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Introduction

The unique prime decomposition theorem of knots and links proved
by Schubert [26] and Hashizume [11] reduces the classification problem
of links to that of prime links, and it is also useful for the study of
symmetries of composite links (see [21, 22]). In [2], Bonahon and
Siebenmann studied decompositions of links by Conway spheres, i.e.,
spheres meeting links in four points, and established the characteristic
splitting theorem of the simple links into the algebraic parts and the
non-algebraic parts. They also carried out minute study of the algebraic
parts, which leads to the determination of the symmetry groups of the
algebraic links, or the arborescent links, except those of the Montensions
links with three branches. (For the symmetry groups of the Montesions
links with 3 branches, see [1] and [23].)

The concept of Murasugi sum (see [19]) generalizes the concept of
connected sum, and in certain cases, Conway spheres come from Murasugi
sums. So it seems to be natural to raise the following problem (see [20,
Section 7]):

Problem 0.1. Is there a certain kind of uniqueness in the decomposition
of links into Murasugi sums}

Since Murasugi sum is a concept defined not for links themselves
but for Seifert surfaces for links, we need to treat the following two
problems when we consider the above problem:

(1) Classify the minimal genus (or incompressible) Seifert surfaces
for links.

(2) Classify the Murasugi sum structures of Seifert surfaces.
One purpose of this paper is to study these probmes for special

arborescent links, that is, links obtained from unknotted nontrivually
twisted annuli by sucessive plumbing (see Section 2). In fact, we classify
the minimal genus Seifert surfaces for these links (Theorem 2.3); and
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for a certain subclass of these links, which we call the very special
arborescent links, we classify their decompositions into "4-Murasugi sums"
(Theorem 2.4). Since every 2-bridge knot is a special arborescent link,
Theorem 2.3 may be considered as a genrealization of a part of the results
of Hatcher and Thurston [12]. By making use of these results, we
classify the very special arborescent links (Theorem 2.6), and determine
the symmetry groups of these links (Theorem 2.7). This recovers a part
of the results of Bonahon and Siebenmann [2]. Though the links we
consider in this paper constitute only a special subclass of the links
considered by [2], our approach has the advantege that it gives a unified
calculation of the symmetry groups of links including certain Montesions
links with 3 branches and certain 2-bridge links without invoking the
results of Schubert [27].

The other purpose of this paper is concerned with a conjecture raised
by Kakimizu [13]. In [13, 14], he introduced a certain simplicial complex
MS(L) [resp. IS(L)] whose vertex set is the set of the equivalence classes
of the minimal genus [resp. incompressible] Seifert surfaces for L. A
result of Scharlemann and Thompson [24, Proposition 5] says that MS(L)
is connected, and it is proved by Kakimizu [14, Theorem A] that IS(L)
is also connected. Further, he proposed the following conjecture [13]:

Conjecture 0.2. MS(L) and IS(L) are contractible.

In [15], he verified this conjecture for prime knots up to 10 crossings
by developing the methods initiated by Gabai [5, 6, 7, 8, 9] and Kobayashi
[16]. In this paper we prove this conjecture for MS(L) with L a special
arborescent links, by showing that it is homeomorphic to a finite
dimensional ball (Theorem 3.3 and Proposition 3.11). Theorem 3.3 is
also used when we calculate the symmetry groups of the very special
arborescent links.

This paper is organized as follows. In Section 1, we recall the
definition of the Murasugi sum, and introduce the concept of a composition
of Murasugi sums. In Section 2, we give the definitiion of the special
arborescent links, and state our results concerning the classification of
the minimal genus Seifert surfaces and the calculation of the symmetry
groups. In Section 3, we recall the definition of the complex MS(L),
and state the precise structure of MS(L) for a special arborescent link
L. In Section 4, we provide fundamental tools for our purpose; we
recall the concept of a sutured manifold, and state its relations with the
Murasugi sum. The remaining Sections 5, 6, 7, and 8 are devoted to
the proof of the results.
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TERMINOLOGY AND NOTATION

S3 denotes the 3-sphere with a fixed orientation. For a link L in
S3, E(L) = cl(S3 — N(L)) is the exterior of L, where N(L) is a fixed regular
neighbourhood of L in *S3. A Seifert surface for an oriented link L in
S3 is an oriented suface F in *S3 wihout closed components such that
dF=L as oriented links. We always assume that F intersects each
component of N(L) in an annulus and that FnE(L) is properly embedded
in E{L). We refer to FnE(L) by denoting the same symbol F. Two
Seifert surfaces for L are said to be equivalent, if they are pairwise isotopic
in (S3

yL); i.e., they are isotopic by an isotopy of S3 which respects
L. This is equivalent to the condition that they are isotopic as surfaces
in E(L). A Seifert surface F is incompressible [resp. of minimal genus],
if F is incompressible in E(L) [resp. the Euler number χ(F) is maximum
among all Seifert surfaces for L].

A link L is semi-oriented if an orientation of L is specified modulo
simultaneous reversal of the orientations of the components of L. When
we mention to Seifert surfaces of a semi-oriented link L, we fix an
orientation of L which represents the semi-orientation of L.

|jf|, where / is a simplicial complex, denotes the underlying
topological space for JΓ.

I-XI, where X is a topological space, denotes the number of the
connected components.

N(Y X) or N(Y) in brief, where Y is a subspace of X> denotes a
regular neighbourhood of Y in X.

A closed up component of X— Y means the closure in X of a connected
component of X— Y.

T denotes a finite plane tree; i.e., a finite tree embedded in the plane R2.
V(T) denotes the set of the vertices of T.
E(T) denotes the set of the edges of T.
E(vyT)y where v is a vertex of T, denotes the set of the edges of T

incident to v.
w denotes a function from V(T) to Z— {0}, where Z is the ring of

the integers.
p denotes an orientation of T, i.e., an assignment of an orientation

of each edge of T.
(T p), where T is a subgraph of T, denotes the oriented graph

whose underlying graph is T and whose orientation is given by the
restriction of p to T". Similarly, (T\w;p) denotes the oriented and
weighted graph whose weight is given by the restriction of w to V(T').

Θ(T) denotes the set of the orientations of T.
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1. Murasugi sum

Let F be a Seifert surface of an oriented link L in *S3. Suppose
there is a decomposition of *S3 into two 3-balls; *S3=i?3uJ9|, B\ nBl=S2,
such that D = 5 2 n F i s a 2n-gon (see Figure 1.1). Put F—BfnF, and
give Ft the orientation induced from that of F for ί = 1,2. Then F is
said to be a 2n-Murasugi sum of the Seifert surfaces Ft and F 2 along D
(cf. [19]), and we call *S2 a In-Murasugi sphere for F. We also say that
F has a 2n-Murasugi decomposition into .Fj and F2. If n = ί, then this
decomposition gives a decomposition of the link L = δ-F into the connected
sum of the links dFγ and 5F2. In case w = 2, this operation is called a
plumbing, and each 4-Murasugi sphere forms a Conway sphere for L. Two
Murasugi spheres S\ and *S2 for F are said to be equivalent, if there is
an isotopy of *S3 respecting F which carries S\ to S\.

Figure 1.1

We say that a 2w-Murasugi sphere is essential, if no closed up
component of Fi — D (z=l,2) is a disk which intersects D in an arc. If
a 2w-Murasugi sphere is not essential, it yields a 2(n— 1)-Murasugi sphere
as illustrated in Figure 1.2.

Figure 1.2
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Even if the pairs (F1 yD) and (F2 ,D) are specified, there are two kinds
of Murasugi sums of Fx and F2 along D according to the direction
of the normal vector v to D. [Here v is defined as follows: Let ei and
e2 be vectors on D such that the exterior product ei l\e2 is coherent with
the orientation of D. Then ei/\e2Λv is coherent with the orientation of
S3.] Suppose v points into B\\ then we express the Murasugi sum (or
the Murasugi decomposition) by the symbol F1 <\F2. Consider the surface
defined by F = cl(F-D)vD', where D' = cl(S2-D)y and give F the
orientation induced from that of cl(F—D){ a F). Then F is also a Seifert
surface for L = dF. Since (FiyD) is isotopic to ( r f ^ - ΰ J u ΰ ' . D ' ) in S 3

(ί = l,2), F can also be regarded as a Murasugi sum of F1 and F2 along

(a)

?ΰw^ u
( b )

Q
( c )

Figure 1.3
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D. However, the normal vector to Dr points into B\. Thus we denote
this Murasugi sum by the symbol F1t>F2. F* is called the dual surface of
F with respect to the Murasugi sum F1<]F2.

We now define the concept of a composition of Murasugi spheres. Let
Sl>'">3? be mutually disjoint Murasugi spheres for a Seifert surface
F. For each * (1 <f <r) , put D—SfnF, and orient Sf by the orientation
of Dt. Suppose the following condition holds: For each closed up
component P of *S3 — u[ = 1 5f, either all the normal vectors to the boundary
components of P point into P or otherwise point out of P. Suppose
further that we are given a graph γ in cl(F— ur

iz=1Dι) such that (u j = 1 £) £ )uy
is contractible. Then the oriented 2-sphere obtained from u = 1 £f by
piping along γ determines a new Murasugi sphere for F. We call it
the composition of the Murasugi spheres Sj,--,S? along γ. To be more
precise, let SP+ [resp. SP J\ be the union of the closed up components of
*S3 — κjr

i=1Sf where the normal vectors to the boundaries point into [resp.
out of] the components, and let F+ [resp. FJ\ be the subsurface of F
obtasined from F π ^ + [resp. F n ^ _ ] through boundary connected sum
along the graph yr\SP_ [resp. γnέ?+]. Then the above 2-sphere determines
a Murasugi decomposition J F + < ] F _ along a disk which is obtained from
Dly "yDr through boundary connected sum along γ (see Figure 1.3 (a)
and (b)). In some cases, the resulting Murasugi sphere is reducible (see
Figure 1.3 (b) and (c)).

2. Special arborescent links, and statement of results

Let T be a finite plane tree, and let w be a function from V{T) to
Z— {0}. For each VGV(T) we associate an unknotted annulus F{v) in
S3 with w(v) right-hand full twists, where a core orientation cv and a
normal orientation nv are specified as illustrated in Figure 2.1 (a). Let
el9-- ,ek be the elements of E(v,T), and suppose they lie around v in this
counter clockwise order (see Figure 2.1 (b)). Then we specify squares
D(ei,v),- ,D(ekfv) on the "flat" part of F{v) in this order as illustrated
in Figure 2.1 (a).
If vertices vx and v2 are joined by an edge e, then we plumb the bands
FivJ and F(υ2) by gluing the squares Die.v^ and D(e,v2) together using
the rule cΌ1<-*nV2 and nvι<-+cV2. The isotopy type of the resulting surface
depends on the way of plumbing; but, the semi-oriented link which is
obtained as the boundary of the surface is indendent of the way of
plumbing. We denote this semi-oriented link by the symbol L(Tyw)y

and call it the special arborescent link associated with the finite weighted
plane tree (Tyw).

If we fix a base vertex v» and orient F{v) by cvAnυ or —cvΛnv
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( a ) ( b )

Figure 2.1

(T,w;p)

F(T,w;p)
Figure 2.2

according as v is of even or of odd distance from v+, then the gluing
maps are orientation preserving, and therefore, the resulting surface can
be oriented so that it is coherent with these orientations. Further, the
way of the plumbing can be described by an orientation p of T by the
following rule: Let vx and v2, respectively, be the initial point and the
terminal point of an oriented edge (e\ p). Then plumb F(v{) and F(v2)
so that F(v2) lies above F(v{) with respect the normal vector. The
resulting surface is denoted by F(Tyw; p) (see Figure 2.2).
In order to have all the surface F(Tyw; p) for different p's bounding a
single link L(T,w), we fix a position for L(T,w)> and reposition F(Tyw; p)
by a "canonical" isotopy of >S3 which deforms dF(T,w; p) to L(Tyw). This
can be done as follows. Perform the plumbing on the bands successively
further and further away from the base vertex v+ eliminating the extra
crossings created while plumbing. Then we obtain a "canonical
projection" of L(T,w) as illustrated in Figure 2.3 (see [9, 1.9]). For each
veV(T), put A(v) = cl(F(v)- veeE(VfT)D(eyv)), and A(T)= KJVEV(T)A(V).
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A(T)

D(e p)

Figure 2.3

Then A{T) can be situated in *S3 independently of the choice of p as
illustrated in Figure 2.3. To construct the Seifert surface F(T,w; p),
we have only to specify the location of the square D(eyv1)=D(e,v2) for
each eeE(T). (Here vx and v2 denotes the end-points of e). This can
be done by plunging a sqaure to A(T)κjL(Tyw) from the upper or lower
side so that its boundary is equal to dD(eyv1) = dD(eyv2) and that this
construction is consistent with the data specified by p (see Figure 2.3). We
denote the plunged square by the symbol D(e; p). Then we have
F(Tyw; p)=A(T)v(veeE(T)D(e; p)).
Note that if p and pf induce different orientations on an edge e then the
union D(e; p)κjD(e\ pr) forms a 4-Murasugi sphere for F(Tyw; p)y which
we denote by S(e). We can easily see the following:

L e m m a 2.1. (1) Let $ be a subset of E{T). Then there exists a
composition of the Murasugi speheres {S(e)}e€# for F(Tyw; p), if and only
if the following condition is satisfied: For each component B of T— uee<r

int(e), let ${B) be the subset of $ consisting of those elements which are
incident to B; then either all of the initial points or all of the terminal
points of the oriented edges {(e; p)}eeg lie in B.

(2) In case the above condition is satisfied, the dual surface of F(Tyw; p)
with respect to the resulting Murasugi sphere is equivalent to F(Tyw; p')y

where p' is the orientation of T obtained from p by reversing the orientations
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of the edges contained in §.

We say that a vertex v of T is positive [resp. negative] with respect
to an orientation p of T, if every edge e in E(v> T) is oriented by p so
that v is the terminal point [resp. the initial point]. An orientation p
of T is said to be alternating, if each of the vertices of T is either positive
or negative with respect to p. Any tree with more than one vetices has
precisely two alternaing orientations. The condition in Lemma 2.1 (1)
can be paraphrased as follows: Let 3Γ be the tree obtained from T by
shrinking each component of T—ueeSint(e) to a point; then the orientation
on 9~ induced by p is alternating.

Let Θ(T) be the set of the orientations of T. If v is a vertex of T
which is positive or negative with respect to p(eΘ(T))y then v(p) denotes
the element of G{T) obtained from p by reversing the orientations of the
edges incident to v.

EXAMPLE 2.2. (1) Let α be an arc lying on a small circle in the
plane around a vertex v of (T; p) such that Tncc= Tnint(ot)φ§ and that
either all of the initial points or all of the termal points of the oriented
edges {(e; p)}ena^0 are equal to v (see Figure 2.4). Then the Murasugi
spheres {S(e)}enaΦ0 are composable. Further, the resulting Murasugi
sphere is reduced to an essential 4-Murasugi sphere (see Figure 1.3 (c)).

(2) Suppose v is a positive or negative vertex of (T; p) and
|w(ί;)| = l . Then, by the above observation, F(Tyw; p) is a Murasaugi
sum of the Hopf band F(v) and another surface. Since F(v) is a fiber
surface, i.e., a fiber of a fibration of a link exterior over S 1 , the dual
surface F(Tyw; v(p)) of F(T,w; p) with respect to this plumbing is
equivalent to F(T,w; p) by [8, Corollary 3.2]. In this case, we say that
v(p) is obtained from p by an elementary opeation.

\

Figure 2.4

We shall prove the following theorem in Sections 5 and 6:

Theorem 2.3. (1) Any minimal genus Seifert surface for a special
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arborescent link L(T,w) is equivalent to F(T,w; p) for some peΘ(T).
(2) F(T,w; p) is isotopic to F(T,w; pf), if and only if, p and p' are

related by an iteration of finite number of elementary operations.

The structure theorem for the complex MS(L(T,w)) shall be stated
in the next section. We now state our results on the classification of
the 4-Murasugi spheres. Unfortunately, we couldn't classify all 4-
Murasugi spheres for general F(T,w; p), and we need to restrict our
attention to a certain subclass. A weight w on T is said to be special if
\w{v)\>2 for any veV(T). If w is special, the link L(T,w) is called a
very special arborescent link.

Theorem 2.4. Suppose L{T,w) is a very special arborescent
link. Then any essential 4-Murasugi sphere for its minimal genus Seifert
surface F(T,w; p) is equivalent to one that is described in Example 2.2
(1). Further, two such Murasugi spheres are equivalent, if and only if the
corresponding arcs are ambient isotopic in (R2,T).

Kobayashi [17] and Scharelemann-Thompson [25] independently
proved that any knot with unknotting number 1 has a minimal genus
Seifert surface which is obtained by plumbing a Hopf band and another
surface. Thus as a corollary to the above results, we obtain the following:

Corollay 2.5. The unknotting number of any very special arborescent
knot is greater than 1.

To state the classification theorem for special arborescent links, we
introduce a concept of equivalence among the finite plane trees. Recall
that, for each vertex v of a plane tree T, the set E(v, T) is endowed with
a cyclic order. An isogeny from a plane tree T to a plane tree T is an
isomorphism / between the abstract graphs T and T which satisfies one
of the following conditions:

(1) /preserves the cyclic order at every vertex, or reverses the cyclic
order at every vertex.

(2) / reverses the cyclic order at one vertex and at each vertex at
even distance from it; and / preserves the cyclic orders at the remaining
vertices.

An isogeny between weighted plane trees (T,w) and (T,wf) is an
isogeny / between the plane trees T and T such that w'(f(v)) = εw(v) for
any veV(T), where 6 = + l or —1 and ε does not depend on v. We
define the degree of the isogeny / by deg(J) = ε. Two weighted plane
trees are said to be isogenic [resp. ( + )-isogenic] if there is an isogeny



MINIMAL GENUS SEIFERT SURFACES 871

[resp. an isogeny of degree +1] between them.
An isomorphism between two semi-oriented links (S3,L) and (S3,Lf)

is a homeomorphism g between the pairs (S3,L) and (*S3,Z/) such that
g(L)=+L'. We define the degree of g by its degree as a self-
homeomorphism of *53. Two semi-oriented links are said to be isomorphic,
[resp. ( + )-isomorphic\ if there is an isomorphims [resp. an isomorphism
of degree +1] between them.

Theorem 2.6. Let (T,w) and (T' ,wr) be finite weighted plane trees,
such that the weights w and w' are special. Then the semi-oriented links
L(T,w) and L{T ,wr) are ίsomorphίc [resp. ( + )-isomoprhic\, if and only if
(T,w) and (T'yw

f) are isogenic [resp. ( + )-isogenic].

The symmetry group Sym(T,w) [resp. the ( + )-symmetry group
Sym + (T,w)] of a weighted plane tree (T,w) is the group of the
self-isogenies [resp. the self-isogenies of degree +1] of (T,w). The
symmetry group Syms(S3,L) [resp. the ( + )-symmetry group Sym*(S3,L)]
of a semi-oriented link (S3,L) is the group of the self-isomorphisms [resp.
the self-isomorphisms of degree +1] of the semi-oriented link (S3,L)
modulo those isomorphisms which are pairwise isotopic to the identity.

Theorem 2.7. For a very special arborescent link L(T,w), we have
an exact sequence',

1 - Γ(T) -• Syms(S\L{T,w)) -> Sym{T,w) -> 1,

which restrict to an exact sequence,

1 -» Γ(T) -» Sym + (S3,L(T,w)) -+ Sym + (T,w) -> 1.

Here Γ(T) is ίsomorphic to (1) Z2@Z2, (2) Z 2, or (3) 1 according as (1)
I T\ is an interval or a point, (2) | T\ is neither an interval nor a point, and
there is a vertex v0 of T such that any vertex at an odd distance from v
has valency 1 or 2, or (3) otherwise.

3. Simplicial complexes MS(L)

For an oriented link L in S3, Kakimizu [14] defined a simplicial
complex MS(L) and IS(L) as follows:

(1) The vertex set of MS(L) [resp. IS(L)] is the set of the equivalence
classes of the minimal genus [resp. incompressible] Seifert surfaces for L.

(2) A set of H I vertices {σθ9σu~ ,σk} of MS(L) [resp. IS(L)]
spans a ^-simplex of MS(L) [resp. IS(L)], if and only if there are
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representatives F0,Fly ,Fk of 0"o>σi>* *>σfc which are mutually disjoint in
E(L).

In this section, we study MS(L(T,w)). Put n = | V(T)\ -1 = \E(T)\. A
cycle in Θ(T) is a sequence

Po Po>

where {̂ 0> î>"*>^n} = V(T)y and {po>Pi>'">Pii} a r e mutually distinct
elements of 0(T) such that vt is positive with respect to p{ and p ί + 1 =vi(pi)
(0<i<ή). In brief, we denote the cycle by (Po>Pi>'**>Pw)- Let Jf(T)
be the simplicial complex defined as follows:

(1) The vertex set V{Jίί{T)) is 0(T).
(2) A set of vertics {/>o>Pi>'">Pfc} °f tf{T) spans a ^-simplex of

JίΓ(T) if there is a cycle in Θ(T) containing it.

EXAMPLE 3.1. If T has two [resp. three] vertices, then X*(T) gives
a triangulation of / [resp. I2] as illustrated in Figure 3.1.

For a finite weighted tree (Tyw), let ^ί{T,w) be the simplicial complex
obtained from Ctf(T) by collapsing each dege of the form p'v(p) to a

Figure 3.1

Figure 3.2
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point, where v is a vertex of T with \w{v)\ = 1 which is positive or negative
with respect to p.

EXAMPLE 3.2. If T has three vertices, and just one vertex of T has
weight 1, then 3£{T,w) is as illustrated in Figure 3.2.

We shall prove the following theorem in Section 5.

Theorem 3.3. MS(L(T,w)) is isomorphic to

In the rest of this section, we clarify the structure of
(Propositions 3.9 and 3.11).

L e m m a 3.4. Let T be a finite tree, and let p be an element of
Θ(T). Then there is a cycle in &{T) containing p.

Proof. We use induction on n = \E(T)\. By Example 3.1, this lemma
holds for n = \ and 2. Let T be a finite tree with n>2. Let v* be a
vertex of T whose valency is not 1, and let V and T" be the closed up
components of T— {v^. Then Θ(T) can be identified with the Cartesian
product Θ(T)xΘ(V). Here peΘ(T) corresponds to (p',p"), where p'
and p" are the restrictions of p to T and T" respectively. Put r = \E(T')\
and s = \E(T")\. Then r<ny s<ny and n = r + s. By the inductive
hypothesis, there are a cycle

in Θ{T) containing p' and a cycle

V 0 „ v 1 „ v s „

in Θ(T") containing p". We may suppose v'r — v"s — v^. Let p and q be
the integers such that τ'p = pf and τ"p = p". Now consider a shortest path
contained in the lattice in the plane from (0,0) to (r,s) through (p>q),
and let (ioJo) = (Q>Q)Ah,Ji)>'~>(inJn) = (r>s) b e t n e integral points on the
path in this order. Then we can see that (τ' io,^),^^,!^),---,^^,!^)
forms a cycle in T containing p — {p\pff). In fact, for each k (0<k<n—ί)y

(τ'ik + i>τ"jfc+i) ί s o b t a m e d f r o m (τ'ik>
τ"/k) by t n e operation of υ'ik or v"jk

according as (ik + 1jk+ι) = (ik+l,jk) or (ikjk+ί); and (τ' ίo,τ",o) is obtained
from ( T ' ^ , ! " ^ ) by the operation of v+.

Let p and p' be two elements of Θ(L). Put E(p,p') = {eeE(T)\p\eΦp'\e}y
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and let V(pyp') be the set of the components of T—ueeE(ppΊint(e). Let
T(pyp

r) be the tree with the vertex set V{pyp') and the edge set E(pyp
f). As

a topological space, T{pyp
f) is obtained from T be collapsing each subtree

B (e V{pyp')) to a point. Let [p] and [pf] be the orientations of T(pyp')
induced by p and p' respectively.

L e m m a 3.5. There is a cycle in T containing p and p' if and only
if the orientation [p] of T(pyp') is alternating.

Proof. Suppose there is a cycle

in Θ(T) with p = τ0 and p' = τp for some p (ί<p<n). Put V1(T) = {vi\
0<i<p-\}y and V2(T) = {vi\p<i<n}. Then we see that E(pyp

r) consists
of those edges e such that precicely one of the end-points of e is contained
in V^T). Thus, for each Be V{pyp')y the vertex set V(B) of the subtree
B is contained in either V^T) or V2(T). Further B is a positive vertex
or a negative vertex of the oriented tree {T(pyp')\ [p]) according as V(B)
is contained in VX(T) or V2{T). Hence the orientation [p] is alternating.

Conversely, suppose that the orientation [p] is alternating. Let
BiyB2y yBr [resp. Br + iiBr + 2y -yBr+s] be the positive [resp. negative]
vertices of (T(pyp'); [p]). By Lemma 3.4, there is a cycle

in Θ(Bι) with τitO = p\Bi for each i (\<i<r-\-s)y By using the positivity of
the vertex B± in (T{pyp')\ [p]), we see that the sequence of the vertices
^1,0^1,lj 'j^i.πi c a n operate on p successively in this order. The resulting
orientation Pi=vlnί(' v1Λ(v1 0(p))) is obtained from p by reversing the
orientations of the edges in E(pyp

r) which are incident to Bx. The
vertices B2y- yBr remain to be positive in (T(pyp

f); [pι\). Thus, by
repeating the above argument, we see that the sequence of the vertices
V2,o>v2Λ>'">v2.n2>'~>vrto>vrΛ>'~>Vr,nr c a n operate on pi successively in this

order. We see that the resulting orientation is equal to p' and that
Br + ly yBr+s are positive in (T(pyp

f); [p']). Hence the sequence of the
vertices υr + ltO,vr + ltlr'',vr + 1^+1r'',vr+s,θ9vr+sΛr'',vr+Stnr + β can operate

on p' successively in this order. The resulting orientation is equal to
p. The above process gives a cycle in Θ(T) containing p and p'.
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From the above proof, we see the following:

REMARK 3.6. (1) In each cycle in Θ(T) containing p and p', the
elements of V(T) contained in positive [resp. negative] vertices of (T(pyp')\
[p]) are used in the part of the cycle from p to p' [resp. from pf to p].

(2) Suppose (T(p,p'); [p]) is alternating and |w(*;)| = l either for
every VGV(T) which is contained in positive vertices of (T(p,p'); [p]) or
for every vβV(T) which is contained in negative vertices of (T(pyp

r);
[p]). Then p and p' are related by a finite sequence of elementary
operations.

We now recall the concept of an ordered simplicial complex (see [3,
pp.67-68]). A simplicial complex is ordered if, for each simplex, an order
of its vertices is given such that the order of each simplex agrees with
the orders of faces. This is equivalent to a binary relation < on V(JίΓ),
such that (i) vi<v2 and v2<υ1 imply v1=v2y (it) vt and υ2 are vertices
of a simplex of Jf if and only if vi<v2 or vi>v2 holds, and (in) if
vlyv2yv3 are vertices of a simplex of JΓ and vi<v2 and v2<v3y then
^ i < ^ 3 . The Cartesian product $ί1xX*2 of two ordered simplicial
complex JΓX and JΓ 2 is defined as follows: Define a binary relation <
in V(Xγ)x V(X2) by the rule (vlyw1)<(v2yw2) if and only if v1<v2 and
w1<w2. Then J f 1 x J f 2 is an ordered simplicial complex consisting of
those eimplices whose vertices are simply ordered by this partial
order. We have a canonical homeomorphism | JΓX x J Γ 2 | = | JΓJ x | J f 2 |
(cf. [3, p.68]).

Let T be a finite tree and t?+ a fixed vertex. Define a relation <
on Θ(T) by the rule; p<p' if there is a cycle (po,Pι, ~>pn)

 m ^(^Π w i t h
Po = v*(Pn)> P — Ph and p ' = p7-where /andj are integers such that 0<i<j<n.

L e m m a 3.7. With the above relation CfC{T) is an ordered simplicial
complex.

Proof. By Lemma 3.5 and Remark 3.6 (1), we see p<p' if and only
if p = pf or the orientation [p] on T(pyp

f) is alternating and the vertex B
of the oriented tree (T(pyp

f); [p]) containing v+ (as a subtree of T) is
negative. Thus it follows that this relation does not depend on the
choice of the cycles and that this relation satisfies Condition (/). It is
clear that this relation satisfies Conditions (it) and (in). Thus we obtain
the desired result.

From the proof of Lemma 3.4, we obtain the following:
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L e m m a 3.8. Suppose the valency of the base vertex v+ is not 1. Let
T and T" be the closed up components of T—{v+}. Then the ordered
simplicial complex $C{T) is isomorphic to the Cartesian product J f (T ' )x
Jf(T"), where JίΓ(T) and C/f(T") are endowed with the structures of ordered
simplicial complexes by using the vertex v+.

By repeatedly using the above lemma, we obtain the following:

Proposition 3.9. Jf(T) gives a triangulation of the n-dimensional cube
Γ whose vertex set consists of its corners, where n = \E(T)\

REMARK 3.10. Though the topological type of |JΓ(T)| depends only
on ny the combinatorial structure depends on the shape of T. For
example, the complexes corresponding to 7\ = * and T2 = ̂ Λ, are
different. In fact, the 3-simplices of JJΓ(T2) have a (unique) common
edge, whereas there is no such edge in

To study Jf {Tyw)y we describe the homeomorphism from | j f(T) | to
Γ more precisely. Fix a numbering {e^ye2, ' ,en\ of the edges of Ty and
choose an alternating orientation, say p + , on T. For each peG(T)y we
associate a corner point (εi,ε2, ••-,£„) °f F by the rule ε ~ 0 or 1 according
to whether the orientations on ei induced by p and p+ are equal or
not. From the proof of Proposition 3.9, we can see that this
correspondence induces a homeomorphism from |JΓ(T)| to P. In the
following we identify | JΓ(JΓ) | and Γ through this homeomorphism.

First, we study the case where there is a unique vertex, say vίy of
T such that 1^(^)1 = 1. For each orientation p such that v± is positive
or negative with respect to p, the line-segment p'Vx{p) forms
an edge of JΓ(T); and X(T,w) is obtained from Jf (T) by collapsing each
of these edges to a point. We can see the following:

(1) An edge of J f (T) is of this type if and only if it is parallel to
the edge p + ϋ1(p + ) in Γ ( cz Rn).

(2) Each w-simplex of X{T) contains a unique edge of this type.
Let H be a hyperplane in Rn orthogonal to p+•^1(p + ), and let p:

Rn —• H be the orthogonal projection. Then, by the above observation,
we see that the set of the images under p of the simplices in Cfr{T) forms
a triangulation of the (n— l)-dimensional ball />(/"), and that this simplicial
complex is isomorphic to tf{Tyw) (see Figure 3.2).

In general, let viy--yvd be the set of vertices of T whose weights
have absolute value 1. For each i (1 <i<d)y let i/ f be the hyperplane
in Rn through the origin which is orthogonal to the edge p + -Vι(p + ). Since
the directions determined by p + Vι(p + ) (1 <i<d) are linearly independent
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except when d = n+ly the dimension of the subspace of i f=nf = 1 i f t is
equal to max {n — d,0}. Let p: Rn -• H be the orthogonal projection.
Then, as in the above, we can see the following:

Proposition 3.11. The set of the images under p of the simplices of
X°(T) forms a triangulatίon of the space p(Γ), and this triangulation is
isomorphic to Jf(T9w). In particular \Jf(Tyw)\ is homeomorphic to the ball
of dimension max{n — d,0}.

4. The complementary sutured manifold for a Seifert surface

First, we recall some fundamental concepts concerning sutured
manifolds (cf. [7]). A sutured manifold is a pair (M,y), where M is a
compact oriented 3-manifold and γ is a union of pairwise disjoint annuli
in dM. For each component of y, an oriented core circle (called a suture)
is fixed, and s(γ) denotes the set of all sutures. Moreover cl(dM—y) is
a union of two surfaces R + (y) and R-(y) which are oriented so that
dR + (γ) and δi?_(y) are homologous to s(y) in γ. Since M is oriented,
we can define a normal vector field to Rε(y) (ε = + or —) as in Section
1. Then we can regard R + (y) [resp. i?_(y)] as the union of the components
of cl(dM-γ) whose normal vectors point out of M [resp. into M], (M,γ)
is a product sutured manifold if M=Fx [ — 1,1], y = dFx[ —1,1], R + (γ) =
Fx{l}, and i?_(y) = Fx{ — 1}, where F is a compact oriented surface.

CONVENTION 4.1. We often identify R±(y) with the closed up
component of dM—s(γ) containing R + (γ). In this case, we use the symbol
y to denote the suture s(γ).

A disk Q properly embedded in (M,y) is called a 2n-gony if dQ
intersects s(γ) transversely in In points. If Q is oriented, then by an
operation called the sutured manifold decomposition of (Myγ) along Q, we
obtain a new sutured manifold (M\yf) (see Figure 4.1). One copy, say
Qly of Q in (M',/) is a disk in R + (γf), and the other copy, say Q2>

 o f

Q is a disk in !?_(/), such that QjΠy consists of n arcs in dQt (z = l,2). In
case w = 2, we associate a vertical mark and a horizontal mark to each of
Qγ and Q2 as illustrated in Figure 4.2. Then (M,y) can be reconstructed
from (M\γf) by identifying Qx and Q2 so that the vertical mark and the
horizontal mark for Q1 correspond to the horizontal mark and the vertical
mark for Q2 respectively. A 2-gon is called a product disk, and a sutured
manifold decomposition along a union of mutually disjoint product disks
is called a product decomposition.
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( M f γ )

Figure 4.1

vertical mark
Ύ1

horizontal mark

Figure 4.2

Let L be an oriented link in S3 and F a Seifert surface for L. Put
N=N(F;E(L)) and δ=NndE(L)y then (j\Γ,<5) can be identified with
(Fx[ —1,1], dFx[—1,1]), and we may suppose the normal vector to
F=Fx {0} points to the +1 side. Then by defining i? + (<5) = F x {1} and
i?_((5) = F x { - l } , (Nyδ) becomes a product sutured manifold. We call
it the product sutured manifold for F. The complementary sutured manifold
(M,y) /or F is the sutured manifold (cl(E(L)-N)y cl(dE(L)-δ)) with
i?±(y)=i?q:(5). Note that F is a fibre surface if and only if (M,γ) is a
product sutured manifold. If we employ Convention 4.1, then (Nyδ)
can be identified with (NyL), where JV is a blister neighbourhood of F in
(AS3,L); i.e., JV is an embedded copy of F x [ — l , l ] /~ in S3, where ~
pinches δFx[ —1,1], by collapsing each arc xxl to one point for each
x e dF; F x {0} and dF x [ — 1,1 ]/ ~ correspond to F and L respectively. In
this case (Myγ) can be identified with (cl(S3 — N), L).

Suppose F is a 2«-Murasugi sum F1<\F2 of two Seifert surfaces Fx

and F 2 , and let *S be the 2«-Murasugi sphere corresponding to this
Murasugi sum. We employ Convention 4.1 for the product sutured
manifold (N,δ) and the complementary sutured manifold (Myγ) for L;
thus N is identified with a blister neighbourhood of F in (S3,L). Put
D = SnN. Then, we may suppose the following condition holds (see
Figure 4.3):

CONDITION 4.2. D = Dou{uf=1Ai}y where
(1) D0 = DnF is a 2w-gon with dDo = oci<ucc2v - u a 2 n in this cyclic
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DC (N,δ)

Figure 4.3

Figure 4.4
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order,
(2) Δf is a properly embedded disk in Fx [0,1]/

( c: N) according as / is even or odd, such that
a preperly embedded arc in Fx( — I)1.

or F x [-1,0]/-
^u/J,-, where β( is

We orient D by using the orientation of DQ c= F. Put Q = cl(S — D)
and orient it so that θQ is equal to dD as oriented circles. Then Q is
a 2w-gon in (M,y), and the sutured manifold obtained from (M,γ) by the
sutured manifold decomposition along Q is the disjoint union of the
complementary sutured manifolds (Mi9γi) and (M2,y2) for Fi and F2

respectively as illustrated in Figure 4.4 (see [6, 10]). We say that a
2w-gon Q in (M,γ) is essential if there is no disk in dM whose boundary
is the union of an arc in dQ and an arc in γ. We see that a 2w-Murasugi
sphere is essential if and only if the corresponding 2w-gon Q in (Myγ)
is essential.

EXAMPLE 4.3. The Seifert surface F(T,w;p) introduced in Section
2 is obtained from the twisted annuli {F(v)}veVm by successive
plumbing. Let (M,γ) [resp. (Mvyγv)] by the complementary sutured
manifold of F(T,w;p) [resp. F(v)]. For each edge e of T, put
Q(e)=MnS(e)y where AS(̂ ) is the 4-Murasugi sphere corresponding to e,
and Q(e) is oriented as indicated in the above. Put Ά = ueeE(T)Q(e). Then

3 S

Figure 4.5
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the sutured manifold obtained from (M,γ) through sutured manifold
decomposition along Ά is the disjoint union of {(Mvyγv)}veVm. For a
vertx vy let elye2,- yek be the elements of E(v,T) lying around v in this
counter-clockwise order. Then the copies of Q(e1)yQ(e2),' ',Q(ek) in
(Mv,γv) can be seen as illustrated in Figure 4.5. Note that, for each i
(\<i<r), the copy of Q{et) in (Mv,γΌ) lies in R + (γv) or R-(γv) according
as et is oriented by p so that v is the terminal point or the initial point.

The following proposition shall be used in Section 7.

Proposition 4.4. For a connected Seifert surface F of an oriented
link L in S3, there is a bijection between the set of the equivalence classes
of essential 2n-Murasugi spheres for F and the set of the y-isotopy classes
of essential In-gons Q in (M,y) such that there is a 2n-gon D in (N,δ) with
dD = dQ which satisfies Condition 4.2. Here two surfaces in (M,y) are said
to be γ-isotopic, if there is an isotopy of the pair (M,y) sending one to the other.

To prove this proposition, we need the following lemma.

L e m m a 4.5. Let D and Dr be two In-gons in {Nyδ) which satisfy
Condition 4.2, and suppose dD = dD'. Then they are isotopίc by an isotopy
which is constant on dN and preserves F=FxO.

Proof. By the assumption, D = J D O U { U ? " 1 Δ 1 } [resp. Df = D'ou
{u?= 1Δ r

ί}], where Do and Δ f [resp. D'o and Δ'J are as in Condition
4.2. Let Oίi and βt [resp. α'f and /?'J be as in Condition 4.2. Since
dD = dD\ we may assume /?f = /Γf. Then αf is homotopic to α'f in N (and
therefore in F) keeping end-points fixed. Hence, by the proof of [4,
Theorem 3.1], ^jf"^ is isotopic to ufj^α'j by an isotopy which is fixed
on dF. Thus, by the isotopy extension theorem, we may assume α—α'j
( l < / < 2 « ) , and hence DO = D'O. We now have dAι = dAf

h and therefore
we see that u ? = 1 Δ ί and u ? " 1 Δ ' f are isotopic by an isotopy which is fixed
on Fx{ —1,0,1} ( cz N). This completes the proof.

Proof of Proposition 4.4. First, we show that there is a well-defined
map from the second set to the first set. Let g be a 2w-gon in (Λf,y)
such that there is a 2w-gon D in (N,δ) with dD = dQ which satisfies
Condition 4.2. Put S = QuDy then S is a 2«-Murasugi sphere for F. By
Lemma 4.5, the equivalence class of S does not depend on the choice
of D. Thus, by using isotopy extension theorem, we can see that each
y-isotopy class of 2w-gons in (M,y) satyisfying the required condition
determines a unique equivalence class of Muraugi spheres. This map
is clearly surjective.
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Next, we show that that map is injective. Let Qo and Qx be 2w-gons
in (M,γ) satisfying the required condition, and let *S0 and S{ be
2w-Murasugi spheres for F determined by Qo and Q1 respectively.
Suppose So and S^ are equivalent; i.e., there is a level preserving
self-homeomophism Φ = {φt}o<t<i °f (S3>F) x [0,1], such that φ0

 = l and
Φι(So) = *SΊ. We can find a very small blister neighbourhood Nr( a N) of
Fsuch that, for any t ( 0 < ί < l ) , D't = φt(S0)nNr is a 2/ί-gon in the sutured
manifold (N\δf)y where δ' = δ = L. Consider the complementary sutured
manifold (M\γ') = (cl(S3-N'),δ'). Then Q't = cl(φt(S0)-D't) (0<t<ί)
forms a continuous family of 2w-gons in (M',y'), and hence Q'o and Q\
are "/-homotopic". By using [4, Theorem 2.1] and the fact that M' is
irreducible (since F is connected), we see that Q'o and Q\ are
y'-isotopic. Hence Qo and Qx are y-isotopic.

REMARK 4.6. Suppose « = 2; then the second set in Proposition 4.4
is equal to the set of the y-isotopy classes of the 4-gons Q in (M,y) such
that dQ bounds a disk in (N,δ). This follows from the fact that any
4-gon in a product sutured manifold (N,δ) is obtained by piping two
mutually disjoint product disks along an arc in R + (δ) or R-(δ) (cf. [10,
Lemma 2.3]).

Next, we present a fundamental observation due to Gabai (cf. [8]),
which plays an important role in Sections 5 and 6. Let F and G be
Seifert surfaces for an oriented link L, and suppose that they are disjoint
in E{L). Let Ei [resp. E2] be the closed up component of E(L) — (FuG),
such that the normal vector to F [resp. G] points into E± [resp. E2]. Put
δi = dE{L)nEi (/ = 1,2). Then (E^δJ [resp. (E2,δ2)] is a sutured manifold
with R_(δ1) = F and R + (δi) = G [resp. R_{δ2) = G and R + (δ2) = F]. We
call {Elyδ{) [resp. (£"2^2)] ^ e sutured manifold between F and G [resp.
between G and F]. The following proposition follows from the argument
of Gabai in [8, pp.529-530].

Proposition 4.7. Suppose F is a Murasugi sum Fx <\F2 of two Seifert
surfaces Fi and F2> and let F be the dual surface of F with respect to this
Murasugi sum. After a tiny isotopy, Ff can be made disjoint from F in
E(L). Let (Elyδi) [resp. (E2,δ2)] be the sutured manifold between F and
F [resp. between F and F]. Then, for i=\y2, (Ehδι) has a product
decomposition into the disjoint union of the complementary sutured manifold
(Mhγι) for F( and a product sutured manifold.

In the remainder of this section, we describe a fundamental tool for
the study of isotopy types of surfaces and some of its consequences,
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which are used in Sections 5, 6, and 8. Let F and G be properly
embedded surfaces in a 3-manifold M, which meet each other
transversely. A blister between F and G is an embedded copy P of
Σ x / / ~ with the following properties:

(1) ~ pinches k x /, with k a compact 1-submanifold of δΣ, by
collapsing each arc xxl to one point for each #e&.

(2) Σ x 0 [resp. Σ x 1, cl(dΣ — k)xl]is contained in F [resp. G, δM].
(3) Fnint(P) = 0y and Gnint(P) can be nonempty only when Σ is

a disk and PndM is connected.
The following result is essentially due to Waldhausen [28]:

Proposition 4.8. Let M be a Haken manifold whose boundary is
incompressible. Let F and G be incompresible, boundary-incompressible
surfaces in M, which are in general position.

(1) If F is isotopic to G, then there is a blister between F and G.
(2) Suppoe FnGφ0 and F is isotopic to a surface disjoint from

G. Then there is a blister between F and G.

Proof. (1) is a special case of [2, Proposition 6.21], and is proved
by using the doubling trick and [28, Proposition 5.4].

(2) follows from the argument in [18, Proof of Theorem 5.4].

By using the proposition above, we can easily prove the following:

Proposition 4.9. For an unsplittable link L in S3, the following holds:

(1) A set of vertices {σo>σi>"">σ*} °f MS(L) [resp. IS(L)] spans a
simplex in MS(L) [resp. IS(L)] if and only if any sub-pair {σiyσj} (0<i<j<k)
spans an edge of MS(L) [resp. IS(L)].

(2) Let (σo,σu-'yσk) be a k-simplex of MS(L) or IS(L)y and let
FOyFiy-yFk be mutually disjoint representatives for the vertices σOyσly- yσk.
Then the isotopy type of the union Fo u Fx u u Fk in E(L) is uniquely
determined by the simplex (σo>σi>'">σk)-

5. Proof of Theorems 2.3 (2) and 3.3

In this section we prove Theorems 2.3 (2) and 3.3 by assuming
Theorem 2.3 (1). Let (Tyw) be a finite weighted plane tree, and let p
and p' be two elements of &(T). Let E(pyp

r)y V(pyp')y T{pyp')y [p] and
[//] be as in Section 3 (see the paragraph before Lemma 3.5). Put
L = L(Tyw). For each element B of V{pyp')y we have P\B = P'\B^ a n d w e

obtain a Seifert surface F(B,wyp) = F(Byw;pf). The Seifert surfaces
F(Tyw;p) and F(Tyw\p') for L are obtained from {F(Bywyp)}BeV{PfPΊ by
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plumbing according to the data determined by the oriented trees
(T(pyp'); [p]) and (T(p,p'); [p']) respectively. To be more precise, recall
the construction of these surfaces;

F(Tyw; p) = (uυeViΌA(v))u(\JeeE{T)D(e; p))y

F(Tyw; p') = (uveV(T)A(v))v(ueeE(T)D(e; p'))9

where A(v) = cl(F(v)—ueeE(vT)D(eyv)) (see Section 2). We may assume
each piece in this construction meets the exterior E(L) "nicely". In the
remainder of this section, we discuss in E(L), and refer to the intersection
of E(L) with each piece in the above construction by denoting the same
symbol. For each BeV{pyp')y put F(B) = (vveBA(v))v(ue€E(B)D(e;p)).
Then we see

(e; p)),

(e; p')).

We move F{Tyw\p) by an isotopy of E(L) so that it intersects F(Tyw;p')
transversely and "minimally" according to the following indication: Choose
a "base edge" e^E{pyp')y and define a sign ε(B) for each BeV{pyp

f) as
follows: Let e+ = eOyely -yek be the shortest path in T{pyp') joining e* and
B. [If J3 is an end-point of e*y then k = 0.] Define ε(B) — + or — according
as B is the terminal point or the initial point of (ek;p) (see Figure 5.1).

O ε ( B ) =

•••'

Figure 5.1

For each BeV(pyp')y we move F(B) in the ε(2?)-direction of the normal
vector to the oriented surface F(Tyw\p)y so that they are disjoint from
F(Tyw;pf). According to this move, we modify D(e;p) (eeE(pyp')) as
indicated in the following: Let Bx and B2 be the end-points of e.

Case 1. ε(B1)= —ε(B2): We may assume ε(B1)= 4- and ε(B2)=—.
Then we see from the definition of ε that B1 and B2 are the terminal
point and the initial point of (e p) respectively. We can shrink D(e p)
to a subdisk of the original one, so that the new F(Bi)uD(e; p)uF(B2)
is disjoint from F(Tyw; p). Note that cl(old(D(e; p)) — new(D(e; p))) is
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F(T,w;p')

new F(B ) new D(e p) new F(BJ
^

V*
new F(T,w;p)

( c )

Figure 5.2

F(T,w;p')

(a)

new F(T,w;p)

(new F(T,w;p))nF(T,w;p')

Figure 5.3

(c )

the disjoint union of four "product disks''; i.e., each of them meets the
new F(T,w; p) [resp. F(Tyw; p')y dE(L)] in an arc [resp. an arc, two
arcs]. Near the 4-Murasugi sphere S(e), E(L)-(F(T,w; p)vF(T,w; p'))
has two closed up components; and each of the them contain two of the
above product disks. (See Figure 5.2 (a) and (b), where a neighbourhood
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of a component of S(e)ndE(L) is depicted.)
Case 2. ε{B{] = ε{B2Y We can modify a small neighbourhood of

D(e; p) in F(T,w; p) so that it intersects F(Tyw; p') transversely in two
arcs lying in the 4-Murasugi sphere S(e). Near S(e)y E(L) — (F(T,w; p ) u
F(Tyw; pr)) has three components; and one of them has the closure that
is not a 3-manifold. (See Figure 5.3 (a) and (b).)

We call the above isotopy a small isotopy. After a small isotopy,
F(T,w; p) intersects F(Tyw; pf) transversely. The closed up components
of E{L) — (F(T,w p)vF(Tyw> p')) can be described in terms the following
trees with distinguished vertex sets and with marks on the edge sets. Let
Bo be the initial point of (e+; p), and let V0(p,p') [resp. V^p^p')] be the
set of the elements of V(p,p') which have even [resp. odd] distance from
Bo in the tree T(pyp'). For f' = 0,l, let T^p.p') denote the tree T(p,p')
where the subset V^p.p') of the vertex set V(p,p') is specified. We call
a vertex contained in V^p.p') a distinguished vertex of T^p.p'). We assign
a "cut mark" | and a "bad mark" x to the above trees according to the
following indication: Suppose the end-points of an edge eeE(p,p') have
the same sign. If e has an even [resp. odd] distance from Bo, then
assign a bad mark x to the corresponding edge of T0(pyp') [resp. 7\(p,p')],
and assign a cut mark | to the corresponding edge of T±(pyp

f) [resp.
To(p,p')]. Here the distance between Bo and e is defined as the distance
between Bo and the nearest end-point of e from Bo in the tree T{pyp')
(See Figure 5.4, where the distinguished vertices are represented by big
circles.)

(τ(p,p ) ; [ p ] )

T O ( P , P ' )

c^^>
F(T,w;p)

F(T,w;p') 9E(L)

Figure 5.4
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L e m m a 5.1. There is a bijection 3~ between the set si of the closed
up components of E(L(Tyw))-(F(Tyw; p)yjF(T,w; p')) and the set ^ of
the connected components of ^f=1(Ti(pyp

r) — {cut marks}). Further, the
structure of a closed up component Pes/ can be read from the corresponding
element 3Γ(P) e@t as follows:

(1) // 2Γ(P) has a bad mark, then P is not a 3-manifold.
(2) Suppose &~(P) does not have a bad mark. Put R = PnF(T,w; p),

R' = PnF(Tyw; p'). Let γ be the \-submanifold of dP which forms the core
of dPn(dE(L)u(F(Tyw; p)nF(T,w; p')). Then γ determines a sutured
manifold (P,y) (in the sense of Converntion 4.1), such that R c: Rε(γ)>
Rr cz i?_ε(y)(ε= -f or —), and that there are deformation retracts from Rε(y)
to R and from R-ε(y) to Rf. Further (P,y) has a product decompositon
into the disjoint union of a product sutured manifold and the complementary
sutured manifolds {(MBiyB)} for {F(Byw; p)}, where B runs over all
distinguished vertices contained in

Proof. The existence of 2Γ and (1) follow from the construction of
T f(p,p'). (See Figure 5.2 (c) and 5.3 (c) for local correspondence, and
see Figure 5.4 for the situation on dE(Lj).

(2) follows from the arguments in [8, pp.529-530] (cf. Proposition
4.7) by using the product disks given in Case 1 in the construction of
the small isotopy.

L e m m a 5.2. Let P be an element of si.
(1) P is a blister between F(T,w; p) and F(T,w; p'), if and only if

3~(P) does not contain a bad mark and \w(v)\ = 1 for every v (e V(T)) which
is contained a distinguished vertex in 3~(P).

(2) Suppose P is a blister. Then by an isotopy through P, F{T,w\ p)
is equivalent to F(Tyw; p"), where p" is the orientation of T obtained from
p by reversing the orientations of the edges e(eE(p,p')) which are incident
to the distinguished vertices in SΓ{P).

(3) In the above, p" is related to p by an iteration of finite number
of elementary operations.

Proof. (1) P is a blister if and only if (P,y) is a product sutured
manifold. By Lemma 5.1 and by [8, Lemma 2.2], this is equivalent to
the condition that (/) &~(P) does not contain a bad mark, and (it) for
every distinguished vertex B in ^ ( P ) , (MByγB) is a product sutured
manifold. By [5, Theorem 3] (cf. [8, Lemma 2.4]), (MB,γB) is a product
sutured manifold, if and only if \w(v)\ = 1 for any vertex v of B. Thus
we obtain the desired result.

(2) Moving F(T,w; p) through P amounts to replacing D(e; p) with
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D(e; — p) for every edge e{eE{p,p')) which is incident to a distinguished
vertex contained in 3~(P), Thus we obtain the desired result.

(3) We prove this assertrion by using Remark 3.6 (2). Let B be
a distinguished vertex in ^"(P), and let eic = eo,ei,--,ek be the shortest
path in T(p,p') joining e+ and B. Suppose B is not positive nor
negative. Then there is an edge ek + 1 incident to B such that the terminal
points of (ek; [p]) and (ek + i; [p]) are different. By the definition of ε,
the signs of the end-points of ek + ϊ are equal. On the other hand, the
distance between Bo and B is equal to the distance between Bo and
ek + i . Hence the edge ek + 1 in 2Γ{P) must have a bad mark, a
contradiction. Hence any distinguished vertex in 3~(P) is positive or
negative. By using the fact that 3~(P) has no bad marks and the fact
that any pair of distinguished vertices in «̂ ~(P) has an even mutual
distance, we can see that either all the distinguished vertices in 2Γ{P) are
positive or otherwise negative. Hence, by (1), (2), and remark 3.6 (2),
we obtain the desired result.

Now we are in a position to prove Theorem 2.3 (2) and Theorem 3.3

Proof of Theorem 2.3 (2). By applying a small isotopy, we may
suppose F(Tyw; p) and F(Tyw; pf) intersect as described in Lemma
5.1. Suppose these two surfaces are equivalent. Then there is a blister
P between these two surfaces by Proposition 4.8 (1). By Lemma 5.2,
F(T,w; p) is equivalent to F(Tyw; p") via an isotopy through P, where
p" is related to p by a finite sequence of elementary operations. If
\F(Tyw; p)nF(T,w; p')| = 0, then we have p" = p'; otherwise we have
\F(Tyw; p")nF(Tyw; p')\<\F(Tyw\ p)nF(T,w; p')\ after a small isotopy.
Thus, by repeating this process, we see p and p' are related by a finite
sequence of elementary operations. This completes the proof of Theorem
2.3 (2).

Proof of Theorem 3.3 assuming Theorem 2.3 (1). By virtue of
Proposition 4.9 (1), we have only to show that F(Tyw; p) and F(Tyw; p')
can be made disjoint in E(L) if and only if there is a simplex in JίΓ(Tyw)
containing both p(p) and p{p') as vertices, where p is the projection
Jf(T) -> Jf (Tyw). We prove the "only if" part of this assertion. Suppose
F(T,w; p) and F(Tyw; pr) can be made disjoint in E(L). Then by an
argument parallel to the proof of Theorem 2.3 (2) (using Proposition 4.8
(2) instead of Proposition 4.8 (1)), we can see that there is an element
p* of Θ(T) such that p(p*)=p(p) and the orientation [p*] on T(p*yp') is
alternating. By Lemma 3.5, there is a cycle in Θ(T) containing p* and
p. This cycle determines the desired simplex in C/f(Tyw). The "if"
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part easily follows from Lemma 5.1.

At the end of this section, we present a consequence of Theorem
3.3, which is used in Section 8. We say that two vertices σγ and σ2 of
MS(L) [resp. IS(L)] are adjacent, if the following condition is satisfied:
There are representatives Fi and F2 of σ1 and σ2 respectively which are
mutually disjoint in E(L)y such that one of the closed up component of
E(L) — (F1uF2) contains no minimal genus [resp. incompressible] Seifert
surfaces for L except those surfaces that are isotopic to Fi or F2. By
virtue of Theorem 3.3 and Proposition 4.9 (2), we can determine the
pairs of vertices of MS(L(Tyw)) which are adjacent. In particular we
obtain the following.

Proposition 5.3. Suppose w is a special weight on T. Then, two
vertices [F(T,w; p)] and [F(T,w; p')] of MS(L(T,w)) are adjacent if and
only if v(p) = p' for some vertex v of T which is positive or negative with
respect to p.

6. Proof of Theorem 2.3 (1)

Let (T,w) be a finite weighted plane tree, and put L = L(Tyw). By
Lemma 3.4, &(T) has a cycle

Put Fι = F(Tyw; pt). The following assertion follows from the proof of
Theorem 3.3.

Assertion 6.1. After small isotopies, the following holds:
(1) F0,Fly",Fn are mutually disjoint in E(L), and they are situated

in E(L) in this cyclic order.
(2) For each i (0<i<n), let (Ehδi) be the sutured manifold between

Ft and Fi+i. Then it has a product decomposition into the disjoint union
of the complementary sutured manifold (Mv.yγVi) for the twisted band F(vι)
and a product sutured manifold. Here the suffix is considered with modulo
n+\.

Let v be an element of V(T), and let k be the integer such that
v = vk. Then Mv is embedded in Ek <= E(L) by Assertion 6.1 (2). Let
μv denote a circle embedded in E(L) which forms a core of the solid
torus Mv. Note that μv is also a core of the solid torus cl(S3— N(A(v)u
(uee£(ι;Γ)i?

3(e,τ;)))), where B3(eyv) is the 3-ball bounded by S(e) whose
interior is disjoint from A(v) (cf. Figure 8.1 (a)). Since any F{Tyw\ p)
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is carried by the branched surface (ueeE{T)S(e))uA(T)) it can be made

disjoint from vveV(T)μv.

For two Seifert surfaces F and F for L, we say that F is obtained

from F by a ( + ) — [resp.( —) — ] annulus modification at v if the following

conditions are satisfied:

(1) A = cl(F-FnF) and A' = cl(F-FnF) are annuli.

(2) AvΆ = dN(μv)y where N(μv) is a regular neighbourhood of μv

in E(L).

(3) The normal vector to A points into N(μv), and the normal vector

to A points out of N(μv).

We prove the following assertion by using the method of [14, Proof

of Theorem 2.1]:

Assertion 6.2. Any minimal genus Seifert surface for L can be made

disjoint from u"= 0Ff by applying a finite number of annulus modifications.

Proof. Let F ( a E(L)) be a minimal genus Seifert surface for

L. We may suppose F is transversal to U ^ Q F ^ and dF is disjoint from

u^o^F;. Let p: E{L) -> E{L) be the infinite cyclic cover determined by

the element of H^EiL); Z) which is dual to F. Let F be a lift of

F. The inverse image ^)~1(u"= 0F i) decomposes E(L) into infinitely many

compact regions E{ (iθZ). Here, we assume these regions lie in E(L)

in the order of the suffix, and Et is a lift of E[i]y where [t] is an integer

such that 0<[ί]<n and [i] = i (modw + 1). Thus Fi = Ei_1ΓλEi is a lift

of F^y We may assume dF a Eo. Let r(F) and s(F) be the maximum

and the minimum respectively of the integer i such that FnE^O. If

^ ( ^ = ̂ ( ^ = 0, then F is disjoint from ^UoFi- I f r(F) or s{F) is not 0,

say r(F) = r>0, then we will construct a minimal genus Seifert surface

surface F such that r(F)<r—ί and s(F)>s(F) by applying a finite

number of annulus modifications to F as illustrated in Figure 6.1

schematically.
(a) (b)

 ( c )

isotopy isotopy &

annulus

modification

Figure 6.1
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To be more precise, let 3) be the union of the product disks in (E[r]yδ[r])
which decompose (E[r],δ[r]) into the disjoint union of a product sutured
manifold, say (P,δ)> and (Mvyγv) with v = v[r] (cf. Assertion 6.1 (2)). We
may suppose F intersects Q) transversely. Note that E(L) is irreducible
since L has a connected minimal genus Seifert surface. Thus we may
suppose Fc\3) does not contain loop components. By an isotopy of E(L)
whose support is contained in a small neighbourhood of &)y we may
suppose no (arc) component oίFr\Q) has both end-points in JR_(y[r]) = i^[r]

(see Figure 6.1 (b)). Then any component G of FnE[r], whose boundary
is contained in F[r]y is contained in either P or Mv. By the minimality
of F and the irreducibility of E(L), we may suppose G is incompressible
and is not a disk. If G cz P, then G is parallel to a subsurface in i?_(<5),
and therefore we can delete the component G from FnE[r] by an
isotopy. If G a Mvi then G is an annulus since πγ(M^) = Z, Let G' a
sub-annulus in R_(γv) with dG' = dG. Then either G is parallel to G
or G u G ' bounds a solid torus in Mv whose core is isotopic to μv. Thus
we can delete the component G from FnE[r] by an isotopy or by a series
of annulus modifications at v (see Figure 6.1 (c)). By repeating the
above process, we obtain a surface F from F through isotopies and
annulus modifications at v such that, for any component G of FnE^y

dG is not contained in F [ r ] . From the construction, we can see that
r(F)<r — 1 and s(F)>s(F). Thus we obtain the desired result by
repeating the above process.

By using [16, Proposition 2.6], we see any minimal genus Seifert
surface for L which is disjoint from U ^ Q / ^ is isotopic to Ft = F{Tyw\ pf)
for some /. Thus we have only to show the following assertion to prove
Theorem 2.3 (1).

Assertion 6.3. Let p be an element of Θ(T)y F=F(T,w; p), and υ+
a vertex of T. Then any Seifert surface for L obtained from F through
an annulus modification at v^ is equivalent to F(T,w; p')for some p' e&(T).

If 1^(^)1 = 1, then (MVit9yυi) is a product sutured manifold, and
therefore any annulus modification at v+ does not change the isotopy type
of a Seifert surface. Thus we assume \w(v+)\>2 in the following. Then
we have;

L e m m a 6.4. Let F be a surface in E(L) isotopic to F, and suppose
F is also disjoint from μVic. Then F is isotopic to F by an isotopy of E(L)
which preserves μVic.
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Proof. For ε = ± , let j e : H^F; Z) -»HX(E(L)-F\ Z) be the
homomorphism defined by pushing each cycle in the ε-direction of the
normal vector to F. Then we see [μΌi] is not contained in Itn(jε) since
\w(υj\>2. Thus μVie is not homotopic in E(L) to a loop in F. We may
suppose F and F are in general position and the number \FnF\ is
minimal among all surfaces isotopic to F preserving μVie. Since F is
isotopic to F, there is a blister P between F and F be Proposition 4.8
(1). By the above fact, μVic is not contained in P. If \FnF\ is not 0,
then we can decrease it by an isotopy through P preserving μViei a
contradiction. So FnF = Φ, and P gives a parallel region between F
and F. Hence there is an isotopy of E(L) preserving μVir which sends
F to F.

Let (M,y) be the complementary sutured manifold for F. Then we
have μVie a intM; further, by the above lemma, the location of μVie in M
is unique up to isotopy. Let W be a fixed regular neighbourhood of μVit

in M. Then the annulus modifications at v are related to the following
condition.

CONDITION 6.5. There is an annulus A properly embedded in
cl(M— W) such that a component of dA is an essential loop in dW and
the other component of dA is contained in i?_(y).

If this condition is satisfied, then we can perform a (H-)-annulus
modification at v* to F as illustrated in Figure 6.2. More precisely, the
surface obtained from F by the annulus modification is isotopic to
Fr(N(R_(γ)<uAu W)), where N and Fr denote the regular neighbourhood
and the frontier in M respectively. Conversely, any annulus modification
of F at v is obtained in this way. If we interchange the signs + and
— in the above, then we obtain the corresponding results for ( — )-annulus
modifications.

Figure 6.2
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L e m m a 6.6. We can perform a { + )-annulus modification at v+ to
F=F(Tyw; p) if and only if the following condition is satisfied: Let T+(v+yp)
be the subtree of T spanned by the vertices v of Ty such that any edge
contained in the (shortest) path from v+ to v is oriented by p so that it points
to v (see Figure 6.3); then, for any vertex v of T+(v*yp) except vmy the
identity |«;(t;)| = l holds.

Further, if this condition is satisfied, then there is a "unique" (-\-)-annulus
modification of F at v+. Similar results also hold for (-)-annulus
modifications.

Figure 6.3

Proof. First, we show the "if' part. Suppose that the assumption
in the lemma is satisfied. Recall that (Myγ) is obtained from the disjoint
union of {(Mvyγv)}veV^T) through identification along Ά— vesEmQ(e) (see
example 4.3). Consider the annulus A* in cl(MViζ— W) and the disk A(v)
in Mv for each ve V(T+(v+yp)) — {v+} as illustrated in Figure 6.4.
Note that the following holds:

(1) A component of dA* is an essential loop in dW and the other
component, say C, of dA* is contained in R_(yVie). Let e be an element
of E(v^T). If e is contained in T+(v*yp)y then CnQ(e) is a horizontal
mark for Q(e) in (M w ,yJ; otherwise CnQ(e) = 0.

(2) For each veV(T+(v^p)) — {v^}y A(v) is a meridian disk of the
solid torus Mv which intersects R + (γv) in an arc. [Here we use the
condition |w(ϋ)| = l.] Let e be an element of E(v,T). Suppose e is
contained in T+(v*yp). Then dA(v)nQ(e) is a vertical mark or a
horizontal mark for Q(e) in (Mv,γυ) according to whether e is contained
in the path from υ+ to v or not. If e is not contained in T+(v^p), then
dA(v)nQ(e) = φ.

Thus we can construct an annulus A in cl(M-W) by piecing A*
and A(v) ( ί ;eF(T + (^p))-{^}) together. We can see that A is an
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Δ(v)

Figure 6.4

annulus required by Condition 6.5, and hence, we obtain the "if" part.

Next, we show the "only if" part and the uniqueness of the annulus
modification. Suppose we can perform a ( + )-annulus modification at v+
to F=F(T,w; p), and let A be the corresponding annulus in cl(M-W)
required by Condition 6.5. We show that A is y-isotopic to the annulus
constructed in the proof of the "if" part.

Step 1. Let C* and C~ be the components of dA lying in dW and
R-(y) respectively. We may suppose A intersects the union of 4-gons
i2= ^eeE(T)Q(e) transversely, and the number \An£\ is minimized. By
the incompressibility of A and the irreducibility of My Ar\Ά contains
no loop components. Note that the boundary of any component of A n i2
lies in C~, since J is disjoint from W. By using the incompressibility
of R-{y) and the irreducibility of My we see that each component of
AnQ(e) is an arc in Q(e) joining the two components of ΘQ(e)nR_(γ).

Step 2. Suppose Ar\ΆΦ§. Let α be an outermost component of
AnΆ in A, and let e be the edge of T such that α c Q(e). Then α cuts
off a disk, say Δ, in Ay which forms a properly embedded disk in some
Mυ. Note that dA a R_(γv)vQ(e), dAnQ(e) = ay and α is either a
horizontal mark or a vertical mark for Q(e) in (Mv,γv). If α is a horizontal
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mark, then αny t ; = 0, and hence, δΔ a R_(γv); so δΔ bounds a disk in
R-(y). This contradicts the condition dA nQ(e) = oc. Hence, α is a
vertical mark. Then we see that Q(e) cz R + (γv) and that δΔ intersects
R + (γv) in an essential arc. Hence v is the terminal point of (e\ p) and
|«;(t;)| = l .

Step 3. Suppose An 21 contains a component which is not outermost
in A. Let α be a component of AnΆ which is next to a set of outermost
components, say βi, , βky and let Δ be the disk in A cut off by α u β^ u βk

(see Figure 6.5 (a)). Then Δ forms a properly embedded disk in some
MΌ. Let e0 and et (1 <i<k) be the edges of T such that α <z Q(e0) and
βt cz Q(eι). Then by the Step 2, βt is a horizontal mark for Q(βj) in
(M^yJ. Suppose α is a horizontal mark for Q(e0) in (Mv,γv). Then
δΔ is contained in R_(γv), and hence, it bounds a disk, say Δ', in
R_(yΌ). We can find a subdisk σ in Δ', such that dσ is the union of
two arcs ζ and ξ> where ζ is a subarc of δΔ such that ζπ(uJ = 0 Q(e ί ) ) = θζ,
and ξ is a subarc of δQ(e, ) — y„ for some i (0 < / < Λ) (see Figure 6.5 (b)).

(a)

Figure 6.5

By using this disk, we can decrease the number \Ar\2\, a contradiction.
Hence, α is a vertical mark. So we see that Q(eo)c:R + (yΌ) and that δ Δ
intersects R + (yv) in an esseitial arc. Thus we see |«;(Ϊ;)| = 1. Note that
e0 [resp. ei (ί<i<k)~\ is oriented by p so that v is the termimal [resp.
initial] point.

Step 4. By repeating the above arguments, we obtain the following:
(1) Let α be a component of Ac\Ά, e the edge of T such that

α cz Q(e)y A a disk in A cut off by α, and v [resp. v'] the end-point of e
such that Mv [resp. MΌi\ contains a neighourhood of α in Δ[resρ. in
cl(A-Ά)]; then |w(ι;)| = l and v is the terminal point of (e; p).

(2) Let A* be the closed up component of A — (An2) containing
the boundary loop C*. Then A* is a properly embedded annulus in
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d(MVit-W) (^T2 x7), such that dA*ndW=C*. Further, for eeE{v,yT)y

Q(e) intersects C = dA* — C* only if *;+ is the initial point of (e; p)\ and
in this case CnQ(e) consists of horizontal marks for Q(e) in (MVityγvJ.

Thus C is disjoint from yVie, and hence it is contained in R_(γvJ. Since
C* is an essential loop in dWy C is an essential loop in R_(γvJ. Hence
C intersects Q(e) if and only if v+ is the initial point of (e; p). Now the
"only i f part of the lemma can be deduced from the facts listed in the
above. To show the uniqueness, we continue the argument.

Step 5. By the minimality of |^4nJ | , we can see that, for each
eeE(v*yT

+{v*yp))y CnQ(e) consists of only one arc. Now we can see
that A* is isotopic to the A* in the proof of the "if' part by an isotopy
of (cl(MVic-W)yγvJ preserving dMVien£. Similarly for each veV(T+(v^
p))~{v*}> Ar\Mv is isotopic to A(v) by an isotopy of (Mvyγv) preserving
ΆrλdMv. This proves the uniqueness of the annulus A satisfying
Condition 6.5.

Now the proof of Assertion 6.3 is completed as follows. Suppose
a surface F is obtained from F=F(Tyw; p) by an annulus modification
at a vertex v* with \w{v^)\>2. Then the condition in Lemma 6.6 is
satisfied. Let 7\, •••, Tr be the components of the sub-forest of T spanned
by V(T)-V(T+(v+; p))y and let e{ be the edge of T joining T+(v*;p) and
Tt {\<i<r). Then {et\ p) points to T+(v^p). Thus, by Lemma 2.1,
the Murasugi spheres ASf(^1),--,*S( r̂) for F are composable, and the dual
surface F" of F with respect to the resulting Murasugi sphere is equivalent
to F(T,w; p'), where pf is obtained from p by reversing the orientations
of el9 -",er. The above Murasugi sphere decomposes F into Fx =F{T+{v^
p)yw; p) and a surface F2 which is a boundary connected sum of
{F(Thw; />)}!<;<,. Since \w(v)\ = \ for any ve V(T+(v.yp))-{vJy the
complementary sutured manifold for Ft has a product decomposition
into the disjoint union of (MVi(yγvJ and a producyt sutured manifold.
Hence, by Proposition 4.7, the sutured manifold between F and F" has
a product decomposition into (MVie,yVie) and a product sutured manifold.
This implies that F" is obtained from F by a (H-)-annulus modification
at v*. By the uniqueness of the annulus modification proved by Lemma
6.6, we see F is equivalent to F". This completes the proof of Assertion
6.3. Now the proof of Theorem 2.3 (1) is complete.

7. Proof of Theorem 2.4

Let L = L(Tyw) be a very special arborescent link, and consider a
minimal genus Seifert surface F=F(Tyw; p) for L. Let (Myγ) [resp.
(Nyδ)] be the complementary [resp. product] sutured manifold for F. As
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in the previous section, we use the construction of (M,y) as the union
of {(Mvyyv)}veV{T) along Ά=ueeE{T)Q{e). By Proposition 4.4 and Remark
4.6, we have only to classify, up to y-isotopy, the essential 4-gons E in
(Myγ) such that dE bounds a disk in N. Note that such 4-gons are
separating in M.

L e m m a 7.1. Let E be a separating essential 4-gon in (M,y). Then
by a y-isotopy, E can be made disjoint from Ά.

Proof. After a y-isotopy, we may suppose E intersects Ά transversely
and dE is disjoint from δ=2ny. Suppose we have minimized |Z?nj2|, and
suppose \EnΆ\φO. Since M is irreducible, Ec\Ά does not contain a
loop component. Let α be a component of Ec\2ί that is outermost in
E. Let Δbe a sub-disk of E such that Δ n j = α, and put β = cl(8A — α).
Since |Z?ny| = 4, we may suppose, if necessary by choosing different
outermost arc, that \βnγ\<2. Let e be the edge of T such that α c: Q(e)y

and let v be the vertex of T such that Δ c Mv. Then β is a properly
embedded arc in cl(dM—Ά) with dβ a dQ{e). By the minimality of \Ecs2\
and the fact that E is essential, we see β is "essential" in {cl{dMv — Ά),
cl{yv — Ά))\ that is, there is no disk σ in cl(dMυ — 2) such that dσ is the
union of two arcs ξ and ζ, and one of the following conditions is satisfied:

(1) ξ^β and σncl(y-£) = dσncl(γ-l) = ζ (see Figure 7.1 (a)).
(2) ξ = β, ζ a ΘQ(e), and σr\cl{y — 2) consists of (zero, one, or two)

properly embedded arcs in σ each of which joins ξ and ζ (see Figure 7.1 (b)).

ci(γ v-Q)

(a) ' (b)

Figure 7.1

Claim 7.2. |/?ny| = 2 and α is a vertical mark for Q(e) in (Mv,γv).

Proof. Since |3Δ r\yΌ\<\βny\ + \danyυ\<2 + 2 = 4, we see Δ is a
0-gon, a 2-gon, or a 4-gon in (MV9γΌ).

Case 1. Δ is an inessential disk in the solid torus Mv: Then, by
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using the fact that β is "essential" in the above sense, we can see that
Δ is a 4-gon in {Mvyyv), and <9Δ is situated in dMv as illustrated in
Figure 7.2 (a).

Case 2. Δ is a meridian disk of Mv: Then we see 2\w(v)\<\dA n
yj<4. Since \w(v)\>2 by the assumption, we see \w(v)\ = 2 and
\dA π y j = 4 . Thus is as illustrated in Figure 7.2 (b).

In both cases we obtain the desired result.

(a) ( b )

Figure 7.2

By the above claim, we see that Er\Ά consists of arcs which are
isotopic to each other in (E,γndE). Let Δ' be the closed up component
oϊE — Ά that is adjacent to Δ. Then A n A ' = α, and one of the following
holds:

(1) ( Δ ' n J) — α is an arc, sayα', and Δ'ny = 0(see Figure 7.3(a)).
(2) £ = Δ u Δ ' (see Figure 7.3 (b)).

Δ1

(a)

C α'
) 9Δ'

Q(e)

( c )

Let v' be the vertex of e opposite to v. Then Δ' c: Mv>. Since α is a
vertical mark for Q(e) in (Mvyyv)y it is a horizontal mark for Q(e) in
{Mv,,yv,). Hence (2) does not occur by Claim 7.2. Thus we have the
conclusion (1). Note that |5Δ'nyt;,| = |δα/ny t ;,|<2. Thus, using the
assumption that \w{v')\>2, we see that dA'nγv, = 0 and that <9Δ' is as
illustrated in Figure 7.3 (c). This contradicts the minimality of



MINIMAL GENUS SEIFERT SURFACES 899

\En£\. Hence we have \ECΛΆ\ = 0, completing the proof of Lemma 7.1.

Proof of Theorem 2.4. Let S be an essential 4-Murasugi sphere
for F — F{Tyw\ p), and let E be the esstitial 4-gon in (M,γ) corresponding
to S. By Lemma 7.1, we may suppose E is disjoint from i?. Let v be
a vertex of T such that E a Mυ. Since E separates M, <3Z? bounds a
disk, say £, in dMv. Since |<9Z?nyJ = 4, E n y , consists of two arcs. Let
Δ be the closed up component of E—γv whose boundary contains both
of the components of Enyv. Since E is an essential 4-gon in (M,γ), we
see J n i ? = c2nΔ is a nonempty union Q{e1)κj " \jQ{er)y where {ely- >er}
is a certain subset of E(v,T) (see Figure 7.4 (a)). Suppose Q(^i), * >Q(O
lies in Δ in this order. Then {̂ i,•••,£,.} lies successively in this order
around v9 and they are oriented by p so that v is the terminal point or
the inital point according as Δ lies in R + (γv) or R_(γυ). Thus we can
express the 4-gon E by an arc α in a small circle in R2 around v, such
that Γ π α = Tninί(α) consists of k points from each of ei, ,eh (see Figure
7.4 (b)).

( a ) ( b )

Figure 7.4

The y-isotopy class of E is determined by the ordered set (e x, , er). Hence
it is determined by the isotopy class of α in (R2

yT). This completes the
proof of Theorem 2.4.

Note that a 4-Murasugi sphere in Example 2.2 (1) decomposes the
link into two prime links, if and only if it is equivalent to S(e) for some
eeE(T). Thus we obtain the following corollary, which is used in the
next section to prove Theorems 2.6 and 2.7.

Corollary 7.3. For a minimal genus Seifert surface F(Tyw; p) of a
very special arborescent link L(T,w)y the set of the 4-Murasugi spheres
{S(e)}eeE(T) is "characteristic"; that is, for any self-homeomorphism g of the
pair (S3,F(T,w; p)), the 4-Murasugi sphere g(S(e))y where e is an arbitrary
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element of E{T), is equivalent to S{ef) for some e'eE(T). Moreover, g is
isotopic to a homeomorphism which preserves veEE(T)S(e) by an isotopy
preserving F(T,w; p).

Proof. The first assertion follows from Theorem 2.4 and the fact
stated in the above. The second assertion can be proved by applying
the argument in this section and Section 4 to the family {S(e)}eeEm of
4-Murasugi spheres.

8. Proof of Theorems 2.6 and 2.7

The arguments in this section are based on Corollary 7.3 and the
following fact.

L e m m a 8.1. Let (T,w) be a finite weighted plane tree, and suppose
that the weight w is special. Let p + and p _ be the alternating orientations
for T. Then the pair of the Seifert surafaces F(Tyw; p + ) and F(T,w; p_)
is "characteristic"] that is, for any isomorphism g between two very special
arborescent links L(T,w) andL{T,w'), g(F(T,w; pε)) (ε= + , —) is equivalent
to F(T\w'\ // + ) or F(T\w'; //_), where p\ and p'_ are the alternating
orientations for T.

Proof. By Proposition 5.3, the number of the vertices in the complex
MS(L(T,w)) which are adjacent to a vertex [F(T,w; p)] is equal to the
number of the vertices of T which are positive or negative with respect
to p. The maximum of these numbers when p runs over Θ(T) is equal
to |F(T) |, and it is attained by the alternating orienations. Thus we
obtain the desired result by Theorem 2.3.

Recall that B3(e,v), where ve V(T) and eeE(v,T), denotes the 3-ball
in *S3 bounded by S(e) whose interior is disjoint from A(v). Let
P3(v) = cl(S3 — ueeE(vT)B

3(e,v)). Then A{v) is a properly embedded
surface in P3(v). For each eeE(T), put l(e) = S(e)n(A(v1)vA(v2)), where
vt and v2 are the end-points of e. Then l{e) is a circle in S(e) which
divides S(e) into two plumbing patches for the minimal genus Seifert
surfaces for L(T,w) (see Figure 8.1 (a)).

Proof of Theorem 2.6. Suppose there is an isomorphism g between
the semi-oriented links (S3,L(T,w)) and (S3,L(T,w')). By the above
lemma, we may suppose g(F(T,w; p + )) = F(Tf,w' p'ε) (ε= + or —). By
Corollary 7.3, we may further suppose g( u β e £ ( Γ ) 5(e)) = ve,eE(Tf)S(e'). Thus
we obtain an isomorphism g+ between the abstract graphs T and T' such
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that g(P3(v)yA(v)) = (P\g>(v))yA(g,(v))) and g(S(e)) = S(gm(e)) (veV(T),
eeE(T)). Since g(l(e)) = l(g.(e)) for any eeE(T), we see that, for each
veV(T)y g induces a homeomorphism gv from (S3

yF(v)) to (S3

yF(g4ι(v)))
such that gv(D(e9v))=D(g,(e),g.(v)) for any eeE(vyT). Thus we see
w'Qkfa)) = «;(*;) or — w(v) according to whether g preserves the orientation
of S3 or not. Define εc(v) [resp. εn(v)] so that gv sends the core orientation
cv [resp. the normal orientation nv] of F(v) to εc{v)cg^v) [resp. εn(v)ngie(v)].
Then the map g*\E(v,τy E(v> ^) ~* E(g*(v)> Tf) preserves or reverses the cyclic
order according as εc{v) — + 1 or — 1 . On the other hand, by considering
the orientations of the Seifert surfaces, we see that the product εc(v)εn(v)
does not depend on v. If εc(v)εn(v) = + 1 , then g+ preserves the cyclic
order at every vertex or reverses the cyclic order at every vertex. If
εc(v)εn(v) = — \ y then g+ reverses the cyclic order at one vertex, and at
each vertex at even distance from it, and g* preserves the cyclic order at
the remaining vertices. Hence g+ determines an isogeny beween (Tyw)
and (T'yw

f). Conversely, by the above arguement, we see any isogeny
between (Tyw) and (Tyw') induces an isomorphism between L(Tyw) and
L(T\wf). This completes the proof of Theorem 2.6.

To prove Theroem 2.7, we need the following proposition:

Proposition 8.2. Let L be a non-fibredy unsplittabley semi-oriented link
in S3 and F an incompressible Seifert surface for L. Let g be a
self-homeomorphism of (S3

yL) which preserves F. Suppose g is pairwise
isotopic to the identity. Then there is a pairwise isotopy from g to the
identity which preserves F.

Proof. This proposition is analogous to [2, Proposition 6.19], and
can be proved by applying the argument of [28, Section 7] to the restriction
of g to E(L) and a hierarchy for E(L) starting from the surface F a (E(L)).

The first step of our proof of Theorem 2.7 is the following lemma.

L e m m a 8.3. For a very special arborescent link L(Tyw)y there is a
well defined epimorphism γ: Syms(S3

yL(T,w)) -• Sym(Tyw). By restriction,
it gives an epimorphism γ + : Sym^{S3

yL(Tyw)) -> Sym + (Tyw).

Proof. Let g be a self-isomorphism of the semi-oriented link
L(Tyw). Then as in the proof of Theorem 2.6, we may assume
g(F(Tyw; p+)) = F(Tyw; pε) ( ε = + or - ) , g(ueEE{T)S(e)) = veeE(T)S(e)y and
g induces a self-isogeny g+ of (Tyw). We would like to define γ by

g^. To show that this is well-defined, we show that g + = l if g is
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pairwise isotopic to the identity. Suppose g is pairwise isotopic to the
identity. Then, by Proposition 8.2, there is a pairwise isotopy from g
to the identity which preserves F(T,w; p + ), since L(T,w) is not
fibred. Thus g preserves each S(e) (eeE(T)) by Theorem 2.4. So we
have g+ = 1, and hence the homomorphism γ is well-defined. By the proof
of Theorem 2.6, we see that γ is surjective.

The next step for the proof of Theorem 2.7 is the determination of
Ker{y). For each ve V(T), let ζv be the involution of the pair (P3(v),A(v))
as illustrated in Figure 8.1 (a). In case \E(v> T)\ < 2, let ηv be the involution
of (P3(v)yA(v)) as illustlated in Figure 8.1 (b). Note that ζv and ηv

generates a Z2®Z2-action on (P3(v),A(v)). Let G(v) be the group of
transformations of (P3(v),A(v)) generated by {ζv,ηv} or by {ζv} according
to whether \E(v, T)\ < 2 or not. Then G(v) preserves each l(e) (e e E(v, T)).

( a )

(P"(v)fA(v))

( b )

(PJ(v),A(v))

Figure 8.1

L e m m a 8.4. Let g be a self-homeomorphism of (P3(v),A(v)) which
preserves each l(e) (eeE(v,T)). Then g is pairwise isotopic to an element
of G(v). Further, if the restriction of g to dP3(v) is equal to the restriction
of an element, say ξ> of G(v)y then g is pairwise isotopic to ξ by a pairwise
isotopy which is constant on dP3(v).
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Proof. Using the assumption for g and the fact that each component
of A{v) is a disk (or an annulus when k = 0)y we can see that there is an
element ξ of G(v) such that the restrictions of g to A{v) and S(e)
(eeE(vyT)) are isotopic to those of ξ. Thus, by using the fact that
cl(P3(v)-N(dP3(v)uA(v); P3(v))) is a solid torus, we can see that g is
pairwise isotopic to ξ. If g\s(e)

 = ζ\s(e)> t n e n t n e isotopy can be made
constant on S(e).

Let e be an edge of Ty and let vi and v2 be the end-points of ey

and suppose the valency of vx is 1 or 2. Then we may suppose
*1vi\s(e) = ζv2\s(e) Using this fact, we can define the group Γ(Γ) of
self-isomorphisms of L(Tyw) as follows:

Case 1. \T\ is an inteval or a point, that is, the valency of any
vertex of T is equal to 1 or 2: Fix a vertex vOy and let ζ [resp. η] be the
self-isomorphism of L(Tyw) whose restriction to P(υ) is equal to ζv [resp.f/J
or ηv [resp. ζv] according as v is at even distance or odd distance from
v0. Then ζ and η are commutative involutions and they generate a
Z 2 0Z 2 -act ion on (S3

yL(Tyw)). We define Γ(Γ) to be this group.
Case 2. \T\ is neither an interval nor a point, and there is a vertex

v0 of Ty such that any vertex at an odd distance from v0 has valency 1
or 2: Then let ζ be the slef-homeomorphism of L(Tyw) defined as in the
above. Then ζ is an involution, and we define T(T) to be the group
generated by ζ.

Case 3. Otherwise: Then Γ(T) = 1.

By using Lemma 8.4 and the fact that any element in Ker(γ) is
represented by a self-isomorphism g of (S3

yL(Tyw)) preserving each S(e)
(eeE(T)) and each A(v) (ve V(T))y we can see that there is an epimorphism
from Γ(Γ) to Ker(γ). Further, since each element of Γ(Γ) preserves the
orientation of *S3, we see Ker(γ + ) = Ker(y).

To see that Γ(T) injects to Ker(γ)y note that each of ζ and ηy if it
is defined, maps F(Tyw; p + ) to F(Tyw; p_). Since these two Seifert
surfaces are not equivalent by Theorem 2.3, ζ and η represent nontrivial
elements in Ker(y). This shows the injectivity in Case 2. To show the
injectivity in Case 1, we have only to show that the composite map ζη
is not pairwise isotopic to the identity. Suppose it is pairwise isotopic
to the identity. Then, by Proposition 8.2, there is a pairwise isotopy
from ζη to the identity which preserves F(Tyw; p + ). This contradicts
the fact that ζη acts on the nontrivial free abelian group H1(S3 — F(Tywy p);
Z) as the multiplication by — 1. This completes the proof of Theorem 2.7.
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