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0. Introduction

For each positive integer n, we temporarily say that a ring R is n-PF
(^-pseudo-Frobenius) if every faithful right i?-module generated by at most n
elements is a generator for the category of all right i?-modules. As well known, the
ring which is n-FF for all positive integers n is called a right FPF (finitely
pseudo-Frobenius) ring, and every FPF ring splits in a ring with essential singular
ideal and a nonsingular ring. Nonsingular FPF rings were investigated in S.
Kobayashi [9] and S. Page [ l l ] , [12], [13], etc.; in particular, S. Page [l l]
characterized (von Neumann) regular right FPF rings as self-injective regular rings
having bounded index, and S. Kobayashi [9] gave a characterization of nonsin-
gular right FPF rings. The aim of this paper is to study nonsingular 1-PF rings,
which were to some extent investigated in G.F. Birkenmeier [2], [3] and S.
Kobayashi [10].

Modifying the proof of [10, Proposition l] and observing that the converse of
the proposition is also true, we see, as will be noted in §3, that for a fixed integer
n>2, a ring R is right nonsingular and n-FF if and only if R satisfies the condition
( C ) that:

(i) R is right bounded, i.e., every essential right ideal of R contains a
two-sided ideal which is essential in R as a right ideal,

(ii) For every right ideal A generated by at most n elements, R= TTR(A)Θ

TR(A), where TTR(A) (respectively, rR(A)) is the trace (resp. the right annihilator)
ideal of A, and

(iii) Every nonsingular right i?-module generated by at most n elements can
be embedded in a free right i?-module.

However, such the result as above is, in general, false in the case n = l.
Moreover, for regular or commutative semiprime rings, the FPF condition is, as
noted in [ΓO], equivalent to the n-PF condition for each n>2, although it is not
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to the 1-PF condition. Thus it seems that the 1-PF condition is not so much related
to the (Cn) and to the FPF as the n-PF (n>2) actually, the class of 1-PF rings
is much larger than that of n-FF (n>2) rings.

In this paper we shall refer 1-PF rings to as right GFC rings as in [2], [3], and
be concerned with nonsingular right GFC rings. We shall show that the quasi-Baer
right GFC rings are precisely the rings satisfying the condition (Ci), so that they
may be regarded as a natural generalization of nonsingular n-PF (n>2) rings, and
hence, of nonsingular right FPF rings. On the other hand, the structure of right
GFC regular rings R, under the assumption that every nonzero two-sided ideal of
R contains a nonzero central idempotent, was determined, in [10, Theorem l], as
finite direct products of abelian regular rings and full matrix rings over self-
injective abelian regular rings. We shall generally show that even without the
assumption, any right GFC regular ring has the same structure and is characterized
as a regular ring having bounded index such that every cyclic faithful nonsingular
right module is projective.

In Section 1 of this paper is assembled a summary of notation and terminol-
ogy. Section 2 contains preliminary results on right GFC rings, which will be used
afterward. There we shall show that if R is a right nonsingular right GFC ring,
then the maximal right quotient ring of R is FPF (Theorem 2.8), which is the key
to our study in the following sections. Section 3 is concerned with quasi-Baer or
right p.p. right GFC rings. We shall characterize quasi-Baer right GFC rings as
rings satisfying the condition (Ci) (Theorem 3.3), and in addition give characteriza-
tions of right p.p. (and quasi-Baer) right GFC rings (Theorem 3.7, Theorem 3.8).
The last section is devoted to (von Neumann) regular rings. We shall determine the
structure of regular right GFC rings, and present other characterizations of those
rings (Theorem 4.3). As a consequence, we see that the GFC condition is left-right
symmetric for regular rings (Corollary 4.4).

1. Notation and terminology

Throughout this paper all rings are associative with identity, and all modules
are unitary.

Let R be a ring, M an i?-module, and X a subset of M. We denote by rR(X)
(respectively, IR{X)) the right (resp. left) annihilator of X in R, by TTR(M) the
trace ideal of M, i.e., TrR(M) = Σ{Im φ\φ^HomR(M, R)}, and by Z(M) the
(right) singular submodule of M, i.e., Z(M) = {x^M\rR(x) is essential in R}.
Given a positive integer n, we denote by M(n) the direct sum of n copies of M. By
ideals we usually mean two-sided ideals of R. The notation N<M (resp. N<eM)
means that N is a submodule (resp. an essential submodule) of M. In particular,
the notation A<RR signifies that A is a right ideal of R. We use B(R) to denote
the set of all central idempotents in R. A complement for N in M is any
submodule L of M which is maximal with respect to the property NΓ)L=0.

We call a ring R a right GFC (resp. right FPF) ring if every cyclic (resp.
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finitely generated) faithful right 7?-module is a generator for Mod-7?, the category
of all right i?-modules. A left GFC, or left FPF ring is defined similarly.

2. Properties of GFC rings

In this section, we shall provide preliminary results on right GFC rings, which
will be used repeatedly throughout the sequel.

Lemma 2.1. (1) Let I be an ideal of a ring R, and let Abe a right ideal
of R such that I + A is essential in R. If R/A is a generator for Mod-i?, then
I is essential in R as a right ideal

(2) Let R be a right GFC ring, and let I be an ideal of R. Then R/I is
nonsingular as a right R-module if and only if I is a semiprίme ideal which has
no proper essential extensions in R as a right ideal

In particular, R is right nonsingular if and only if it is a semiprime ring.

Proof. See [15, Lemma 2 and Corollaries 5 and 6].

Lemma 2.2. Let R be a right GFC ring. Let I be an ideal of R such that
R/I is nonsingular as a right R-module, let A be a complement for I in RR, and
set J=rR{R/A). Then

(1) I=r*(J) = h(J).
(2) // R is right nonsingular, then A=J=rR(I)=lR(I).

Proof. (1). If B is a complement for / in AR, then R/B is faithful, whence
Lemma 2.1(1) implies that I®J<eRR. Thus ( / θ / ) / / becomes an essential right
ideal of the right nonsingular ring R/I, because (R/I)R is nonsingular. Conse-
quently, we have /=//?(/). Moreover, noting by Lemma 2.1(2) that / is a semi-
prime ideal, we obtain /Λ (/)=?"/?(/).

(2). Since R/A is an essential extension of IR and since R is right nonsingular,
the i?-module R/A, and hence {R/J)R, is nonsingular. Thus, it follows from the
same argument as in (1) that ]"= rR(I) = //?(/) = A as well.

Lemma 2.3. Let R be a right GFC ring, and let I be an ideal of R such
that R/I is nonsingular as a right R-module. Then R/I is a right nonsingular
right GFC ring.

Proof. Since R/I is a nonsingular right i?-module, it is a right nonsingular
ring. Let A be a complement for / in RR, and set J=rR(R/A). If B is a right
ideal of R such that rR(R/B) = I, then rR(R/B/)<inf=0, so that TrR(R/Bf)
= UBJ)R = R. Setting X={r^R\rB<I], by Lemma 2.2 we have lR(BJ)<X,
and hence XR = R. This means that R/B generates R/I. Thus R/I is a right
GFC ring.
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Lemma 2.4. Let R be a right GFC ring, and let I be an ideal of R. If
R/I is nonsingular as a right R-module, then it is nonsίngular also as a left
R-module.

Proof. Set R=R/I. If RR is nonsingular, then by Lemma 2.2 there exists an
ideal / of R such that I=rR(J) and / Π / = 0 . Given any essential left ideal L of
R, we see that (L + / ) / / < e RR. Set A/I=TR{(L + I)/I) where A<RR, and let
B/I be a complement for A/1 in RR where B<RR. Then the nonsingularity of
RR implies that (R/B)R is nonsingular and that h(A/I)Γ\ lR(B/I) = 0 hence
h(B/I) = 0, because (L+ / ) / / < * h(A/I)<e RR. On the other hand, by Lemma
2.3 the i?-module R/B generates R/rR(R/B)\ hence XR = R, where X={r<Ξ
R\rB<rR(R/B)}. Since AXB<AΠrR(R/B) = I and IR(B/I)=0, it follows
that A=AXR = I. Thus we obtain r*((L + /)//) = 0, which shows that *i? is
nonsingular.

As an easy consequence of the lemmas above, we obtain the following results
on left and right GFC rings.

Corollary (c.f. [12, Proposition 4]). If R is a right nonsingular ring which
is right and left GFC, then the maximal right quotient ring of R is also the
maximal left quotient ring of R.

Proof. Note by Lemma 2.4 that R is also left nonsingular. Then, by virtue of
Utumi's Theorem (c.f. [5, Theorem 2.38]), it suffices to show that if A is a right
ideal of R such that R/A is nonsingular, then A is a right annihilator ideal.

We shall show that A is essential in TRIR(A)R, which will obviously imply that
A=rRlR{A), as desired. So, let S b e a right ideal of R such that B<rRlR{A) and
AΠB = 0, and let C be a complement for B in RR such that A<C. It then follows
from Lemma 2.3 that XR = R, where X=-{r^R\rC<rR(R/C)}. Since BXC =
Oand lR(C)< IR(C)Π lR(B) = 0,weh3ive BX=0 hence 5 = 0. Thus A is essential
in TRIR{A)R.

We give a proof for the following easy fact, which will be well known.

Lemma 2.5. Let R be a right nonsίngular and semίprίme ring, and let Q be
the maximal right quotient ring of R. For every ideal I of R, there exists e^
B(Q) such that I<e eQR.

Proof. An idempotent e in Q can be taken to satisfy I<e eQR. We claim that
e is central in Q. To see this, let A be an essential right ideal of R such that eA
</. Then (l — e)ReA<(1 —e)/=0. Since QR is nonsingular, it follows that
(1 — e)Re = 0. Also, setting B = eR(l — e)RΠR, we see by the semiprimeness of R
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that 5 = 0, and hence eR{\ — e) = 0. Thus e commutes with all elements of R.
Now, given any J G Q , we take C<eϋj? such that xC<R. It follows that
{ex — xe)C = 0, so that ex=xe. Therefore e is indeed central in Q.

If every essential right ideal of R contains an ideal which is essential in R as
a right ideal, then R is said to be right essentially bounded. Note that in [9] such
rings are referred to as right bounded rings.

Lemma 2.6 ([9, Lemma 2]). Let R be a right nonsingular ring which is right
essentially bounded. If M is a finitely generated faithful right R-module, then
M/Z(M) is also faithful

Lemma 2.7. Let R be a right GFC ring. Then
(1) R is right essentially bounded.
(2) If N is an essential submodule of a finitely generated nonsingular right

R-module M, then rR(N) = rR(M).

Proof. (1). See [15, Proposition 4].
(2). Let Xi, ", xn generate MR, and for each i = l, •••, n, set Ai — {a^R\xia

^N}. Then, by the essentiality of N, each Ai is essential in R hence, according

to (1) we see, by noting Π rR(R/Άi)<rR(M/N), that rR(M/N)<eRR. As a
ί = l

result, rR(M/N)/rR(M) is an essential right ideal of the ring R/rR(M), because
(R/rR(M))R is nonsingular. Moreover, since rR(M) is a semiprime ideal by
Lemma 2.1(2) and since rR(M/N)rR(N)<rR(M), it follows that rR(N)rR(M/N)
<rR(M). Thus the nonsingularity of R/rR(M) implies that rR(N) = rR(M).

S. Page proved in [12, Theorem 2] that if R is a right nonsingular right FPF
ring, then the maximal right quotient ring of R is also FPF, while G.F. Birken-
meier [3, Corollary 3.6] obtained the same result for right nonsingular quasi-Baer
right GFC rings. The next theorem more generally shows that for any right
nonsingular ring, the right GFC condition has the same effect on the maximal right
quotient ring. This is useful to our study in the following sections.

Theorem 2.8. Let R be a right nonsingular right GFC ring. Then the
maximal right quotient ring of R is a left and right FPF ring.

Proof. Let Q denote the maximal right quotient ring of R. By [2, Theorem
2] and [l 1, Corollary 9.2] it suffices to prove that Q is right GFC. Thus, given any
right ideal X of Q such that Q/X is faithful, we must show that Q/X is a
generator for Mod-Q. To this end, set Y/X=Z((Q/X)Q), the singular submodule
of Q/X as a Q-module, and note that Y/X is the singular submodule of Q/X
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also as an 7?-module hence Ql Y is nonsingular both as a ©-module and as an
i?-module.

First we claim that Q/Y is faithful. Since (Q/rρ(Q/Y))Q is a nonsingular
Q-module, there exists e^B(Q) such that rQ(Q/Y):=eQ. Observing that the
cyclic i?-module (eR + X)/X is singular because it is contained in the singular
module Y/X, we see by Lemma 2.7(1) that rR((eR + X)/X) is essential in RR.
Now, let a be an arbitrary element of eR Π rR((eR + X)/X). Set / = lRrR(aR), and
let x be an idempotent in Q such that aQ=xQ, and so x — ay for some y^Q.
Also, by Lemma 2.1(2) and Lemma 2.5, let f^B(Q) such that I<efRR. Then, ef
= 0. To see this, note that aR is essential in xRR, and then by Lemma 2.7(2) that
rR(xR) = rR(aR) = rR(I) = rR(/R). Thus, according to Lemma 2.3, the i?-module
xR generates fR, whence there exist φi, •••, <Pn<^HomR(xR, fR) such that / e

n

*Σ<Pi(xR). Each i?-homomorphism ψi may be extended to a Q-homomorphism

from xQ to JQ, so that ef<^Jte<pi(xR)=iLe<Pi(x)xR<efRayR<eRafyR<X
ί = l i=l

(the last inclusion of which is obtained from a^rR((eR + X)/X), i.e., ef^X.
Since β/ is central and QlX is faithful, we obtain ef=0, as desired. This implies
that β = 0, because a^eRΠ/R. Thus £i?Π rΛ((e/? + X)/X) = 0, whence the
essentiality of rR{{eR + X)/X) shows that e = 0. Therefore, rq(Q/Y) must be
zero, as claimed.

Now, set N=(R+ Y)/Y. According to Lemma 2.5, there exists g^B(Q)
such that rR(N)<egR, and then NgB = 0 for some B<eRR. Noting that Ql Y is
nonsingular, we have Ng=0, and hence g^ Y. Since the Q-module Ql Y, as seen
above, is faithful, the central idempotent g is zero, that is, NR is faithful. It then
follows from the hypothesis of R that the cyclic faithful i?-module N is a generator
for Mod-i? hence ίR(R Π Y)R = R. On the other hand, the essentiality of R Π Y
in YR implies that lR(RΠ Y)<lQ(Y). Therefore we obtain lQ(Y)Q=Q, which
means that Q/Y is a generator for Mod-Q. Obviously, Q/X generates Q/Y, so
that Q/X is indeed a generator for Mod-Q, which completes the proof of the
theorem.

A ring R has bounded index if there exists a positive integer n such that xn

= 0 for all nilpotent elements x of R. The least such positive integer is called the
{bounded) index of 7?.

The theorem above implies the following.

Corollary 2.9. Let R be a right nonsingular right GFC ring. Then there
exists a positive integer k, and R is a subdirect product of prime rings, each of
which is contained in a simple artinian ring of length at most k.

Proof. Let Q denote the maximal right quotient ring of R. It then follows
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from [11, Theorem 9] and [6, Theorem 6.2 and Corollary 7.10] that Q has index

k for some positive integer k, and that for every prime ideal P of Q, the ring Q/P

is a simple artinian ring of length at most k. Thus it suffices to show that for every

prime ideal P of Q, the ring R/(RP\P) is a prime ring. So, let a^R, and let /

be an ideal of R such that β $ P and aI<RΠP. Also, set J=lRrR{aR). By

Lemma 2.1(2) and Lemma 2.5, there exists e^B(Q) such that J^eeRR and then

by Lemma 2.7(2), rR(aR) = rR(J) = rR(eR). It then follows from Lemma 2.3 that

aR generates eR, whence there exists φi, ••, <pn^HomR(aR, eR) such that e^
n

aR). Extending each ψi to a Q-homomorphism Q-^Q, we have el<

Ίlφi{aR)I<Tiφi{ΐ)aI<P. On the other hand, eCP, because β $ P and
i=l ί = l

Thus the primeness of P implies that I<PΓ)R. Therefore, R/(RΠP) is a prime

ring, as desired.

3. quasi-Baer or p.p. GFC rings

In this section we shall study quasi-Baer or right p.p. right GFC rings, and give

characterizations of those rings.

Following [4], we call a ring R a quasi-Baer ring if the right annihilator of

every ideal in R is generated by an idempotent in R. A right p.p. ring is one in

which every principal right ideal is projective.

First we note the following on right nonsingular and semiprime rings, which

will be well known.

Lemma 3.1. Let R be a right nonsingular and semiprime ring, and let Q be

the maximal right quotient ring of R. Then the following conditions are

equivalent :

(a) R is quasi-Baer.

(b) For every ideal I of R such that R/I is nonsingular as a right

R-module, I is generated by an idempotent in R.

(c) B(R) = B(Q).

Proof. (a)=^(b). It is only to note that if / is an ideal of a semiprime ring R

such that (R/I)R is nonsingular, then we have I=rRlR(I).

(b)=>(c). Since any element of Q commuting with all elements of R is central

in Q, we have only to show that B(Q)^B(R). Thus, given any e^B(Q), we see

by (b) that there exists f^B(R) such that eQ0R=fR. It follows that eQ=/Q,

whence e=f<ΞB(R).

(c)=>(a). This follows immediately from Lemma 2.5.

As a result of the lemma above, we note by [13, Proposition l] that right

nonsingular right FPF rings are quasi-Baer right GFC rings.



598 H. YOSHIMURA

Recall that a regular ring R is abelian if all idempotents in R are central, or
equivalently, R has bounded index 1. Also, an idempotent e in a regular ring R
is said to be abelian whenever the ring eRe is abelian.

We need the following lemma as in [11, Lemma A].

Lemma 3.2. Let R be a right nonsiugular right GFC ring, and let Q be the
maximal right quotient ring of R. If M is a cyclic nonsingular right R-module,
then there exist finitely many βi, ••, en^B(Q) such that M can be embedded in

Proof. Let M be a cyclic nonsingular right i?-module. Then there exists an
idempotent f in Q such that M=fR. Thus we may assume that M=fR. Note
from [6, Theorem 7.20] that any idempotent in a right self-injective regular ring 5
having bounded index is a finite sum of orthogonal abelian idempotents in S.
Since Q has bounded index by Theorem 2.8 and [ll, Theorem 9], the idempotent

k

f can be actually expressed as / = Σ / i , where /i, •••, Λ are orthogonal abelian
J = l

idempotents in Q. Thus M is contained in /ii?Θ Θ/J?, so that it suffices to
embed each fjR in (ejR)(nj) for some integer nj and for some ej€ΞB(Q). Therefore
we may furthermore assume that / itself is abelian in Q.

Let A be a complement for rR(M) in RR. It then follows from Lemma 2.2 that
A=lRrR(M) and rR(A) = rR(M), and from Lemma 2.5 that there exists e^B(Q)
for which A<eeRR, and then by Lemma 2.7(2), rR(M)=rR(eR). Consequently,
Lemma 2.3 shows that M generates eR, whence there exist φi, '", <Pn^

n

Hom/?(M, eR) such that e^ Σ <Pi{M). Extending each ψu we may assume that ψi
ι = l

^Homρ(/Q, eQ). Now, we consider a homomorphism φ \ fQ^>(eQ){n) defined by
φ(x)=z(φi(x))Ί=i for x^fQ, and claim that φ is monic. To this end, set i f=Ker φ.
Then, fQQ = K®N for some N<fQς>. Since / is an abelian idempotent in Q, it
follows from [6, Theorem 3.4] that NK=0. Thus, K< rQ(/Q/K), that is, φlfQK)
= 0 for all i=l, •••, n, from which we obtain e(KΠR)< ίlφi(fR)(KΓ]R)<

i l

Σ ^ θ ( ) ) = 0. On the other hand, K(λR<M^R<lRrR{M)<eR, so that

KΠR, and hence K, must be zero. Therefore, φ is indeed monic, whence the
restriction of φ to M obviously embeds M into (eR){n\ which completes the proof
of the lemma.

REMARK. The proof of the lemma above shows that if / is an abelian
idempotent in Q, then fRR can be embedded in (eR)(n) for some integer n and for
some e(=B(Q).
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As a corollary, we obtain the following.

Corollary (c.f. [15, Corollary 9]). Let R be a right GFC ring. Let M be a
cyclic nonsingular right R-module which has finite Goldie dimension. Then the
endomorphism ring EncU(M) of MR is a right order in a semisimple artinian ring.

Furthermore, if R is also left GFC, then EncU(Λf) is a two-sided order in a
semisimple artinian ring.

Proof. According to Lemma 2.3, we may assume, by passing from R to
R/rR(M), that R is right nonsingular and M is faithful. Thus M generates i?,
whence R can be embedded in a finite direct sum of copies of M. As a result, RR
has finite Goldie dimension, because so does MR. It then follows from Lemma
2.1(2) and [5, Corollary 3.32] that R is a semiprime right Goldie ring, i.e., R is a
right order in a semisimple artinian ring Q. On the other hand, Lemma 3.2 shows
that M can be embedded in eiRΘ ••• θ enR for some central idempotents £i, ••*, en

in Q. Since each βiR { = R/rR{eiQΐλR)) can be embedded in a direct product of
copies of RR, SO is M. Therefore, [8, Theorem 2.2.14 and Theorem 2.2.17] implies
that Endi?(M) is a right order in a semisimple artinian ring.

If R is also left GFC, then by Lemma 2.4 we may also assume, as in the proof
above, that R is right and left nonsingular and M is faithful. Thus it follows from
Corollary following Lemma 2.4 and [5, Theorems 2.38 and 3.14] that the semi-
prime ring R is right and left Goldie, so that [8, Theorem 2.2.17] again implies that
End/?(M) is a two-sided order in a semisimple artinian ring.

Recall that a ring R is n-PF for some positive integer n if every faithful right
i?-module generated by at most n elements is a generator for Mod-i?, and also that
a ring R satisfies the condition (Cn) for some positive integer n if R satisfies the
following three conditions :

(i) R is right essentially bounded,
(ii) For every right ideal A generated by at most n elements, i?= TrR(A)®

(iii) Every nonsingular right i?-module generated by at most n elements can
be embedded in a free right i?-module.

It is obvious that for each positive integer n, the following implications hold :

Here we note, as mentioned in Section 0, that for each n>2, the conditions
w-PF and (Cn) on right nonsingular rings are equivalent.
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Proposition A (c.f. [10, Proposition l]). Let n (>2) be an integer. Then a
ring R is right nonsingular and n-PF if and only if R satisfies (Cn).

Proof. The "only i f part is obtained by modifying the proof of [10, Proposi-
tion l] and noting [5, Theorem 5.17].

Conversely, assume that R satisfies (Cn), and then note by the conditions (i)
(ii) of (Cn) that R is right nonsingular. Let M be a faithful right /^-module
generated by at most n elements.

To prove that M is a generator, according to Lemma 2.6 we may assume, by
replacing M with M/Z(M), that M is nonsingular hence by (iii) there exists a
positive integer k, and a monomorphism φ I M^Rik\ For each i = l9 •••, k, letting
pί'.R{k)^R be the f-th projection, we see by (ii) that R=TrR(pi<p(M))θ

k

rR(piφ(M)) for all i. Since Γ)rR(pi<p(M)) = rR(M) = O, it follows that R =
ι = l

Σ Trs(pi<p(M))= TrR(M), as desired.
ι = l

In the case n = l, the proposition above can not hold in general. However, in
the next theorem, we shall show that the right GFC (i.e., 1-PF) rings with quasi-
Baer condition are precisely the rings satisfying the condition (Ci). Thus it seems
that the right GFC rings, under the quasi-Baer condition, fairly behave as well as
nonsingular n-PF (n>2) rings, and hence, as FPF rings.

Theorem 3.3. For a ring R, the following conditions are equivalent:
(a) R is a quasi-Baer right GFC ring.
(b) (i) R is right essentially bounded,

(ii) For every a^R,

R=TrR(aR)ΘrR(aR),

(iii) Every cyclic nonsingular right R-module can be embedded in a
free right R-module.

(c) (i) R is right nonsingular and right essentially bounded,
(ii) For every cyclic nonsingular right R-module M,

R=TrR(M)®rR(M).

Proof. (a)=>(b). The condition (b)(i) follows from Lemma 2.7(1). Given any
x^R such that rR(x)<eR, we see by the right essentially boundedness of R that
rR(xR)<eRR. Since R is quasi-Baer, the ideal rR(xR) is generated by an
idempotent hence x = 0. Thus R is right nonsingular, whence (b)(iii) is obtained
from Lemma 2.1(2), Lemma 3.1 and Lemma 3.2. To prove (b)(ii), let a^R. Since
R is quasi-Baer, there exists an ideal / of R such that R=rR(aR)®L Obviously,
TrR(aR) = lRrR(a)R<*I, while conversely, it follows from Lemma 2.3 that / ^
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TrR(aR). Therefore we obtain R = TrR(aR)®rR(aR).
(b)=>(c). The conditions (b)(i)(ii) immediately shows that R is right nonsin-

gular. For (c)(ii), let M be a cyclic nonsingular right i?-module generated by x.
According to (b)(iii), there exists a monomorphism φ I M—>R{n) for some positive

integer n. Setting <p(x) = (au , an)^R(n\ we have rR(M)=Γ)rR(aiR). Also,
i = l

according to (b)(ii), for each i = l, •••, n, there exists βi^B(R) such that TrR{diR)
n

= ezR and rR(aiR) = (l — ei)R. The element Π ( l — et) belongs to rR(M), so that
ι = l

we have r*(Af)+ Σ <?,-/? = /?. It is easy to see that TrR(diR)< TrR(M) for all i

hence R=TrR(M)+rR(M). Moreover, since (TrR(M)Γ\ rR(M))2 = 0, the condi-
tion (b)(ii) implies that TrR(M)Γi rR(M) = 0. Therefore we obtain R= TrR(M)®
rR(M).

(c)=»(a). Let M be a cyclic faithful right i?-module. It then follows from (c)
(i) and Lemma 2.6 that M/Z(M) is also faithful, and then from (c)(ii) that R =
TrR(M/Z(M)). Thus M/Z(M), and hence M, is a generator for Mod-i?.
Therefore R is right GFC. Next, to prove that R is quasi-Baer, let / be an ideal
of R, and set J/I = Z((R/I)R), where J<RR. Noting that / becomes an ideal such
that (R/J)R is nonsingular, by (c)(ii) we have R=JΘK, where K= TrR((R/J)R).
Since R is right nonsingular, / is essential in /#, whence Lemma 2.7(2) shows that
rR(I) = rR(J) = K. Thus R is quasi-Baer, which completes the proof of the theo-
rem.

REMARK. AS can be seen above, the following implications on rings hold :
(Ci)<^>quasi-Baer and right GFC (i.e., 1-PF)

nonsingular and ?z-PF for each n>2.

Concerning rings satisfying the condition (Cn) for n>l, we may improve
Corollary 2.9 on nonsingular GFC rings as follows.

Proposition B. Let R be a ring satisfying the condition (Cn) for some
positive integer n. Then there exists a positive integer k, and R is a subdirect
product of prime ring Ri's, where each Ri is contained in a simple artinian ring
of length at most k such that every nonzero right ideal of Ri generated by at
most n elements is a generator for Mod-i?*.

In particular, if R is a right nonsingular right FPF ring, then each the ring
Ri above may be taken to satisfy the condition that every nonzero finitely
generated right ideal of Ri is a generator for Moά-Ru

Proof. Let Q denote the maximal right quotient ring of R. Since the
intersection of all minimal prime ideals of Q is zero, it suffices, as in the proof of
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Corollary 2.9, to show that for every minimal prime ideal P of Q, every nonzero
right ideal of the ring R/(R Π P) generated by at most n elements is a generator for

Mod-(R/(RΠP)). So, let ah •••, an^R such that a&P, and set A=Σfl«/?.
i = l

Then we must show that (A + (RΓ\P))/(RΠP) = A/(AnP) generates R/(RΓ\
P). By hypothesis, there exists e^B(R) ( = B(Q) by Lemma 3.1) such that rR{A)
= eR and TrR(A) = (l-e)R. Since (l-e)ai = ai$P, it follows that l - e $ P ;
hence e^P. Thus we have rR(A)<RΠP, whence A generates R/(RΓ\P), that
is, there exists an epimorphism φ '. A(m)^>R/(R (Ί P) for some positive integer m.
Now, observing by [6, Theorem 8.26 and Corollary 9.15] that P={ex\e^PΠ
B(R);x<EQ} and hence RΠP={er\e^PΠB(R) r<Ξi?}, we see that φ
induces an epimorphism from (A/(AΓ)P))im) onto R/(RΓ\P). Therefore, A/{A
ΓΊ P) generates /?/(/? Π P\ as desired.

The second assertion is now obvious.

Here we shall present the following examples to illustrate the conditions of
Theorem 3.3.

EXAMPLE 1. (1) There exists a ring R which satisfies the conditions (b)(i)
(ii) and (c)(i) of Theorem 3.3, but R is not quasi-Baer right GFC.

Choose a commutative domain Z), set Dn=D for all n = l, 2, •••, and set T =
00 00

Π Dn and i? = Z) l r + Θ Z ) w C T . Then, we see that R satisfies the conditions (b)
n=l n=l

(i) (ii) and (c)(i) of Theorem 3.3.
Set x = (xn)€Ξ T such that xn = 0 if n is odd xn = l if n is even. Then, it is

easy to see that xR can not be embedded in a free i?-module. Therefore R is not
a quasi-Baer right GFC ring.

(2) There exists a ring R which satisfies the conditions (b)(ii) (iii) and (c)(ii)
of Theorem 3.3, but R is not quasi-Baer right GFC.

Let R be a simple noetherian ring which is not artinian (e.g. the Weyl algebra
over a field of characteristic 0). Obviously, R satisfies the condition (b)(ii) of
Theorem 3.3, while by [8, Theorem 2.2.15] it does also the condition (b)(iii) and
(c)(ii) of Theorem 3.3.

But, R is not right essentially bounded, because R is a simple non-artinian
ring. Therefore R is not a quasi-Baer right GFC ring.

(3) There exists a ring R which satisfies the conditions (b)(i) (iii) of Theorem
3.3, but R is not quasi-Baer right GFC.

Let if be a right artinian ring such that Z(i?/?)<βi?/? (e.g. let p be a prime
number and k (^2), n positive integers, and let R be the ring of all lower
triangular nXn matrices over Z/pkZ, where Z is the ring of integers). Then R
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obviously satisfies the conditions (b)(i) (iii) of Theorem 3.3.
But, choosing 0*a<^Z(RR), we see that rR(aR)Π TrR(aR)^0. Therefore R

is not a quasi-Baer right GFC ring.

From now on, we shall be concerned with right p.p. right GFC rings.
We need the following lemma on right p.p ring.

Lemma 3.4 (c.f. [14, Proposition I, 6.9]). Let R be a right p.p. ring. Then
every cyclic submodule of a free right R-module is isomorphic to a direct sum of
principal right ideals of R in particular, it is projective.

n

Proof. Let M be a cyclic submodule of a free right i?-module F= φi?* , where
ι = l

each Ri = R. The proof is by induction on n.
The case n = l is clear. Now let n >1, and let p be the n-th projection F—>Rn.

Since R is right p.p., the epimorphism p '. M^>p(M) splits, so that M~p(M)Θ
n-l

(Ker p (Ί M). Noting that Ker p Π M is a cyclic submodule of Θ Ri, we see by the
ί=l

induction hypothesis that Ker pΠM, and hence M, is isomorphic to a direct sum
of principal right ideals of R.

We call an idempotent e in R a faithful idempotent if the i?-module eR is
faithful.

The following is a categorical result on right p.p. right GFC rings (c.f. [13,
Corollary IB]).

Proposition 3.5. Let R be a right p.p. right GFC ring, and let Q be the
maximal right quotient ring of R. Then there exists a faithful idempotent e in
R such that eQe is a self-injective abelian regular ring which is the maximal right
quotient ring of eRe.

In particular, R is Morita equivalent to a right nonsίngular ring whose the
maximal right quotient ring is a self-injective abelian regular ring.

Proof. By virtue of Theorem 2.8 and [ll, Theorem 9], there exists an
idempotent f in Q such that / is faithful and abelian, which means that the
Q-module fQ is faithful and the regular ring fQf is abelian. According to Lemma
2.5, there exists g^B(Q) for which rR(/R)<egR, and then gA<rR(/R) for some
A<eRR. Noting that R is right nonsingular and that fgA = 0, we have fg=0.
Since fQ is faithful, it follows that 0 = 0, that is, the /?-module fR is faithful. Now,
by Remark following Lemma 3.2, and Lemma 3.4, the faithful module fR =
R/((l—f)QΠR) is projective, whence there exists an idempotent e in R such that
(l-f)QΓ\R = (l-e)R, and then eR=fR is faithful. Moreover, we have eQe =
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eQ) = Endς>(fQ)=fQf, whence eQe is a self-injective abelian regular ring.
Thus, to show the first assertion, it suffices to prove that eRe is essential in
(eQe)eRe. To this end, given any nonzero element exe in eQe, where x^ Q, we take
an essential right ideal B of R such that 0^exeB<R. Since R is semiprime by
Lemma 2.1(2), it follows that (exeB)2, and hence exe(eRe)f)eRe, is nonzero.
Consequently, eRe is essential in (eQe)eRe as desired.

The assumption of R also implies that eR is a generator for Mod-R.
Therefore, 7? is Morita equivalent to the right nonsingular ring eRe whose the
maximal right quotient ring is a self-injective abelian regular ring, thereby complet-
ing the proof of the proposition.

Lemma 3.6. Let R be a right nonsingular right GFC ring, and let f be an
idempotent in R. Then R = (RfR)®rR(fR).

Proof. According to Lemma 2.3, the i?-module fR generates R/rR(fR),
n

whence there exist #i, •••, an, bι, •••, bn^R such that Σ α A = l and ai(l—f)€Ξ
i=\

n n

rR(fR) for z = l, •••, n. Thus we have l=Σfli(l—f)bi+^aifbi, which implies
that R = rR(fR) + RfR. Moreover, since R is a semiprime ring by Lemma 2.1(2),
it follows that rR(fR)ORfR = 0.

Concerning right p.p. (and quasi-Baer) rings, we obtain the following results.

Theorem 3.7. For a right p.p. ring R, the following conditions are equiva-
lent :

(a) R is a right GFC ring.
(b) (i) R is right essentially bounded,

(ii) For every idempotent f in R, the ideal RfR is generated by a
central idempotent in R,

(iii) Every cyclic faithful nonsingular right R-module has a direct
summand which is faithful and projective.

Proof. (a)=>(b). The conditions (b)(i) (ii) follow from Lemma 2.7(1) and
Lemma 3.6.

For (b)(iii), let C be a cyclic faithful nonsingular right i?-module. Then, C
=fRR for some idempotent / in the maximal right quotient ring Q of R. As in

the proof of Lemma 3.2, the idempotent / can be expressed as f=1£lfj, where /i,

••*, fk are orthogonal abelian idempotents in Q. Since /Q<? is faithful, i.e., / is a
faithful idempotent in Q, we may take /i to be a faithful idempotent in Q, so that
by the first half of the proof of Proposition 3.5, the i?-module f\RR is faithful and
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projective. Thus we have a split epimorphism C = (/i~\ f-/*)/?—>/ii?, which
implies (b)(iii).

(b)=>(a). To prove that R is right GFC, it suffices by (b)(i) (iii) and Lemma
2.6 to show that every cyclic faithful projective right i?-module M is a generator
for Mod-i?. Since M is cyclic projective, M=fR for some idempotent / in R. By
(b)(ii), there exists e^B(R) such that RfR = eR, and then l-e<ΞrR(fR) = rR(M)
= 0. Thus we obtain TrR(M) = RfR = R, as desired.

Theorem 3.8. For a ring R, the following conditions are equivalent:
(a) R is a quasi-Baer right p.p. right GFC ring.
(b) (i) R is right nonsingular and right essentially bounded,

(ii) For every idempotent f in R, the ideal RfR is generated by a
central idempotent in R,

(iii) Every cyclic nonsingular right R-module is projective.

Proof. (a)=>(b). This follows immediately from Lemma 3.1, Lemma 3.2,
Lemma 3.4 and Theorem 3.7.

(b)=^(a). It follows from (b)(i) (iii) that R is a quasi-Baer right p.p. ring, while
Theorem 3.7 implies that R is right GFC.

Let S be a ring, and let n be a positive integer. We denote by Mn(S) the ring
of all n X n matrices over 5, and by βa (l^i, j^n) the matrix units in Mn(S), i.e.,
βij has a Is in the (i, j) position as its only nonzero entry.

We shall illustrate the conditions of Theorem 3.7 by the following examples,
in which all rings considered are regular rings.

EXAMPLE 2. (1) There exists a regular ring R which satisfies the conditions (b)
(i) (ii) of Theorem 3.7, but R is not right GFC.

Choose an abelian regular ring S which is not self-injective (e.g., let S=DΊ
CO

+ 0 Dn be as in Example 1(1), where each Dn

=D is a division ring). Let n be an

integer >2, and set R = Mn(S) and Q = Mn(Q(S)\ where Q(S) is the maximal
quotient ring of 5. It then follows from [6, Lemma 6.20] that R satisfies the
condition (b)(i) of Theorem 3.7, while it is easy to see that R satisfies the condition
(b)(ii) of Theorem 3.7.

But, there exists a cyclic faithful nonsingular right i?-module which has no
faithful and projective direct summands. Indeed, choose x^Q(S) — S and set e =

fS+xS •••

n, and C = eRR = \ ). Then we see that e is a faithful

0 - 0
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abelian idempotent in Q, and CR is a cyclic faithful nonsingular i?-module. Now,
suppose that C* = Ciθ C2, where Ci is faithful and projective. Then, eQQ=E(C\)
ΘE(C2), where E(&) is the i?-injective hull of d. Since £(Ci) is a faithful
principal right ideal of Q, and hence, a generator for Mod-Q, and since by [6,
Theorem 3.4], Homβ(£(Ci), £(C 2 ))=0, it follows that £(C 2 )=0, so that CR = &
is projective. Consequently, the S-module S + xS is projective, whence x^S, a
contradiction. Thus, CR must have no faithful and projective direct summands.
Therefore R is not a right GFC ring.

(2) There exists a regular ring R which satisfies the conditions (b)(ii) (iii) of
Theorem 3.7, but R is not right GFC.

Choose an infinite dimensional vector space V over a field F, and set 5 =
EndF(F) and K={x^S\dimF(xV)<dimF(V)}. Let R be the maximal right
quotient ring of S/K (See [6, Example 10.ll]). Since R is a simple right
self-injective regular ring, it obviously satisfies the conditions (b)(ii) (iii) of
Theorem 3.7.

But, R is a simple non-artinian ring, whence it is not right essentially bounded.
Therefore R is not a right GFC ring.

(3) There exists a regular ring R which satisfies the conditions (b)(i) (iii) of
Theorem 3.7, but R is not right GFC.

For each w = l, 2, •••, choose a regular ring Rn having bounded index in such
that the supremum of all zVs is infinite (e.g. as a simple such Rn, we may take a

00

simple artinian ring of length n), and set R= Π Rn. First we shall show that R

does not satisfy the condition (b)(ii) of Theorem 3.7. By [6, Theorem 7.2], for each
n, there exist nonzero orthogonal idempotents Λ,i, Λ,2, ••*, fn,in in Rn such that
fn,iRn=fnjRn for all /^{1, 2, •••, in). Now, set /=(/i fi, Λi, '")^R9 and claim
that the ideal RfR can not be generated by any central idempotents in R. Suppose,
to the contrary, that RfR = gR for some g^B(R). Obviously, g=(gi, #2, •••)»

in

where gn^B{Rn) for all w. For each «, we have ®fnjRn^TrRn(fn,\Rn) =
in

Rnfn,\Rn=gnRn', hence {®fnjRn) ®Xn = gnRn for some i?«-submodule Xi of
i=i

n̂./?n. On the other hand, since g^R/R, there exists a positive integer 5, and for

each n there exist #n,i, ^,2, •••, xn,s9 yn,i, yn,2, •", yn,s^Rn such that #/z =
s

k = l
n,iyn,k. By the assumption of /?«-, an integer m can be taken to satisfy im

s

5 + 1. Defining a map p I (fm,\Rm){s)^Rm by (/m,i^)I=i •-* Σ Xmtkfm,iZk for

i?m, and noting that gmRm^Im φ, we obtain (fm,iRmYs) = gmRm® Y for some right
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^-module Y. Thus, it follows that
J — 1

gmRm® Y®(fm,ιRm){im~s)®Xm. But, this contradicts the fact that every finitely
generated projective i?m-module is directly finite (see [6, Corollary 7.11 and
Proposition 5.2]). Therefore 7? does not satisfy the condition (b)(ii) of Theorem
3.7.

00

Now, assume, in addition, that each Rn is self-injective. Since R=ΐlRn is
n = \

self-injective, it obviously satisfies the condition (b)(iii) of Theorem 3.7. Further-
more, it is easy to see that any direct product of right essentially bounded rings is
also right essentially bounded, whence [6, Lemma 6.20 and Corollary 7.10] implies
that R satisfies the condition (b)(i) of Theorem 3.7.

4. Regular GFC rings

In this section we shall characterize regular right GFC rings and determine the
structure of those rings.

We use the following easy fact on matrix rings.

Lemma 4.1. Let S be a ring, and let n>2 be an integer, and set T = Mn(S).
For each a^S and for i, /^{1, ••-, n) with i^j, set a{iJ) = eu + aeίj^T. Then

(1) Both a(iJ) and \-a{ίJ) are faithful idempotents in T.
(2) The ring T is generated by all the idempotents au'j) (a^S l<z, /<

n with i^j) as a ring.

T/aίiJ)T^

I

\

I 0

Proof. (1). Since
0 •••

5 -
0 •••

0

s
0

\
5

S

5

\

J

0\
-z-th and (l-a{iJ))T =

-z'-th, it follows that both the idempotents a{ι'j) and

l-a{iJ) are faithful.

(2). It suffices to show that for any x^S and for z, ; ^ { 1 , •••, «}, the element

xβij is expressed as a product of such the elements a{ι'J\ If i^=j, then xβij =
xiiJ)OUti). On the other hand, in case / = ; , choose k^i so that we obtain xeu =
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χa.h).Q(k,i)mlik,i).QU,k)9 t h e r e b y completing the proof of the lemma.

Lemma 4.2. Let R be a semiprime ring, and let Q be the maximal right
quotient ring of R. Then the following conditions are equivalent:

(a) (i) R contains all the faithful idempotents in Q,
(ii) R has bounded index.

(b) (i) For right ideals A and A2 of R such that both R/Ai and R/Λ2

are faithful and nonsingular and A1ΠA2 — O, the sum Ai®A2 is a direct
summand of RR,

(ii) R has bounded index.
(c) R is isomorphic to a finite direct product of a ring whose the maximal

right quotient ring is a selfinjective abelίan regular ring, and full matrix rings
over selfinjective abelian regular rings.

Proof. Note from [7, Proposition 4] that any semiprime ring having bounded
index is right (and left) nonsingular, and hence its maximal right quotient ring is
a right self-injective regular ring.

(a)=>(b). Let A , A2 be right ideals of R such that both R/Ai and R/A2 are
faithful and nonsingular and AiΓ)A2 = 0. Taking idempotents βi, e2^Q to satisfy
Ai<eeiQ for i = l, 2, we have eιQΓ\e2Q = 0. Since Q is a regular ring, we may
assume that ei, e2 are orthogonal. Also, Ai = eιQf)R, because R/Ai is nonsin-
gular. Thus R/Aί = {\ — βi)RR is faithful, whence so is (1 — eϊ)QQ. The condition
(a)(i) now implies that each eι belongs to 7?, from which we obtain Ai = eiR for
z = l, 2. Therefore A θ A2 = (βι + e2)R is a direct summand of R.

(b)=$(c). By (b)(ii), R has index n>\. First we claim that Q has index at
most n. Suppose not. Then, according to [6, Theorem 7.2], Q contains a direct
sum of n + 1 nonzero pairwise isomorphic right ideals hence there exist nonzero
orthogonal idempotents ei, e2, ••*, en+i in Q such that eiQ = ejQ for all i, /,
because Q is a regular ring. Observe that for each i = l, "m, n, both (1 — (eι~\—
+ £*))©<? and (1 — ei+i)Q(t are faithful. It then follows, as in the first half of the

proof of Proposition 3.5, that for each i, both (1 —(eH he, ))i?* = i?/((ei +
+ ei)QΠR) and (l-ei+ι)RR = R/(ei+iQf]R) are faithful. Noting that if (
R)e ~®(etQΓ\R) is a direct summand of RR, then (eiQΓ\R)® — ®(
(ei~\ \-ei)QΓ\R, and using (b)(i) n times in succession, we conclude that (β\Q
C]R)®(e2Qf)R)@'~®(en+iQnR) is a direct summand of RR, SO that there exist
orthogonal idempotents eί, •••, e'n+i in R such that eiQΠR = eiR for all i. Since
eiQ = e'iQ, we may take each d to be in R. For each i = l, •**, n, let ψi I
eiQ-^>ei+\Q be an isomorphism. Then, as in the proof of [6, Corollary 7.4], it is
easy to see by the essentiality of dR in CΪQR that there exists a nonzero submodule
A\ of β\RR such that φiφi-i~mφi(Ai) is a nonzero submodule of ei+\RR for all i.
F o r each i = 2, 3, •••, n + 1, set Ai=φt-iφi-2"mφi(Ai). Then, A\A2 ••• An+\ must

be zero. Indeed, for each i = l, *•*, n, let at be an arbitrary element of At, and as
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in the proof of (a)=>(c) in [6, Theorem 7.2], set a = #i£2 + aiβzΛ V anen+\. Then,

each <2i belongs to βiR, so that an = aia2"'anen+i and then an+1=z0 hence an =

0, because R has index n. This shows that AiAr Άn+i^AiAr Anen+iR^Q.

Thus there exists k^{2, 3, •••, n + ϊ} such that Ak-iAk~-An+i = 0 and

AkAk+i-Άn+i^O. But, AkAkAk+i'~An+i = <Pk-i(Ak-i)AkAk+i'~An+i =

φk-i(Ak-iAk"Άn+i) = O, whence (AkAk+i~'An+i)2 = 0. Since R is a semiprime

ring, it follows that AkAk+i"Άn+i = 0, which is a contradiction. Therefore Q has

index at most n, as claimed.

According to [6, Theorem 7.20], Q=U MΛ(h)(Dh), where »(1)-1 and «(A)Φ
/z = l

1 for h = 2, 3, ••*, m, and where Λ , A , •**, Dm are self-injective abelian regular

rings. If Q is abelian, i.e., Q=Di, then (c) obviously holds. Thus assume that Q

is not abelian. Let /i, Λ, •**, Λι denote the complete set of orthogonal central

idempotents in Q such that fiQ = Di and fhQ = Mn{h)(Dh) for /z = 2, 3, •••, m. Then,

to obtain (c), it suffices to prove that fhQ<R for A = 2, 3, •••, w. Let /z<Ξ{2, 3, ,

m) be fixed. In view of Lemma 4.1(2), it furthermore suffices to prove that a{ι'j)^

R for all a^Dh and for all z, /e{l, 2, •••, w(A)} with / Φ ; , where aiiJ) = en + aeij

^Mn(h)(Dh), and where eiό (1</, j<n(h)) are the (z, ) matrix units in Mn(h)(Dh).

To this end, set gi = a{iJ) and 02=/* —0i, and set gi=l — g2 and 02* = 1 —0i. Since

by Lemma 4.1(1) both <7i and #2 are faithful idempotents in the ring ΛQ, it follows

that both g?QQ and ̂ 2*Qo are faithful, whence gΐRR = R/(gjQΓιR) is faithful for

/ # / . Thus, the condition (b)(i) implies that (5 r iQni?)θ(^ 2 Qni?) is a direct

summand of RR. Consequently, there exist orthogonal idempotents gί, gί in R such

that giQί)R=giR for ί = l , 2, from which we have gi=gίgi = gί(gi + g2)=gίfh=gί.

Therefore we conclude that a(ι'j) = gi = gί^R, as desired.

(c)=>(a). If i? = i?iXi?2, where the maximal right quotient ring of Rι is a

self-injective abelian regular ring, and where R2 is a finite direct product of full

matrix rings over self-injective abelian regular rings, then i?i has bounded index at

most 1 and R2 also has bounded index by [6, Theorem 7.12] hence R itself has

bounded index. On the other hand, since both the rings Ri and R2 obviously

satisfy the condition (a)(i), so does the ring R, which completes the proof of the

lemma.

Let 7? be a regular ring having bounded index with Q the maximal right

quotient ring. Then by [6, Corollary 7.4 and Theorem 7.20 ], Q=U Mn(h)(Dh)
h = \

m

— Π fhQ, as in the proof of (b)=>(c) in Lemma 4.2. For each h, let e^ denote the

(z, j) matrix unit in Mn(h){Dh). Now, let g be an arbitrary faithful abelian

idempotent in MnwiDh). Then it is easy to see that (/H t-/*-i+ί7+/*+iH—

+fm)Rκ can be embedded in ®{(e\\)

h + - + et\\
ij<n{j) for/e{l, - , h-1, k + 1, -, m}}, and each e\]\
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H \~e\mL is a faithful abelian idempotent in Q. On the other hand, we see, by
observing the proof of (b)=>(c) i n Lemma 4.2, that if all such the i?-modules {e\\\x

+ - + e^Li + 9 + e&&ι + ' + e{£ln)RR, and hence (/i + - + Λ - i + 0+Λ+i + -
+fm)Rn9 are projective, then the i?-modules g*Rϋ = R/(gjQ Π R) (in the proof) are
projective, that is, (giQΓϊ R)θ(giQΠR) is a direct summand of i?*, whence /? has
the same structure as in (c) of Lemma 4.2.

Thus we remark the following for the proof of the next theorem.

REMARK. For a regular ring R with Q the maximal right quotient ring, the
equivalent conditions (a),(b),(c) of Lemma 4.2 are also equivalent to the following
condition :

(b' ) (i) For every faithful abelian idempotent f in Q, the R-module /RR is
projective,

(ii) R has bounded index.

At this point, applying the previous results to regular rings, we obtain the
following theorem, in which the equivalence (a)^>(d), under the assumption that
every nonzero ideal of R contains a nonzero central idempotent, is given in S.
Kobayashi [10, Theorem l] .

Theorem 4.3. Let R be a regular ring, and let Q be the maximal right
quotient ring of R. Then the following conditions are equivalent:

(a) R is a right GFC ring.
(b) (i) R contains all the faithful idempotents in Q,

(ii) R has bounded index.
(c) (i) Every cyclic faithful nonsingular right R-module is projective,

(ii) R has bounded index.
(d) R is isomorphic to a finite direct product of an abelian regular ring and

full matrix rings over self-injective abelian regular rings.

Proof. (a)=>(b). It follows from Theorem 2.8 and [l 1, Theorem 9] that Q, and
hence R, has bounded index, while the first half of the proof of Proposition 3.5
shows that for every faithful abelian idempotent / in Q, the i?-module fR is
projective. Thus, the implication (a)=>(b) is obtained by the remark above.

(b)<=>(c)<=>(d). This follows immediately from Lemma 4.2 and [6, Theorem
3.8].

(d)=>(a). Since every one-sided ideal of abelian regular rings is two-sided,
those rings are obviously right GFC. Also, according to [ll, Theorem 9] and [6,
Theorem 7.12], full matrix rings over self-injective abelian regular rings are FPF
rings. Thus it follows that (d) implies (a).

Using [ll, Corollary 9.2], we obtain the following corollary.
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Corollary 4.4. A regular ring R is right GFC if and only if R is left GFC.

The following corollaries are immediate.

Corollary 4.5. Let R be a regular ring which contains no nonzero abelian
central idempotents. Then, R is right GFC if and only if R is right FPF.

Corollary 4.6. Let R be an indecomposable regular ring. If R is right GFC,
then it is a simple artinian ring.

REMARK. Since the matrix ring Mn(R) (n>2) over any ring R contains no
nonzero abelian central idempotents, it follows immediately from Corollary 4.5
that a regular ring R is right FPF if and only if the matrix ring Mn(R) is right GFC
for some n>2. This fact is also noted in [10].
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