca(]x| +]y[)*™* for
k+I < 2. The proposition is intuitively clear and the proof is byedit calculation. Re-
call that for a surface represented as the graph of a funcafidorm (x, y) — z(x, y),
the total curvatureK at the point X, y, z(x, y)) is given byK = (zxxzyy—zﬁy)(x,y)/[(1+
Z;+Z)(x, y)I>. In the present situation, we takagx, y) = —Qu(x, y, d) + fi(x, y, d) +
[d]v/Qa(x, y, d) + fo(X, y, d) and have to show thatwxzyy — ziy)(x, y) < 0 for small
(x,y) # 0 and|d|. After an orthogonal (but not necessarily orthonormal)ngeof co-
ordinates, we may assume th@i(x, y,d) = ¢/ (x2+y?), Qa(x,Yy,d) = a(d)x?+28(d)xy+
y(d)y? with ¢ > ¢;/2, a(d) > ¢4 > 0, a(d)y(d) — p%(d) > cs > 0 if d is small. Then
we have

d + f
zo = —20x + fix + 191 Qax * fax

2 Qe+ T2

|d_| Q2,xx + f2,xx _ |d_| (QZ,x + fz,x)2

2 JQ+ 4 (Qx+ f2)¥2"
_ |d| Q2,xy + f2,xy |d| (QZ,X + f2,x)(Q2,y + f2,y)

Zyy = 1:1,xy = - i .

2 JQt 1 4 (Q + fp)%2

Zyx = —2C + frux+
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It follows that
2 |d| Q2 xx f2 XX |d| (QZ,x + f2,x)2
ZxxZyy — Zyy = |: 20+ frux+ > o, vy (Q, + 1,)372
% | —2¢ + fl yy |d| Q2 yy + f2 Yy |d| (Qz,y + f2,y)2
W2 JQut 4 (Qut )2
—|f |d| Q2 xy+ f2 Xy |d| (QZ,x + f2,x)(Q2.y + f2,y) 2
P T 4 (Qet )P '

We next write

1 1 1 vz
(Qo+ f)¥2 ~ Qg/2(1+ fz/Qz) B @(“ fo)

where | f3(x, y, d)| < cs|(x, y)|. This gives that

L] 1d| Q34
|d| Q2yy |d| Q2y
[ RV AT IR
ld] Qzxy 1d] Q2xQ2y
- flxy+

2
2V 4 o “dorss]

where thef,, fs, fg, respectivelygs, gs, gs, are functions of X, y, d) which satisfy

|fi (X! Y, d)l <¢C, |gl (X1 Y, d)l < Cl(X, y)l! i = 41 51 6.

The most singular part forx( y) — 0 in this expression is apparently

L(X d) - d2 1— Q2,xx _ 1— ng 1 QZ yy 1 Q2y 1 Q2 Xy 1 Q2xQ2y
a 2VQ: 4Q||2vQ: 4QF| |2V@ 4 o ||

However, a direct calculation shows thiafx, y, d) = 0
(Since Q; is a quadratic form we have the trivial relatio@{ xxQ2/2 — Q%,x/4] X

[Q2,yyQ2/2 — Q%_y/4] [Q2xyQ2/2 — Q2xQ2y/4]> =0.)
The “next-most” singular part is

IdIQ | Q5 |d|Qxx Id] Q3
ldl Qapy |d| Qz,xQz,y}
2 ./Q 4 Qg/z

+df6|:
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For smalld, the dominant term is here

d
_ZCI%[(a(d) +y(d)Qz — ((d)x + BE)Y)? — (BA)x + y(d)y)]
2

d
=2 S (@ (@)~ @ + )

2

The assumption had given tha(d)y (d) — g3(d) > cs, so the curvature will be negative
for small ,y) away from 0. This concludes the proof of Proposition 7.3 Hretefore
also the proof of part i) in Theorem 7.2 above. ]

A similar argument shows that the curvature of —Q; + f; — |d|/Q2+ f2 is
positive for &, y, d) small.

The argument to prove that total curvature is positive nedaplanar points (i.e.,
statement ii) in Theorem 7.2 above), e.g. 8h is even simpler. We work near the
uniplanar point£® = (0, 0, 7/,/c) and parametrizes' near£° by (£, &). It follows
from our study of the local discriminant that the defining atipn for St can be written
(locally) in the form

£3 = f1(&1, &2, d) +1dIv/ Qa(&1, &2, d) + Qs(E1, &, d)

where Q, is homogeneous of fourth order (&), |Qs(£1, &, d)| < c|(&1, £)|° and
Qul&1, &, d) > c|(£1, £)|* for somec > 0 and small &, &, d). Here the functions
f1, Q4 and Qs depend smoothly o, & andd. Moreover, we know that the func-
tion Qg4 + Qs is strictly positive when &3, &) # 0. We also know that whed = 0,

then the defining equation @8 near P is simply & =,/1/c — &2 — £2. It follows in

particular from what we have said that second order devisatodf |d|./Q4 + Qs, cal-

culated at points&g, &) # 0, close to (0, 0) can be estimated &yl|. This shows that
for (£1, &) # 0 small and ford small, the total curvature o8' is close to the total
curvature in the isotropic case, which is of course positive

REMARK 7.4. It is quite trivial to show that orS' there are points of positive
total curvature when we make the additional assumption dhatO. In fact, it is ob-
vious that then the distance from the origin will increasarneonical points to values
bigger than }./c —d/3 (which is the distance from the conically singular points t
the origin). Since the distance from the uniplanarly siagypoints to the origin is
1/./c, we conclude that the point® e S' farthest away from the origin must lie in
the smooth part ofSt. At such a pointP the total curvature must be positive. (Con-
sider in fact such a poinP and consider the sphere with center at the origin which
is tangent toS' at this point. The total curvature @' at P is then bigger than that
of the sphere and is therefore strictly positive. This typereasoning is standard in
classical differential geometry. Cf., e.g., [25].)
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Statement a) in Theorem 7.1 above is now proved, and we may tturstate-
ment b).

Theorem 7.5. Let G be a small convex open conic neighborhood of the cdyical
singular direction(1/+/3, 1/+/3, 1/+/3) which stays away from the uniplanarly singular
direction (0, 0, 1). Then the mean curvature of points in the smooth part 6fGSdoes
not vanish in the nearly isotropic case

(We should say that we have not checked what happens foraemet necessarily
small, d.)
The following remark is central in our argument:

REMARK 7.6. LetH(&’, d) be a function which depends analytically off,(d)
and such thaH (¢/,d) is of form H (&', d) = d?[Q.(£’, d) + O(|&"|%)] for & — 0, where
Q. is a positive definite quadratic form 8" with coefficients which may depend
analytically ond. Also fix («, B) with o + g2 = 1 and consider the functioh —
f(a, B, d, t) = /H(at, Bt, d) defined for|t| small, the square roots being taken posi-
tive. Then the function

v H(at, gt, d) for t <0,
—vH(at, gt,d) for t >0,

depends analytically ort,(d). This is a consequence of the fact théat, At, d) must
be of formg(«, B, d)t? + O(t®) for some positive functiorg(e, B, d).

f"(a,ﬂ,d,t):[

Proof of Theorem 7.5. The singular point i on the half-ray with direction
(1//3, 1/4/3, 1/4/3) is €% = (1//3c —d, 1/+/3c —d, 1/+/3c —d). We shall assume
thatb > 0, so the sheets which contain the singular pgihtare St and S?>. We de-
note by p1(&’,d), pa2(&’,d), p3(¢’,d), the functions considered in (3.3), respectively the
functionso; = piz. The sheetsS, i =1, 2, 3, are locally the graphs of the functions

The o; are thus the roots of the polynomial— Ay + Ai(£', d)o?+ Ax(E’, d)o +
As(g’, d) introduced in (3.5).

The main steps in the argument are described in the followéngarkse), 8), )
and §).

a) p3(€’,d) is analytic (when we say in this section “analytic”, we ajsanean “real-
analytic”) in ¢, d). This follows in fact from the implicit function theorem plged in

the variables g, d) near the point§ = (1/+/3c + 3b, 1/+/3c+3b, 1/4/3c + 3b), d = 0).
Application of the implicit function theorem is possiblensé for d = 0 the defining
equation ofS is q(¢) = (1 — c|€|?)?(1 — (c + b)|£]?) = 0 and therefore the derivative
(9/9&3)q is not vanishing atg, 0). This also shows that the derivatives in the variables
&’ of p3 for d #0 are close to those ¢f;(¢,0) whend is small. We next mention that
for d =0 we haveos(£’,0) = (c+b)~1(1—(c+b)(£2+£2)). Since the total curvature &
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is non-vanishing whew = 0, we conclude that the total curvature $F near the point
on the conically singular direction is non-vanishing. Ir teequel of the argument we
may therefore concentrate on what happensSbrand S%.

B) o1(&’, d) +o02(&’, d), respectivelyoi(&¢’, d)os(£’, d), is analytic for €', d) close to
(', 0). This follows frome) and the Vieté relations fawy (&', d) +o5(¢’, d) +o3(&/, d),
respectivelyoy (&', d)oo (&', d) +02(&’, d)os(&’, d) +o3(¢’, d)o1 (¢, d). Ford =0 we obtain
01(', 0) +0a(t’, 0) =C7H2 - 2c(E7 +£2)), ou(&', O)oal&', 0) =C 21— c(eZ +£2))%. Note
incidentally that both quantities are strictly positiver fp = & and will therefore also
be strictly positive in the nearly isotropic case when- £’ is small.

y) pi&’, d) + po(&', d) is analytic in €, d) in the nearly isotropic case if(, d) is
close to E’, 0). This is clear from the fact that; + o, > 0, respectivelysio, > 0 and
p1+ p2 = (01 + 02 + 2, /0107) Y2, if square roots are taken positive.

8) The discriminantD(£’, d) in o of the polynomialoc — Ag(d)o® + Ay(&’, d)o? +
Ay(&', d)o + Ag(€', d) is a positive function ing’, d) of form d2D(¢’, d). We denote
the local discriminant 4,(¢/, d) — p2(£/, d))? by A(£’, d) and conclude that we must
have A(¢’, d) = d2A(¢/, d), where A is analytic in ¢/, d) for small ¢ — &', d) and
is positive. If we fix a lineL in the €, &)-plane of form{(at, gt); t € R}, «, B,
arbitrary constants witkk?+ 82 = 1, then we can apply Remark 7.6 and find a function
F(t, d, «, B), which depends continuously or,(8), such that

F(t,d, «, B) =+/A(at, Bt, d) for t <0,

and which is analytic it and continuous int( d) for (t, d) small. We conclude from all
this that for every fixedd, 8) the functionspi(at, Bt, d) = [p1(at, Bt, d) + p2(at, Bt, d) +
F(t,d,a, B)]/2 and py(at, Bt,d) = g1(at, Bt,d)— F(t,d,«, B) are analytic int and con-
tinuous in ¢, d) for (t, d) small and depend continuously om, (8). The functionspj
are thus analytic extensions to the linesof the functionsp; considered as functions
on the half-linesL _ = {(«t, Bt); t < 0} and the graph$(at, Bt, p;(at, t, d); [t| small
define analytic curves ir§ which depend in a continuous way a@h Clearly, when
d = 0 we are in the isotropic case and the curves which we obtanpartions of
circles. O

The statement from Theorem 7.5 will now follow, if we obsemat the plane
curvature of these curves above the lirless non-vanishing in the isotropic case and
approximates the one for fixedl whend is small.

8. Study of the Gauss map: Preliminaries

In this section we shall repeatedly use the following

DEFINITION 8.1. LetS be a surface inR® of form S = {(¢/, h(¢)); & e U},
h e C*(U) and letL be a line inR® in some plang{(¢’, &); & = const, which has
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some point£® in common withS. We say thatL has a contact of ordek with S
if when L is written asL = {§%+tv; t € R} for some suitablew € R\ {0}, vz =0,
then we have d/dt)/h(” + tv")=0 = 0 for j < Kk, (d/dt)*h(£% + tv')= # 0. (For
v = (v, v2, v3) € R® we denote by’ = (v, v2). Note that we must haves = 0.)

We now turn our attention to the last statement made in thénbig of this pa-
per. In this section we shall collect some preliminary niaterThe first relates curves
on which the Gauss map degenerates, to curves of vanishingtate.

Proposition 8.2. Let T be a smooth surface iR® and assume that there is a
piecewise smooth curvé in T and a planeX which is tangent alond” to T. Then
I is a curve of vanishing total curvature of.T

Proof. This seems standard, but we shall give a completef gince it is easy to
check. We may assume that the tangent plang is0. Sincel” is piecewise smooth
it is (by definition) smooth except for a finite number of psintWe now take a point
P in the smooth portion of the curve and consider a local, shmoparametrization
of the curvet — y(t) = (y1(t), (1), y3(t)), y3(t) = 0 nearP. We may also assume
that P = 0 and that the tangent lina to I at 0 iss — (s, 0, 0). Finally, we assume
that T is given locally near 0 as the graph of some functidn— h(¢"), which will
satisfy Veh(ya(t), y2(t)) = 0. It follows thaty1(0) # 0, y2(0) = 0, h(y.(t), y2(t)) = O.
We conclude from this that

d .
0= G [Veh(n(®), y2(t)l=o = Hg,‘é,h(o)( 71(0) )

v2(0)

This gives §2/0£2)h(0, 0) = 0, @2/0£10£2)h(0) = 0. It follows that the total curvature
of Sis zero at 0. Total curvature is therefore vanishing in theoatm part of I". It
must then vanish by continuity also in the singular pointd of ]

Our next concern is to understand what kind of curves canapjlethe curve is
to be such that there is a plane tangent to a given sextic atong/e start with the
following simple (and classical) remark:

REMARK 8.3. If Q; and Q, are two polynomials in two variableg, & which
have no common factors, then the §,,) € C2; Q1(£1,£2) = Qa(&1,£2) = 0} is finite.
(Indeed, after a linear change of variables we may assunteQtha apéy + A1, where
a € C,a #0, o is the degree 0fQ;, and Ql is a polynomial in &, &) which, as a
polynomial in the variable;, has degree strictly less than The resultantrR in the
variable&; of the two polynomials is a polynomial i&, which is not identically zero,
since Q1 is irreducible. Common zeros @&; and Q, can only occur ifR(&¢;) =0, so
we obtain a finite number of valués for which we can have common zeros. Actually,
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for every & with R(&;) =0, we obtaino values of&; (when multiplicities are counted)
such thatQi(&1, &) = 0 and conversely, the pairg;( &) which appear in this way,
are precisely the common zeros @f; and Q.. For the theory of resultants of two
polynomials see almost any textbook in algebra, e.g., J29].

The following is an immediate consequence

REMARK 8.4. Let§ be an irreducible polynomial in two variables with real co-
efficients. Then the set of common real zerogjand of (/9£,)§ is finite if (3/0&1)§
is not identically vanishing.

For reference reasons, we mention the following trivial:

REMARK 8.5. Let f be a real-valued polynomial ifR® and denoteS = {¢ €
R3; f(€) = 0}. Consideré® e S and assume thaf (£°) = 0, 3, f(£%) # 0. Also de-
note g(&) = (&', &J). Then = = {&, & = &£} is tangent toS at £° precisely when
Veg(s”) = 0.

Proposition 8.6. Let f be a real-valued polynomial oR® such that except for
a finite number of points B ..., PSe S={& € R f(£) =0} we have that () =0
implies V¢ f(¢) #Z 0. Assume that f is of degre®@ We also assume that S is bounded
and that there is a plan& which is tangent to S along a smooth cuive ThenX is
tangent to S along an ellipse which contaifis In addition to this ellipse of tangency
there can at most be finitely additional points at whithis tangent to S

Proof. We may assume thatis given by&; = 0 and denote bg(¢’) = f (&1, &2, 0).
In particular, g(¢’) = 0 implies that £, 0) € S. Moreover, g is a polynomial of degree
at most 6. Also consideP € R?. X is tangent to P, 0) € S precisely wheng(P) = 0,
Ve g(P) = 0. (See Remark 8.5.) We denote [5{/?:1 g;, the decomposition ofj into
irreducible, possibly multiple, real factors. In partiayls < 6. SinceS, and therefore
alsoI", is bounded, no factor can be first or third order and theeeforparticular the
number of factors is actually at most 3. (Wheghis a polynomial of odd degree, with
real coefficients then its set of zeros is unbounded.)

We now also claim that the number of factors (i.s),must at least be two. In-
deed, if there were only one irreducible factor, i.e.gifitself were irreducible, then
it could have only finitely many zeros in common with.g (see Remark 8.4), so we
could not have an entire curve of tangency. Actually, by game argument it is also
clear that, except for a finite number of pointsIin the points in[C must be zeros of at
least two factorsy;,q;, i # j, since only in this way can we make sure that generically
simultaneouslyg; (6)g; (") = 0 and V¢ [qi(§)q;(¢)] = 0. This excludes the possibility
that we have an irreducible factor of degree 4. Indeed, iw\0é Remark 8.4, the set
of common zeros of such a factor with the remaining factor ejrde 2 would have
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to be finite and could not be an entire curve. We are finally wéth the case of two
or three factors of degree two. In the first case, the sets roszaf g, and of g, must
be ellipses and these ellipses must both confaias a subset. It follows that actually
the two ellipses coincide and the set of tangencyXofvith S must be this common
ellipse. Moreover, in this case the two factays g, will have to be proportional. The
other case is when we have three factors of degree two. Agairoltain two fac-
tors which must vanish on a common ellipse, which contdlnas a subset and along
which X is tangent toS. As for the third factor, it may give rise to a finite humber
of additional points along whiclx is tangent toS. ]

Let us also give an example of a situation whEnis tangent along a circle and
is, in addition, also tangent at a point ¥ which lies outside this circle. The example
thus shows that the last case considered in the proof of Bitopo 8.6 can effectively
occur.

REMARK 8.7. LetP(r,&) be the characteristic polynomial of the system of crys-
tal optics for some fixed biaxial crystal and i@ (¢) = P(1,£) be the polynomial defin-
ing the corresponding slowness surface. Then it is knowh @ais fourth order and
that there are 4 circles imbedded #1= {¢ € R3, Q(¢) = 0} such that for each of
these circles there is a tangent plane which is tanger® &bong the respective circle.
(For the explicit form ofP, of S, and information about the four circles see, e.g., [1].)
Let X be one of these planes, denote (byhe corresponding circle and 1€, a poly-
nomial of form |&€ — £°2— 1 such that the spher® = (&; |¢ —£°]°—1 =0} is also tan-
gent to X in a pointZ which does not lie or€. Then the polynomiaRi(£)Q2(£) is a
polynomial of degree six such that is tangent to the surfacs= {¢; Q1(£)Q(¢) = 0}
for all points inC U {}.

9. Study of the Gauss map

In this section we shall use the term “curve” in a somewhat-oithodox way: a
curve shall be a finite union of otherwise piecewise smoadimdsard curves. Parame-
trizations shall be defined for the single smooth pieces athvlour curves are made.
We shall denote by:° the conically singular poing? = &9 = £2 = 1/3/3c —d. In par-
ticular, £° depends on the parametarsand d.

In some arguments it will be necessary to work simultangowith more than one
set of parameterb, ¢,d. To distinguish between the various situations, we shaibtie
the corresponding slowness surfaces often (but not away§(b, c, d), rather than by
S. Accordingly, St(b, ¢, d), S?(b, ¢, d), S*(b, ¢, d) are then the outer, middle and inner
sheet of the slowness surface for some giben, d. We shall say that some property
P holds “generically for I, ¢, d) near somel, c®, d°)” if we can find a neighborhood
U of (b2 c® d°), a non-vanishing algebraic functiam U — R, and a constanf such
that the propertyP holds for p, ¢, d) € U when ¢(b, c, d) # & We shall say, more
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generally, that the propertp holds generically if it holds generically nean®( c°, d°)
for any ©°, c®, d° under consideration. The “property” which we have in misdhat
for given (b, c, d) there are no plane® which are tangent t&(b, c, d) along entire
curves.

Our main result is

Theorem 9.1. If we are sufficiently close to the isotropic casken for generic
values of bc, d no planeX which is tangent to S along an entire curve can exist

(We have no idea if the result remains true for arbitranc, d, but clearly the
methods of proof used in this paper do not suffice to study el case.)

REMARK 9.2. LetK be an open convex cone in the first octantRA which
contains the singular direction 3, 1/+/3, 1/+/3). In the nearly isotropic case the
total curvature of the surfaceS (b, c, d) is strictly positive in the first octant as long
as we remain in the complement &f. (See Proposition 6.1 and Theorem 7.2.) In
fact, we have seen that both in the regular region and closketainiplanarly singular
directions, S(b, ¢,d) has non-vanishing total curvature. It follows in the ngasbtropic
case, that if a plan& is for some value of, c, d, tangent toS(b, c, d) along an
entire curvel’ with points in the first octant then every connected compbrén’
with points in the first octant must lie K. Actually we also know thal” must be
an ellipse, so it can have only one connected component.

Proof of Theorem 9.1. We shall only discuss the physicaltgresting casd >
0, the caséb < 0 being similar. Since we shall work in the nearly isotropase, we
may assume then tha&® is smooth and strictly convex. In follows from the remark
that for suitable ¢, 8), «® + % =1, I must intersect the curvé e S'(b, c, d) U
(b, ¢, d); a6 — &D) = B(&2 — £9)}. (Note that&® will depend on B, ¢, d), and when
we need to specify this, we shall writg?(b, ¢, d) rather thang®.) To continue our
argument, it will now be necessary to obtain some minimabrimiation about such
intersections. 0

To begin this study, we look at the family of curves
L, B) =1{& € S'b, ¢, d) U SA(b, ¢, d); a(é1 —ED) = B2 —&9), & >0,i=1,2,3

with o, 8 € R, o?+ % =1.

(Note that the pairsof, 8) and «, —B) define the same curve in this family.
Since the argument is always about some fixe@B] this does not lead to ambiguities.)
The curvesf(«, B) are singular a€ = £°. We also mention that(«, 8) depends on
(b, c, d), but since we shall work for a fixed(c, d), we do not make this explicit in
the notation.
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Theorem 9.3. Fix b% c% If |b—b°+|c—c® +|d| is sufficiently smajlthe curves
L(x, B) admit no inflection points in their smooth portions

Proof. We denote by°(b, c, d) the conically singular point for some giveh, €, d)
for which |b — b° +|c — c°| + |d| is sufficiently small.

When |«| > /1/2, we parametrize the curve¥c, 8) by &, otherwise by&;. In-
deed, working e.g., for the cage| > /1/2 it is reasonable to writé; in terms of
£ £1=€9(b, c, d) + (B/a)(E2 — E3(b, c, d)). &s, on the other hand, can be calculated
from the defining equation o&'(b, ¢, d) U S?(b, ¢, d). Since we want to use a pertur-
bation argument in the parametdrsc, d, we study at first the defining equations of
S'(b, ¢, d) U S*(b, ¢, d) in a neighborhood of the singular poiaf(b, ¢, d). We shall
assume that we are working in the first octantRiA Applying the Weierstrass prepa-
ration theorem to the six-th order polynomial with parametp, c, d), which defines
the S(b, ¢, d) in a neighborhood of£P, b°, ¢, d°) we see thatS(b, ¢, d) U S(b, c, d)
can be defined locally by an equation of foildt, b, ¢, d) =0,

(9.1) (5, b, ¢, d) = &2 + gi(&1, &, b, ¢, d)&3 + Qa(&1, &2, b, ¢, d),

where theg; are holomorphic in&, &, b, c,d, and A = gf — 4qg, is the local dis-
criminant. In terms of the rootgs 1, 32 of the polynomialés — §(&, b, ¢, d) the
local discriminant is &3 1(£1, &2, b, ¢, d) — &3 2(61, &2, b, ¢, d))?. It is important here
that the functionsg; and g, are defined on a neighborhood @f?(£2) which is in-
dependent ofl, d) if (b, d) is close to k° 0) for some previously fixed®. (Note
that £%(b, ¢, d) depends onl ¢, d), but we have applied the Weierstrass preparation
theorem at £°, b°, c°, 0), so the functions);, g, have the indicated domains of defini-
tion.) This gives for everyr, B and everyb, ¢, d with |b — b° + |c — %] + |d| small,
two solutionsés;, i =1, 2, which depend oré{, &, b, ¢, d). As a function of the two
variablesgy, & these functions have to be singular£d(b, c, d), but along each of the
lines £ — £2(b, ¢, d) = (B/a)(&2 — £2(b, ¢, d)) we can define solution-functions in such
a way that they depend analytically @p, «, 8, b, ¢, d. Indeed, if

- _gl(sf(b! C, d) + (a/ﬂ)(%-Z - ég(bv C, d)), 52! b! C, d)
2

N JAE, ¢, d) + (@/B)E — £3(b, ., d)), &2, b, c, d)
. ,

&3+

(9.2)

are the two standard roots of the polynomégl— §(&, b, ¢, d) (square roots are to
be taken positive), then we sét; = &3+ when &, < ég(b, c,d) and&; 1 = & when
£, > £J(b,c,d). (Also cf. here Remark 7.6.) The functids,, is then defined similarly.
We know from Section 5 that = d2(A (¢, d)+A1(¢’, d)) where A(¢’,d) is a positively
definite quadratic form irg’ with A(s’, d) > €&'|?, € > 0 and A(£’, d) vanishes of
order three ag’ = £7,
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Fig. 1. Part of the section dbN {&; = &} with and without com-
mon tangent in the case=1, b=0.5, d = 0.25. The two points
of tangency must be separated by the double point on the .curve

Since our curves have no inflection points in the isotropisecave can conclude
that in the nearly isotropic case there are no inflection tgoin the smooth portions
of the curvesL(«, B) near the singular direction. Away from the singular diieus,
we again obtain that there are no inflection points in the Ipgaotropic case, since
the curvesL(«, B) are analytic functions which depend analytically on theapzeters
b, c, d.

Now assume that for somé,(, d) there is a plan& which is tangent taS(b, ¢, d)
along an entire curvd” of which some portion is contained in the first octant. We
know from Remark 9.2 that if we fix some open convex cdfec R® containing
(1/4/3, 1/+/3,1/4/3) and if we are sufficiently close to the isotropic case, tRemust
lie completely inK. It will then also intersect for some suitahleg the curvesC(«, B)
considered above. Actually, since the curn&@, 8) have no inflection points, then
generically any curve which intersecls must have at least two distinct points &h
and the lineL which is determined by these two points will be tangent to ¢heve
L(x, B). This is only possible if the singular poirft® separates the two points of
L(x, B)NXT on L(«, B), i.e., these points lie on different connected componehte
curve L(a, B) \ {£°(b, ¢, d)}. This shows that the only way to have a plaBewhich
is tangent along an entire cunie on S(b, ¢, d) and has points in the first octant, is
when T contains the conically singular directidgif(b, c, d) in its “interior”. It is then
also clear thal™ must intersect the curveS(«, 8) for every«, 8 in two points which
lie on S(b, ¢, d). (For part of this, see Fig. 1.

To see that planeX tangent toS*(b, ¢, d) along curves can not exist generically
(for the exact statement, see Theorem 9.1), we argue now bgidgying the inter-
section of St(b, ¢, d) U S(b, ¢, d) with & =&,. This is a curve of typel(a, B) with
a = B = 1/4/2, but the structure ofZ(1/+/2, 1/+/2) is quite easy to understand, so
it may be worthwhile to say a few things about it. The sextidirdeg T = {¢ €
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S(b, ¢, d); & =&} can be factored in the form

©3) (1 — 2c£2 — c&2 + de2)[2be (1 — 2c82 — c&2 + dE2) + be2(1 — 2082 — c&2 + d&2)
' — (1 - 2c£2 — ce2 + de?)(1 — 2c2 — c&2 + dg2)].

(This is checked by direct verification.) The double pointstbis sextic clearly satisfy
the equation of the ellipse associated with the first faato(9.3), so that the quartic
defined by the second factor has no double points. It is toered smooth curve and
the double points of the sexti€ corresponding to the conically singular points 8n
come from the intersection of this curve with the ellipse 2c£2 — c£2 +d&? =0. [

The idea to conclude the proof of Theorem 9.1 is now as followe know that
if we assume thak were for some fixed valuels=b° c=c° d=d° d° sufficiently
small, a tangent plane t8'(b°, c®, d°) along a curvel™ in the first octant, then it must
intersect the curveg e SH(b°, c°, d°); & =&, & > O}, k # j, in two points for every
i #k. Since the situation is symmetric with respect to permaoretiof the variable§;,
we see that the normal to the plaBemust be (¥v/3, 1/+/3, 1/+/3). When we restrict
to the planet; = & we conclude that the ling = {(&1, &3); & € X, & =&} must have
normal i® = (2, 1)/]|(2, 1)|. We call thisi® the “correct normal”. Let us now denote
by P* and P~ the points of tangency of and {(&1, &); (&1, &1, £3) € S(b°, c°, d9)}.

To bring in the perturbation argument, we now change pointiefv slightly and
look at the intersection o8'(b, ¢, d) with the planet; = &, for generic values ofl, c, d).
We parametrize the plang = &, by its natural coordinatest(, £&3). We may assume
that in the first quadrant the pieces of algebraic cur¥es {(£1, £3) € R?; (£1,£1,&3) €
S'b, ¢, d), & > &J(b, ¢, d)} and A_ = {(n1, n3) € R?; (11, m1, n3) € S'(b, ¢, d), n3 <
gé’(b, c,d)} are defined respectively by (&1, &3, b, c,d) =0 and byqg_ (11, n3, b, c,d) =0.
We changed the notations for the variables (fronio ») in the region{¢ € R3; & <
£2(b, c, d)} in order to make it easier to distinguish the contributioristhés region
from the contributions of its complemens!(b, ¢, d) is here calculated for the values
(b, c,d) under consideration. Arguing as above (or using the eixgbem of the factors
in (9.3)) we can show that in the nearly isotropic case theature of the curves\.
may be assumed non-vanishing. The two curves have exaahc@mmon tangent line
with points of tangencyP* = (&1, £3) and P~ = (fj1, 7j3) in the first quadrant, where*
is chosen in the regiots > £J(b, ¢, d) and P~ in & < £J(b, ¢, d). (See again Fig. 1.)

We claim thatP* and P~ are algebraic functions of thie, ¢, d. Indeed, in terms
of the defining equationg. = 0 andg_ = 0, considered above, the conditions f@f
and P~ are

g-(P*,b,c,d)=0, g_(P~,b,c,d)=0,

(9.4)
(Va«(P*, b, c,d), P"—P7)=0, (Vg_(P~,b,c,d), P"—P7)=0,

and all these equations are polynomial. We have here fouatems for the four coor-
dinates (in the 4y, &3)-plane) of P*, P~. Since in the nearly isotropic case the solutions
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P* and P~ are locally unigue, we can solve these equations to olfdirand P~ as
algebraic functions oflj, ¢, d). This is indeed a consequence of the implicit function
theorem. To see this, it is convenient to make a linear chafig®mordinates in which
vVag+(P*,b,c,d) and Vg_ (P b, c,d) are parallel to (1, O) It also follows that in these
coordinates we must havg = 7; and therefore also thadg # 7is. Since the curvatures
of A+, A_ were assumed non-vanishing, we must ha¥#4s)?q.(P*, b, ¢, d) # 0,
(3/0n3)°9-(P~, b, ¢, d) 0. To see that the implicit function theorem is applicatile i
remains then to calculate the Jacobian (in the varialdiessd, n1, n3)) of the map

g+(£1, &3, b, ¢, d)

(Va+ (61, &3, b, ¢, d), (61, &3) — (1, m3))
g-(n1, n3, b, c, d)

(Va-(n1, n3, b, ¢, d), (¢1, &3) — (11, n3))

(&1, &3, 11, M3) —

and show that it is nonsingular aP{, P~). This is immediate in our special coordi-
nates.

The normal to the line in the plargg = &, which is tangent to the curvdé,, &1, &3) €
S'(b, ¢, d); & = &) in two points P*, P~ in the first quadrant as above, is an alge-
braic function of the parameters (since it is determinedHgyttvo pointsP*, P~ which
depend algebraically on the parameters). To conclude tipenaant, it will then suf-
fice to show that for generic choices of the constdnts, d, we do not get the “cor-
rect normal”. Many ways to show this are available. For examgl is already clear
from graphical evidence that the directions of the normalguestion are not constant,
and therefore there must also be instances where the dimectithe normal is not the
correct one. Although we have explored this (using “Maplefke think that this ap-
proach is not necessarily convincing enough for everyboligother possibility is to
study what happens whdn ¢, d move in the admissible region towards the boundary
of the admissible region. Finally, we can try to calculate ttormals for special values
of the parameters chosen in such a way that calculationsnteesimple. The simplest
such choice is wheb =0, when the equation of the slowness surface is the product o
three second order polynomials. Since we have generaltiestiin this paper to val-
uesb # 0 we shall here argue for the cage= —2b, which is closer to the physically
interesting situations and where moreover results are wbatemore precise than in
the general generic case. The first remark is that wdien—2b, then the condition
a+c > 0 reduces tac > 2b. We shall assume thdt > 0, so the only remaining re-
striction on parameters is (see the introduction} d +b > 0. In particular, we may
also consider the nearly isotropic case &or —2b, although it has perhaps no physical
interest. The main remark is now that for the cése= &, the polynomialg factors
into the product of three polynomials. This is based on tret faat fora = —2b the
characteristic surface can be written as

(9.5) @ —clEP)(t?+ (b — C)|&17)? — bP(&] + &5 + &5 — £262 — 262 — £2E2)] =
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(See e.g., [20].) The most interesting part of the slownesface is then in some
sense

(9.6) f(&,b,c)=(1+ b)) — b2 + &5 +£5 — 6267 — 265 — £262) = 0.
When e.g.&; = &, the equation (9.6) reduces to

(9.7) (1+0—c)(2t2 +&2)? — b?(E2 - £2)* = 0.

This can also be written as

(9.8) [(1+b—c)(2&7 +&2) — (g — £9)] x [(L+ (b — c)(2&7 +£2)) +b(EZ — £D)] = O,
so all in all, we obtain

(&1, &1, &) = (1 — 252 — cE2)[(L + (b — ©)(262 + £2)) — b(sZ — £2)]

(9.9)
x [(1+ (b — c)(2£7 +&£3)) + b(e] — £2)].

(Notice thatq(&y, &1, £3) is a polynomial in the two variablesy( £3).) The problem
is then reduced to see whether the common tangent in the fiedrgnt to the two
ellipsesA’, A” in the ¢, &) plane

AN ={(&1, &); (b—20)2 + (2 —C)eZ+1 =0},

(9.10)

A" ={(61, &); (30— 20)87 — 55 +1 =0,
has the correct normal. It i4’ which has intersection point with thi-axis farther
away from the origin wherb > 0.

Since we are dealing with ellipses, this common tangent eacaltulated effectively.
Let us briefly describe how this is done.

In fact, we may search the common tangent to the ellipsesA”, in the form
£ = mé& +n wherem and n have to be determined. We denote By = (£, &),
respectivelyP~ = (771, 713), the points of tangency of the tangent witti, respectively
A”, in the quadrant; > 0, & > 0. We have in particular that

g =mé+n, fip=mis+n, (and therefore; — mé; = fj; — mij3)

(9.11) . .

(b—20)E%2+(2b—C)Ex2+1 =0, (D—20)i12—ciiz>+1=0.
The notations are here chosen as above, inBiawill have to lie in the regiorts > &;
and P~ in the region&s < &. (Recall thatA’ intersects thets-axis in a point far-
ther away from the origin than the point of intersection &f with the &;-axis and
therefore P* will have to lie in & > &.) We still have to add the condition that
&1 = mé&z+n is tangent toA’, respectivelyA”. To make “tangency” explicit, we choose
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two locally defined functiong; and ¢, which parametrizeA’, respectivelyA”, near
P*, respectivelyP~. Thus

(9.12) b - 20)¢i(5s) + (20— )i +1=0, (D —20)p(53) —ce5+1=0,

and & = ¢1(&3), 71 = ¢2(f3). By derivating (9.12) we obtain (with “dots” indicating
derivatives) forgi(£3), ¢2(7is) the expressions:

(c — 2b)5s
(b—2c)éy’

Ci3

(9.13) </51(§3) = m

pa(iiz) =
We could now continue to calculatg, &3, i1, 7is from these conditions, but actually we
are only interested in showing that when we assumertitat-1/2, (which is the value
corresponding to the correct normal) then we cannot §inds, 71, 7is which satisfy all
the conditions.

Indeed, with this value fom the &1, £, 71, 5 must satisfy the following conditions:

. 1. 1
(9.14) &1+ 553 =+ 5773,
1_(c—2b) _  ciis
©-19) T2 b2k @200
(9.16) (b—20)&2+ (20 —C)E2+1=0, (d—20)72—ci3+1=0.

We have here five equations for four unkowns, and we shall saethese relations
are not compatible.
The equations (9.15) give in fact

. _1(b-20k

. _ 1(2c—3b)in
3 -

T2 m-c ' P72 ¢
When we insert this into the equations af and A”, we obtain the two equations

92
(b—2c+}(b 20) 2+1=0.

}(3b—20)2
4 2b—c

£2 1= —2Cc —
)§1+ 0, (Sb c 2

We solve these equations explicitly to get (remember thatwmelooking for solutions
in the first quadrant)

Z = 2/—(—24bc+90? + 12c2)(—c+2b) _ 2 c—2b
'T3 —8bc + 302 + 4c2 " /342 —8bc+ 302
. 2/3/(—8bc+302+4c?)c 2 NG

3~ _8bc+ 302+ 4c2 V342 —8bc+ 302
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We now insert this in the first relation in (9.14) to obtaintéafdividing both sides by
the common factor 2/3(—8bc + 3b2 + 4c?)):

Jec—2b =,/

This shows that the system (9.14), (9.15), (9.16) is corhfmtinly whenb = 0. Since

we must also have that= 0 in this case, we are in the completely degenerate situatio
when S, the full slowness surface, is a triple sphere. Not even is tlse there are
planes which are tangent 8 on complete curves however. This completes the proof
of Theorem 9.1.
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