
Oshiro, K. and Wisbauer, R.
Osaka J. Math.
32 (1995), 513-519

MODULES WITH EVERY SUBGENERATED
MODULE LIFTING

KIYOICHI OSHIRO and ROBERT WISBAUER

(Received August 2, 1993)

It was shown in Dung-Smith [2] that, for a module M, every module in σ[M]
is extending (CS module) if and only if every module in σ[M] is a direct sum of
indecomposable modules of length 2 or, equivalently, every module in σ[M] is a
direct sum of M-injective module and a semisimple module. Here we charcterize
these modules by the fact that every module in σ[M] is lifting or, equivalently,
decompose as a direct sum of a semisimple module and a projective module in
σ[M]. They are also determined by the functor ring of σ[M] being a QF-2 ring
with Jacobson radical square zero.

As a corollary we obtain a result of Vanaja-Purav [8]: All (left) ^-modules
are lifting if and only if R is a generalizad uniserial ring with Jacobson radical
aquare zero.

1. Preliminaries

Let R denote an associative ring with unit, jR-Mod the category of unital left
^-modules, and M a left Λ-module. We call M locally artinian, noetherian, of
finite length every finitely generated submodule of M has the corresponding
property. The natation K«M means that K is a small (superfluous) submodule
of M.

By σ[M] we denote the full subcategory of /?-Mod whose objects are
submodules of M-generated modules.

For any ^-module N, E(N) will denote the injective hull of N in R-Mod. For

Ne σ[M], N is the injective hull of N in σ[M]. N is also called the M-injective hull

of N and is isomorphic to the trace of M in E(N).
is injective in σ[M] if and only if N is M-injective hull.

Proposition 1.1 (Functor ring). Denote by {ί/λ}Λ a representing set of all finitely

generated modules in σ[M] and t/=®ΛC/λ.
T:=End(UR) = {fεEndR(U)\(Uλ)f=Q almost every where} is called the funtor

ring of σ[M]. T has no unit but has enough idempotents. The following hold:
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(1) T is left perfect if and only if every module in σ[M] is a direct sum of

finitely generated modules. In this case M is called pure semisimple ([10], 53.4]).

(2) Assume M is locally of finite length. Then T is semiperfect ([10], 51.7).

(3) Assume for every primitive idempotent ee Γ, Te is finitely cogenerated. Then
M is locally artinian ([10], 52.1).

A ring T with enough idempotents is called semiperfect if every simple
Γ-modules has projective covers (see [10], 49.10). T is said to be a left (right)

QF-2 ring if it is a semiperfect and, for every primitive idempotent eeT9 Te (resp.
eT) has a simple essential socle (e.g., [3], section 4).

Theorem 1.2. For an R-module M with functor ring T the following are

equivalent:

(a) For some keN, every module in σ[M] is a direct sum of uniserial modules
of length <k\

(b) T is a left and right QF-2 ring and Jac(T) is nilpotent.

Proof. Consider a representing set {t/λ}Λ of all finitely generated modules in

σ[M], U=®fJJλ and T=EndR(U).
(a)=>(b) By condition (a), U is a direst sum of indecomosable modules of

bounded length. Hence, by the Haraba-Sai Lemma (e.g., [10], 54.1), Γis semiperfect
and Jac(T) is nilpotent.

Since M is locally of finite length, we know from [10], 53.5 that Uτ is

Γ-injective. Now we can use the conclusions (a) => (b) => (c) of [10], 55.15 to derive

that T is left and right QF-2.
(b)=>(a) Assume T is a left and right QF-2 ring and Jac(T)n = Q, for some

neN. Then M is pure semisimple and locally artinian (see 1.1) and hence locally

of finite length. With the proof of (c) => (a) in [10], 55.15 we see that indecomposable

modules in σ[M] are uniserial.
It remain to show that for every uniserial module Λ^eσ[M], length

N<n. Assume N has composition series

From this we obtain a sequence of n morphisms in Jac(T\

whose product is not zero, contradicting Jac(T)n = Q.

2. Lifting modules

An ^-module M is called extending of CS module if every submodule is
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essential in a direct summand of M.
M is said to be lifting if every submodule K a M lies above a direct summand,

i.e., there is a direct summand X a M with X c K and K/X«M/X. For
characterizations of this condition refer to [10], 41.11 and 41.12.

A familly {Nλ}A of independent submodules of M is said to be a local direct
smmand of M if finite (direct) sum of Nλ's is a direct summand in M, and we say
it is a direct summand if ®ANλ is a direct summand in M (see [4], Definition 2.15).

A module is called continuous if it is extending and direct injective. In
particular, self-injective modules are continuous.

Recall two results about these modules :

Lemma 2.1. Let M be an R-module.
(1) Assume every local direct summand of M is a direct summand. Then M

is a direct sum of indecomposable submodules.
(2) Assume M is lifting and continuous. Then every local direct summand

of M is a direct summand.

Proof. (1) See [5], Lemma 2.4 or [4], Theorem 2.17.
(2) This is shown in [5], Lemma 2.5.

A ring R is called a left //-ring if every injecitve module is R-Mod is
lifting. Some of the characterizations of //-rings (see [5], Theorem 1) can be
extended to modules. For this we need the

DEFINITION. A module Ke σ[M] is said to be small in σ[M] if it is small
submodule in its M-injective hull, i.e., K«K.

Theorem 2.2. For any R-module M, the following are equivalent:
(a) Every injective module in σ[M] is lifting :
(b) M is locally noetherian and every non-small module in σ[M] contains an

M-injective submodule;
(c) Every module in σ[M] is a direct sum of an M-injective module and a

small module.

Proof. (a)=>(b) By 2.1, every injective module in σ[M] is a direct sum of
indecomposable submodules. This implies that M is locally noetherian (see [10],

27.5).
Assume N is not small in its M-injective hull N. Since N is lifting there is

a direct summand X a N with X c: N and N/ X«N/ X. By assumption, X is not

zero.
(b)=>(a) Referring to [10], 27.3, apply the proof of Proposition 2.7 in [5].

(a) => (c) Consider We σ[M] with M-injective hull N. Since N is lifting, by [10],
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41.11, a direct summand X c= N is contained in TV and N= X+ Y with Y«N. This
implies that Y is small in σ[M].

(c)=>(a) With respect to [10], 41.11, this is obvious.

It was pointed out in Osofsky [6], Lemma B (also in the proof (1)=>(3) of
Vanaja-Purav, Proposition 2.13) that, for a uniserial module M with composition
series 0 + V c U c M, M© U/ V is not an extending module. For the same
situation we observe:

Lemma 2.3. Assume M is a uniserial module with composition series 0 φ V c: U c M.
77z£« //ze module M® U/ V is not lifting.

Proof. Assume MφU/V is lifting. Then, by Theorem 1 in [1], U/V is
M-projective. However, the diagram

U/V

I
M-+M/V-+Q

can not be extended commutatively by any h: U/ V -> M, since the image of such a
morphisem always is contained in V.

The main purpose of this note is to prove:

Theorem 2.4. For any R-module M the following are equivalent
(a) Every module in σ[M] is lifting',
(b) every module in σ[M] is direct sum of a semisimple module and a projective

module in σ[M];
(c) every module in σ[M] is direct sum of modules of lenth < 2
(d) T is left and right OF-2 ring and Jac(T)2 = Q.

If this conditions hold, there is a projective generator in σ[M] and all indecomposable
modules of length < 2 are M-projective.

Proof, (a) => (d) Assume every module in σ[M] is lifting. Then by Theorem
2.2, M is locally noetherian. It is easy to see that finitely generated uniform lifting
module are local modules, i.e., their factor modules are indecomposable.

Consider an indecomposable injective module <2eσ[M]. Then for any finitely
generated submodule K c ζ), K/ Rad(K) is simple and hence β is uniserial (see
[10], 55.1). In particular, every uniform module in σ[M] is uniserial of lenght<2
(by Lemma 2.3). So the M-injective hull M of M is a direct sum of modules of
length < 2 and hence M (and M) is locally of finite length. This implies that every
finitely generated module in σ[M] is a direct sum of indecomposable module (of
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length < 2).
Denote by {Uλ}A a representing set of all finitely generated modules in σ[M] and

C/=ΘΛ(7A. By the Harada-Sai Lemma, the functor ring T:=EndR(U) has the
properties that T/Jac(T) is semisimple and Jac(T) is nilpotent.

In particular, M is pure-semisimple, i.e., every module in σ[M] is a direct sum
of finitely generated modules and these are direct sums of uniserial submodules
of length < 2. Now the assertion follows from Theorem 1.2.

Since Γis ritht perfect, there exists a projective generator in σ[M] by [10], 51.13.
Consider an indecomposable module N of length 2. This is a factor module

of a supplemented projective module in σ[M] and hence has a projective cover P
(see [10], 42.1), which again is indecomposable and hence of length < 2. This implies
P=N, i.e., N is M-projective.

(c)=>(d) This is clear by Theorem 1.2.
(c)=>(a) Consider any module N=®ΛNa in σ[M], with NΛ uniserial of

length < 2. By Theorem 1 in [1], TV is lifting if and only if {Λ^α}Λ is locally
semi-Γ-nilpotent and NΛ is almost Nβ projective for any α^/? in Λ.

The first condition is satisfied by the Harada-Sai Lemma (see [10], 54.1]. Any
NΛ of length 2 is projective in σ[M] (as noted above) and hence is almost jK-projective
for any K c: σ[M].

Assume Na has length 1 and consider any diagram with exact line

N«

lf

Nβ-^ L -><),

with length Nβ < 2. If/7 is not an isomorphism and/^0, there exists an epimorphism
g: Nβ -»NΛ with p—gf. From this we see that NΛ is almost ^-projective and N
is lifting.

(c)=>(b) It is clear from the above that modules of length 2 are
M-projective. Recall that finitely generated M-projecitve modules are projective
in σ[M]. From this the assertion is obvious.

(b)=>(c) Consider a finitely generated 7Veσ[M]. Then any factor module of
TV is a direct sum of a projective module and a noetherian module and hence N
is noetherian by [7], section 3. This imlies that M is locally noetherian.

Now let 7£eσ[M] be any indecomposable M-injective module. Assume K is
not semisimple. Then it is projective in σ[M]. Since EndR(K) is local. K is a
local module, i.e., every factor module is indecomposable (see [10], 19.7) and hence
simple. From this we deduce that k has length < 2.

Since every M-injective module in σ[M] is a direct sum of indecomsables, the
assertions follows.
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From Theorem 2.4 together with Theorem 11 in Dung-Smith [2] we obtain
a characterization of rings with all modules lifting which extends Proposition 2.13
in Vanaja-Purvav [8] :

Corollary 2.5. For any ring R the following are equivalent:
(a) Every left R-module is lifting;
(b) Every left R-module is extending',
(c) Every left R-module is a direct sum of a semisimple module and a projective

module',
(d) Every left R-module is a direct sum of modules of length < 2;
(e) R is a generalized uniserial ring with Jac(J)2 = 0

It follows from (e) that the conditions (a)-(d) are left right symmetric.
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