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In this note, generalizing recent works of Masaike [15] and Hoshino
[9], we will provide another approach to the theory of QF-3 rings. We
will also provide an explanation to the symmetry established by Masaike
[14, Theorem 2].

Recall that a ring R is called left (resp. right) QF-3 if it has a minimal
faithful left (resp. right) module, i.e., a faithful left (resp. right) module
which appears as a direct summand in every faithful left (resp. right)
module (see, e.g., Tachikawa [30] for details). In his recent paper [15],
K. Masaike showed that a left QF-3 ring R is also right QF-3 if and
only if it contains an idempotent f such that RfR is a minimal dense left
ideal and every finitely solvable system of congruences {x=fx,(mod I,)} .o
with each I, a left ideal is solvable. Generalizing this, we will provide
a characterization of left and right QF-3 rings. To do so, we will
introduce the notion of t-absolutely pure rings in Section 1 and the
notion of T-semicompact modules in Section 2, where ‘“‘1-’’ means ‘‘relative
to Lambek torsion theory’”. With those notions, we will show that a
ring R is left and right QF-3 if and only if it is Tt-absolutely
pure, left and right 7-semicompact and contains idempotents e, f such
that ReR and RfR are minimal dense right and left ideals, respectively.

Throughout this note, R stands for an associative ring with identity,
modules are unitary modules, and torsion theories are Lambek torsion
theories. Sometimes, we use the notation zX (resp. Xjy) to stress that
the module X considered is a left (resp. right) R-module. We denote
by Mod R (resp. Mod R°?) the category of left (resp. right) R-modules
and by ()* both the R-dual functors. For a module X, we
denote by E(X) its injective envelope and by &y: X — X" the usual
evaluation map. Recall that a module X is said to be torsionless if ey
is a monomorphism, and to be reflexive if &5 is an isomorphism. Note
that for a submodule X’ of a module X, if X/X  is torsionless then
Ker ey © X'. For an XeMod R, we denote by t(X) its Lambek torsion
submodule. Namely, ©(X) denotes a submodule of X such that
Hompg(1(X), E(zgR))=0 and X/1(X) is cogenerated by E(xR). For also
an MeMod R°®?, we denote by t(M) its Lambek torsion submodule.



730 M. HosHINO AND S. TAKASHIMA

Let us recall several definitions. A module X is said to be torsion
if 7(X)=X, and to be torsionfree if 7(X)=0. Note that for a submodule
X of X, if X/X is torsionfree then 7(X) = X', in particular, we have
7(X) < Kerey. A nonzero torsionfree module X is said to be cocritical
if X/X’ is torsion for every nonzero submodule X’ of X. A submodule
X' of a module X is said to be dense if X/X' is torsion, and to be closed
if X/X' is torsionfree. A dense left (resp. right) ideal I is called a
minimal dense left (resp. right) ideal if it is contained in every dense
left (resp. right) ideal. Note that a minimal dense left ideal, if exists,
has to be an idempotent two-sided ideal, that a minimal dense left ideal
exists if and only if the class of all torsion left modules is closed under
taking direct products, and that in case R is right perfect, R contains an
idempotent f with RfR a minimal dense left ideal.

The authors would like to thank Professor T. Sumioka for his helpful
advice.

1. t1-Absolute purity of rings

In this section, we introduce the notion of t-absolutely pure
rings. With that notion, we formulate the symmetry established by
Masaike [14, Theorem 2].

We have to recall several more definitions. A module X is said to
be t-finitely generated if it contains a finitely generated dense
submodule. A finitely generated module X is said to be rt-finitely
presented (resp. t-coherent) if for every epimorphism (resp. homomor-
phism) n: X'—» X with X' finitely generated, Ker 7 is t-finitely
generated. Note that every finitely generated submodule of a t-coherent
module is 7-finitely presented. Also, a module X is said to be t-artinian
(resp. 7-noetherian) if it satisfies the descending (resp. ascending) chain
condition on closed submodules. Finally, a ring R is said to be left
(resp. right) t-artinian if zfR (resp. Rp) is t-artinian, to be left (resp.
right) t-noetherian if gR (resp. Ry) is T-noetherian, and to be left (resp.
right) t-coherent if gR (resp. Ry) is t-coherent.

REMARKS. (1) A module X is 1-finitely presented if and only if
there exists an exact suquence 0—»X"'— X - X—-0 with X' finitely
presented and X" torsion.

(2) A module X is t-noetherian if and only if every submodule of
X is t-finitely generated (see Faith [5, Proposition 3.1]).

(3) A ring R is left t-noetherian if and only if every finitely generated
left module is t-finitely presented (see, e.g., Sumioka [28]). In particular,
a left 7-noetherian ring R is left 7-coherent.
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(4) A left t-artinian ring R is left t-noetherian (see Miller and Teply
[17, Theorem 1.4]).

The next lemma follows immediately from the fact that t1(X) < Ker ¢4
for every module X.

Lemma 1.1. For a module X the following are equivalent.

(a) t(X)=Ker &.
(b) Ker gy 1s torsion.
(c) X/1(X) is torsionless.

The next lemma will play a key role in our arguments below.

Lemma 1.2 (Hoshino [9, Theorem A]). For a ring R the following
are equivalent.

(a) t©(X)=Ker ¢y for every finitely presented X € Mod R.

(a)°® 1t(M)=Ker &y for every finitely presented M € Mod R°®.

(b)  Ewvery t-finitely presented torsionfree X € Mod R is torsionless.

(b)°® Every t-finitely presented torsionfree M eMod R°P is torsionless.

(c) Extg!(X, R) is torsion for every finitely presented X € Mod R.

(c)°® Extg!(M, R) is torsion for every finitely presented M € Mod R°P.

Proof. (a)<>(a)’®. See Hoshino [9, Theorem A].

(a)=(b). Let XeMod R be t-finitely presented. Then there exists
an epimorphism 7: X' —» X with X' finitely presented and Ker n
torsion. Since a™ is an isomorphism, m induces an epimorphism
Ker ¢4, — Ker €. Hence by Lemma 1.1 the assertion follows.

(b)=(a). Let XeModR be finitely presented. Then X/1(X) is
t-finitely presented. Hence by Lemma 1.1 the assertion follows.

(a)<>(c)°’. Let P;—>P,—> M —>0 be a finite presentation in Mod R°?
and put X=Cok(P,"—P,*). Then we have a finite presentation
Py* > P;*> X -0 in Mod R with Cok(P,”— P,™)=~M. Note that Extg’
(M,R)=Ker &4 by Auslander [1, Proposition 6.3]. Hence by Lemma 1.1
the assertion follows.

In the following, a ring R will be called t-absolutely pure if it satisfies
the equivalent conditions of Lemma 1.2. We notice the following.

RemARK. In Lemma 1.2, the conditions (a) and (c) are equivalent to
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the following conditions (a)’ and (c)’, respectively:
(a) 1(X)=Ker ¢4 for every t-finitely presented X e Mod R.
(c) Extg!(X, R)is torsion for every t-finitely presented X € Mod R.

Lemma 1.3. For a ring R the following are equivalent.

(a) ©(X)=Ker ey for every finitely generated X e Mod R.
(b) Ewery finitely generated torsionfree X € Mod R is torsionless.
(c) Every finitely generated submodule of E(gxR) is torsionless.

Proof. (a)=(b). By Lemma 1.1.

(b) =>(c). Obvious.
(c)=(a). See Hoshino [9, Lemma 5].

Lemma 1.4. The implications (a) = (b)=>(d) and (a) = (c) = (d) hold
among the following conditions:

(a) Ewvery finitely generated submodule of E(xR) embeds in a projective
module.

(b) E(gR) is flat.

(c) Ewvery finitely generated submodule of E(gxR) is torsionless.

(d) R is t-absolutely pure.

Proof. (a)=>(b). See, e.g., Rutter [22, Lemma 2].

(a) = (c). Obvious.
(b)=(d). See the proof of Hoshino [9, Proposition B].
(c)=(d). By Lemma 1.3.

Lemma 1.5. Assume that R is t-absolutely pure. Then the following
are equivalent.

(a) R s left t-noetherian.
(b) R satisfies the ascending chain condition on annihilator left ideals.

Proof. (a)=-(b). Obvious.

(b)=>(a). Let I be a left ideal of R. We claim that [ is t-finitely
generated. By Faith [S, Proposition 3.1] I contains a finitely generated

~

subideal I' such that (R/I)*S (R/I')*. Hence (R/I')*5 (R/I)* and I/T
embeds in Ker gg;.. Since R/I' is finitely presented, Ker &g is torsion,
so is I/T'.

The next proposition generalizes results of Morita [18, Theorem 1]
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and Sumioka [28, Lemma 7].

Proposition 1.6 (cf. Hoshino [9, Proposition B]). Assume that R is
right t-coherent. Then the following are equivalent.

(a) R is t-absolutely pure.
(b) Ewvery torsionfree injective E€ Mod R is flat.
(c) E(gR) is flat.

Proof. (a)=(b). Let EeModR be torsionfree injective and let
M e Mod R be finitely presented. We claim that Tor® (M, E)=0. Let
0> N—->F—M-0 be an exact sequence in Mod R°® with F free of finite
rank. Since N is a finitely generated submodule of a t-coherent module
F, it follows that N is t-finitely presented (see Jones [11]). Thus there
exists an exact sequence 0 > K —» L - N — 0 in Mod R°® with L finitely
presented and K torsion. Let m denote the composite L - N - F. It
suffices to show that m@gzE is monic. Note that Ker (t®gE)=Ker
(Homg(7*,E)) because both L and F are finitely presented (see Cartan
and Eilenberg [3, Chap. VI, Proposition 5.3]). Since Cok n*~Extg!(M,
R) is torsion, it follows that Homg(n*, E) is monic.

(b) = (c). Obvious.
(c)=>(a). By Lemma 1.4.

Proposition 1.7 (cf. Hoshino [9, Proposition C}). Assume that R is
left t-noetherian. Then the following are equivalent.

(a) R is t-absolutely pure.
(b) Every finitely generated submodule of E(xR) is torsionless.

(c) E(RgR) ts flat.

Proof. (a)<>(b). Since R is left t-noetherian, every finitely
generated left module is t-finitely presented (see Sumioka [28]). By
Lemma 1.3 the assertion follows.

(a)<(c). By Proposition 1.6.

Finally, we formulate the symmetry established by Masaike [14,
Theorem 2] as follows (cf. Sumioka [27, Proposition 1]).

Theorem 1.8. Assume that R is T-absolutely pure. Then the following
are equivalent.

(@) R is left and right T-noetherian.
(b) R is left and right t-artinian.
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(c) R is left t-artinian.
(©)°® R 1s right t-artinian.

Proof. We have only to prove (a)<>(c).

(a)=(c) By Lemma 1.3 and Proposition 1.7 every finitely generated
torsionfree left module is torsionless. Also, R satisfies the descending
chain condition on annihilator left ideals. Hence R is left t-artinian.

(c)=(a). By Miller and Teply [17, Theorem 1.4] R is left
t-noetherian. Also, since R satisfies the acending chain condition on
annihilator right ideals, R is right 7-noetherian by Lemma 1.5.

2. 1-Semicompactness of modules

In this section, we introduce the notion of t-semicompact modules,
which is closely related to the notion of reflexive modules.

Recall that a homomorphism 7: X' — X is called a 7-epimorphism if
Cok m is torsion. In the following, a module X will be called
1-semicompact if for every inverse system of t-epimorphisms {7;:
X - Y,},ca with each Y, torsionless, lim 7, is t-epic. A ring R will be
called left (resp. right) t-semicompact if gR (resp. Ry) is T-semicompact.

Remarks. (1) Every epimorphic image of a 7-semicompact module
is T-semicompact.

(2) The 1-semicompactness is just the R-linear compactness, in the
sense of Gomez Pardo [7], relative to Lambek torsion theory.

(3) Even if R is commutative, the T-semicompactness differs from
the semicompactness, in the sense of Matlis [16], relative to Lambek
torsion theory in general. However, for modules zR and Rpy, the
T-semicompactness coincides with the semicompactness, in the sense of
Stenstrom [25], relative to Lambek torsion theory.

The next lemma is due essentially to Miiller [19, Lemma 1] (cf. also
Sandomierski [24, Lemma 3.4]).

Lemma 2.1. Assume that every finitely generated submodule of E(zxR)
is torsionless. Let Xe Mod R and let j: M — X* be monic in Mod R°° with
M finitely generated. Then J*ogy is T-epic.

Proof. Letm,, -, m,e M be generators over R and put a="(j(m,), -,
jm,)): X—>F=xR™. Then we have an epic n: F*—>M such that
a*=jon. Put Y=Cok a. Then we have the following commutative
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diagram with exact rows:

X - F - Y > 0
Joexl AR ley
0> Mm5 o vy

Hence Cok(j"oex) = Ker &y is torsion by Lemma 1.3.

Corollary 2.2. Assume that every finitely generated submodule of
E(gxR) is torsionless. Then ey is T-epic for every T-semicompact X € Mod R.

Proof. Let XeModR be t-semicompact. Take a direct system of
monomorphisms {j;: M;— X"}, o with each M, finitely generated such
that lim7,: imM;—> X*. Then by Lemma 2.1 we get an inverse system

of T-epimorphisms {j,*oey: X5 M,*}, o with each M,* torsionless. 'Thus

(lim j,")oexy=1im (j,"cex) is 7-epic. Hence, since lim j;*=~(lim j,)* is an
isomorphism, &y is T-epic.

ReMARK. The argument above yields that if R is 7-absolutely pure
then &y is t-epic for every finitely generated 7-semicompact X e Mod R.

Lemma 2.3. Assume that R has a minimal dense left ideal. Then
for an Xe Mod R the following are equivalent.

(a) X is t-semicompact.

(b) For every inverse system of epimorphisms {m,: X—Y,};cn
with each Y, torsionless, lim m, is t-epic.

=

In particular, every X € Mod R which satisfies the descending chain condition
on submodules X' with X/ X' torsionless is t-semicompact.

Proof. (a)=-(b). Obvious.
(b)=>(a). Let {m;: X-Y,},.o be an inverse system of 1-

. . . . a B
epimorphisms with each Y torsionless. For each A€A, let X X ;>3 Y,
be an epic-monic factorization of n;. Since limz,=(lim f,)o(lima;) with
lim f; monic, we get the following exact sequence:

0 - Cok(lim o;) » Cok(lim 7;) —» Cok(lim f,) - 0.

Note that the class of all torsion left modules is closed under taking
direct products. Since we have a sequence of embeddings Cok(lim f;)
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s lim Cok 8, s I1,., Cok B,, Cok(lim ;) is torsion. Also, Cok(lim «;)
is torsion by hypothesis. Hence Cok(lim 7;) is torsion.

Proposition 2.4. Assume that R contains an idempotent f with RfR
a minimal dense left ideal and fR an injective right ideal. Then every
XeMod R with e t-epic is T-semicompact. In particular, every finitely
generated X € Mod R is t-semicompact.

Proof. Let XeModR with &y t-epic. Let {n,: X— Y,},., be an
inverse system of epimorphisms with each Y, torsionless. Since
(lim €y,)e o(limn;)=(lim 7,")c gy, hmz;,,/l induces homomorphisms «: Im(lim
T,) — Im(11m 7;,”) and B: Cok(lim 7,;) - Cok(lim #,”). Since lim &, is
monic, Ker f embeds in Cok . On the other hand, Cok a is an
epimorphic image of Cok &x. Thus Ker f is torsion. Next, since lim
n;* is monic, fR®g(lim 7,;”)=~Homg(lim #;*, fR) is epic. Hence Cok
(lim 7,*) is torsion, so is Imf. Therefore Cok(lim ;) is torsion and by
Lemma 2.3 X is t-semicompact. Finally, we claim that &4 is 7-epic for
every finitely generated XeModR. Let n: F— X be epic in ModR
with F free of finite rank. Put M=Cok n*. Since F is reflexive,
Cok gy~ Cok ™= Extg!(M, R). Thus fR® zCok ey~ Extz'(M, fR)=0,

so that &4 is tT-epic.

REMARK. Let XeMod R be torsionless with ey t-epic. Then &y is
an essential monomorphism, so that N, , Ker ;=0 for every family
{a;},ea of homomorphisms ;€ X* with N, Ker a;=0. Thus, if X
embeds in a direct product of copies of zR as a closed submodule, then X is
reflexive. Hence, putting Corollary 2.2 and Proposition 2.4 together,
one can obtain an extension of a result of Masaike [15, Theorem 3].

Lemma 2.5. Assume that every finitely generated submodule of E(zgR)
is torsionless, and that R has a minimal dense left ideal. Then for a finitely
generated X € Mod R the following are equivalent.

(a) X is t-semicompact.

(b) For every inverse system of epimorphisms {m;,: X — Y,};c, limm,
s T-epic.

(c) For every inverse system of t-epimorphisms {n;: X - Y, } .4, lim
T, is T-epic.

Proof. (a)=>(b). Let {n,: X— Y,};c» be an inverse system of
epimorphisms. Foreach leA,leta;: Y, » Y,/1(Y,) denote the canonical
epimorphism. Then lim o; induces the following exact sequence:

Ker(lim «;) - Cok(lim 7;) — Cok(lim a;07;).
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Since the class of all torsion left modules is closed under taking direct
products, Ker(lim a;)~lim 7(Y,) is torsion. On the other hand, each
Y,/1(Y,) is finitely generated torsionfree and thus torsionless by Lemma
1.3. Hence Cok(lima,on;) is torsion by hypothesis. Therefore Cok(lim
T;) is torsion.

(b)=(c). By the same argument as in the proof of (b)=>(a) in
Lemma 2.3.

(c)=(a). Obvious.

a B
Corollary 2.6. Let 0> X' - X > X" >0 be an exact sequence of

finitely generated modules in Mod R. Assume that every finitely generated
submodule of E(gxR) is torsionless, and that R has a minimal dense left
tdeal. Then the following are equivalent.

(a) X is t-semicompact.
(b) Both X' and X' are t-semicompact.

Proof. (a)=>(b). Let {n,’: X' > Y,'},co be an inverse system of
epimorphisms. For each A€A, take a push-out of ;" along with a:

0—->X’E>X - X" -0

md i M I
0-> Y, -Y, - X -0

Then Cok(lim ;") = Cok(limr;) is torsion. Next, let {n,": X" - Y,"},a
be an inverse system of epimorphisms. Then Cok(lim 7,")=~ Cok(lim
fom,”’) is torsion.

(b)=(a). Let{m,: X — Y,};.4 beaninverse system of epimorphisms.

L) %2 . . . .
For each A€ A, let X’>» Y,/>5 Y, be an epic-monic factorization of 7 o,

let B,: Y, — Y,” denote a cokernel of a,, and let n;,”": X" — X" satisfy
n)/of=p,°m,. Then we get the following exact sequence:

Cok(lim n;’) - Cok(lim n;) — Cok(lim 7,").
Since both Cok(lim ;) and Cok(lim ;") are torsion, so is Cok(lim 7).

Lemma 2.7. For a ring R the following are equivalent.

(@) R is t-absolutely pure and left t-semicompact.
(b) Extg!(R/I, R) is torsion for every right ideal 1.
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Proof. (a)=>(b). Let I be a right ideal. Take a direct system of
inclusions {j;: I, = I};., with each I, a finitely generated subideal of I

such that lim j;: ﬂml,l:;l. Let j: 1> R denote the inclusion. Since
lim j*~(im j;)* is an isomorphism, Extg!(R/I,R)=Cok j*=~Cok(lim
Ji*of"). For each A€A, I is torsionless, and Cok(j;*os")=Extg!
(R/I,R) is torsion. Hence Cok(limj,;*o5*) is torsion.

(b) = (a). By induction on the number of generators, it follows that
Extg!(M,R) is torsion for every finitely generated MeModR®. In
particular, R is t-absolutely pure. Next, let {n,: gRR— Y,},.o be an
inverse system of T-epimorphisms with each Y, torsionless. Since limey
is monic, Cok(limn,;) embeds in Cok(limn,*). Identify (zR)* with Ry and
put I=Im(limn,"). Since limn,* is monic, and since lim Y,*~(lim Y ;*)",
Cok(lim n;*)=Extg!(R/I,R). Thus Cok(lim n,”) is torsion, so is Cok
(lim 7).

3. Idempotent generated minimal dense ideals

In this section, we collect several basic results on idempotent generated
minimal dense ideals which we use in the next section.

ReEmARKS. (1) For an idempotent fe R, RfR is a minimal dense left
ideal if and only if Ker(fR® g—)=Ker(Homg(—, E(zR))). Thus, if RfR
is a minimal dense left ideal with f an idempotent, then fR® g—:
Mod R - Mod fRf induces Mod R/t>~Mod fRf, where Mod R/t denotes
the quotient category of ModR over the full subcategory Ker
(Hompg(-E(rR))).

(2) Assume that R is right perfect. Then R contains an idempotent
f with RfR a minimal dense left ideal (see Storrer [26]).

Lemma 3.1 (Rutter [23, Theorem 1.4]). For an idempotent fe R
the following are equivalent.

(@) RfR is a minimal dense left ideal.
(b) fRy is faithful and every simple homomorphic image of gRf is
torsionless.

Corollary 3.2. Let fe R be an idempotent with RfR a minimal dense
left ideal and fR an injective right ideal, and let f,e€fRf be a local
idempotent. Then (Rf,/Jf,)" is cocritical and embeds in f; Ry, where J denotes
the Jacobson radical of R.

Proof. Note that pRf;/Jf; and [,z fR®g(Rf;/Jf;) are simple.
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Thus by Lemma 3.1 (Rf;/Jf;)*#0. Since fRy is injective and faithful
by Lemma 3.1, it is sufficient for (Rf,/Jf;)* to be cocritical that
sre Homg(Rf1/Jf1)", fR)= ;g fR®R(Rf1/Jf1)™ is simple. Let n: Rf; —
Rf,/Jf; denote the canonical epimorphism. Then, since Rf; is reflexive,
Cok egy,/57,=Cok n™. Thus, since fRQ gn™ =~ Homg(n*, fR) is epic, so is
SR®gery,5r,- Hence ;g fR®g(Rf;/Jf)™ is simple. The last statement
is obvious.

Corollary 3.3 (cf. Rutter [23. Corollary 1.2]). Let f=f,+---+f, be
an orthogonal sum of local idempotents f; in R. Assume that fRy is faithful
and injective, and that each fRg contains a cocritical submodule M;. Then
RfR is a minimal dense left ideal. In particular, R is left t-semicompact.

Proof. Let J denote the Jacobson radical of R. We claim that each
rRfi/Jf; is torsionless. Since every nonzero he Homg(M;, fR) is monic,
it follows that ;g Homg(M;, fR)= (rfRf/fJf;. Thus Hom g (fRf/fJf;,
fR)#0, which implies Homg(Rf;/Jf;, R)#0. Hence by Lemma 3.1 RfR
is a minimal dense left ideal. It then follows by Proposition 2.4 that R
is left t-semicompact.

Lemma 3.4. Let feR be an idempotent with RfR a minimal dense
left ideal. Then RRfX 1is simple for every XeModR with X/1(X)
cocritical. In particular, every cocritical X e Mod R has a nonzero socle.

Proof. Let XeMod R with X/1(X) cocritical. We may assume that
7(X)=0. Let X' be a nonzero submodule of X. Then X/X is torsion,
so that RfX c X'. Hence zRfX is simple.

As pointed out by Stenstrom [25, Proposition 2.5], the argument of
Matlis [16, Propositions 2 and 3] would yield the following.

Proposition 3.5. Let feR be an idempotent with RfR a minimal
dense left ideal. Then the following are equivalent.

(a) fR is an injective right ideal.
(b) R is t-absolutely pure and left 1-semicompact.

Proof. (a)=>(b). For an MeMod R°P, fR®RExtR1(M,R);Extkl
(M fR)=0 implies Extg!(M, R) torsion. Thus R is t-absolutely
pure. Also, R is left T-semicompact by Proposition 2.4.

(b) = (a). By Lemma 2.7 Extg!(R/I, fR)=fR® gExtg!(R/I, R)=0 for
every right ideal I.
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Proposition 3.6. Let fe R be an idempotent with RfR a minimal
dense left ideal. Assume that every finitely generated submodule of E(gR)
is torsionless, and that R is left t-semicompact. Then every X e Mod fRf
with RRfQ ;g X finitely generated is linearly compact in the usual sense. In
particular, fRf is a semiperfect ring.

Proof. Let XeModfRfwith xRf® ,gX finitely generated. Let {m,:
X - Y,};ca be an inverse system of epimorphisms in ModfRf. Then
{Rf® ;g m;: Rf® rsX = Rf® ;Y ;}sea is an inverse system of epimor-
phisms in Mod R. It follows by Corollary 2.6 that every free left R-module
of finite rank is t-semicompact. Thus every finitely generated left
R-module is t-semicompact. Hence by Lemma 2.5

Cok(lim ;) = Cok(lim Homg(Rf, Rf® ;gs7;))
~ Cok(Homp(RY, lim Rf® ;z,7,))
=~ Homg(Rf, Cok(lim Rf® ;g,7;))
-0,

so that X is linearly compact in the usual sense (see, e.g., Gémez Pardo
[7, Proposition 1]). Since gRf® ;g fRf is finitely generated, it follows
that fRf is a semiperfect ring (see Kasch and Mares [12] and Sandomierski

[24]).
4. QF-3 rings

In this section, generalizing a result of Masaike [15, Theorem 5],
we provide a characterization of left and right QF-3 rings.

To point out the difference between ‘‘one-sided QF-3 rings” and
“two-sided QF-3 rings”’, we first provide a characterization of right QF-3
rings.

Proposition 4.1. For a ring R the following are equivalent.
(1) R is right QF-3.
(2) (a) R is t-absolutely pure.
(b) R is left t-semicompact.
(c) R contains an idempotent f such that RfR is a minimal dense
left ideal and fRf is a semiperfect ring.
(d) Ewvery cocritical right module has a nonzero socle.

Proof. (1)=(2). Let feR be an idempotent with fR a minimal
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faithful right module. Then by Rutter [21, Theorem 1] fRy is faithful,
injective of finite Goldie dimension and has an essential socle. Also, by
Rutter [23, Corollary 1.2] RfR is a minimal dense left ideal. Thus by
Proposition 3.5 (a) and (b) hold. Since fRy is injective of finite Goldie
dimension, fRf~End(fRg) is semiperfect, so (c) holds. It is obvious
that every cocritical right module embeds in fRg;. Since fRi has an
essential socle, (d) holds.

(2)=(1). We may assume that fRf is a selfbasic ring. Note that
fRg is faithful by Lemma 3.1 and injective by Proposition 3.5. Let
f=f,+---+f, be an orthogonal sum decomposition into local idempotents.
Then by Corollary 3.2 each f;Ry contains a cocritical submodule, so that
each f,Rp has a nonzero socle. Hence by Rutter [21, Theorem 1]
JRREfIRR® - ®f,Rg is a minimal faithful right module.

Theorem 4.2. For a ring R the following are equivalent.
(1) R is left and right QF-3.
(2) (a) R is t-absolutely pure.

(b) R is left and right t-semicompact.

(c) R contains idempotents e, f such that ReR and RfR are
minimal dense right and left ideals, respectively.

Proof. (1)=(2). By Proposition 4.1.

(2)=(1). By symmetry, it suffices to show that R is right QF-3. By
Lemma 3.1 and Proposition 3.5 gRe is faithful and injective. Hence
every torsionfree left module is torsionless, so that by Proposition 3.6
fRf is a semiperfect ring. Also, by Lemma 3.4 every cocritical right
module has a nonzero socle. Hence by Proposition 4.1 R is right QF-3.

REMARK. Assume that R is left and right perfect. Then in
Proposition 4.1 (c) and (d) of (2) are satisfied. Thus R is right QF-3
if and only if R is t-absolutely pure and left 7-semicompact.

Corollary 4.3 (cf. Sumioka [28, Theorem 8]). For a ring R the
following are equivalent.

(1) R is semiprimary, left and right QF-3.
(2) (a) R is t-absolutely pure.

(b) R is left perfect.
(c) R is either left t-noetherian or right t-coherent.
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Proof. (1)=>(2). It only remains to see that (c) holds. We claim
that R is left and right t-artinian. Let fe R be an idempotent with fR
a minimal faithful right module. By Rutter [23, Corollary 1.2] RfR is
a minimal dense left ideal. Also, by Colby and Rutter [4, Theorem 1.3]
srgfR is artinian. Thus R is left t-artinian, since fR®gz—: Mod R —
Mod fRf induces Mod R/1=~ Mod fRf, where Mod R/t denotes the quotient
category of Mod R over tha full subcategory Ker(Homg(—, E(zxR))). By
symmetry, R is also right t-artinian.

(2) = (1). It suffices to show that R is semiprimary, left and right
t-semicompact. In case R is right t-coherent, by Proposition 1.6 every
torsionfree injective left module is projective and by Masaike [14, Theorem
1] R is left t-artinian. So we may restrict ourselves to the case where
R is left t-noetherian. 'Then by Faith [5, Proposition 4.1] R is semiprimary
and thus left t-artinian. By Theorem 1.8 R is also right t-artinian. It
now follows by Lemma 2.3 that R is left and right 7-semicompact.

5. Maximal quotient rings

In this section, we deal with the case where R has a maximal
two-sided quotient ring. Recall that a maximal left (resp. right) quotient
ring O, (resp. O,) of R is defined as a biendomorphism ring of E(gxR)
(resp. E(Rg)), and that R is said to have a maximal two-sided quotient
ring if O, 0, as ring extensions of R.

In the following, we denote by Mod R/t the quotient category of
Mod R over the full subcategory Ker(Hompg(—, E(zR))). Also, Mod R°?/1
denotes the quotient category of Mod R°® over the full subcategory
Ker(Hom(—, E(RR))).

RemaARks. (1) Let zO be a maximal rational extension of gkR. Then
Q has a ring structure such that the inclusion R—>Q is a ring
homomorphism. Furthermore, as a ring extension of R, Q is isomorphic
to a maximal left quotient ring of R.

(2) Let Q be a maximal left quotient ring of R, and let %:
Mod R —» Mod R denote the localization functor associated with Lambek
torsion theory. Then the correspondence I+ Z(I) gives rise to an
isomorphism from the lattice of all closed left ideals of R to the lattice
of 4dll closed left ideals of Q. Hence R is left t-artinian (resp. t-noetherian)
if and only if so is Q.

(3) Let O be a maximal left quotient ring of R. Then
Homg(oQg,-):2 Mod Q - Mod R induces Mod Q/t=Mod R/t.



LaMBEK TORsION THEORIES 743
In his proof of [14, Lemma 1], K. Masaike showed the following.

Proposition 5.1 (cf. Vinsonhaler [31, Theorem A]). Assume that
E(gR) is 1-noetherian. Then R is left t-artinian.

Proof. Let O be a maximal left quotient ring of R. It sufficies to
show that Q is left t-artinian. Since gHomgy(oQOg, E(oQ))=E(gxR) is
t-noetherian, it follows that E(,Q) is t-noetherian. In particular, Q is
left t-noetherian. On the other hand, it follows by the argument of
Masaike [14, Lemma 1] that Q is semiprimary. Hence Q is left t-artinian.

The next lemma seems to be known.

Lemma 5.2. Assume that R is left t-artinian. Then Mod R/1=
Mod A with A left artinian.

Proof. Let O be a maximal left quotient ring of R. It is known
that Q is semiprimary (see Faith [6, Part I, Corollary 7.5]). However,
for the benefit of the reader, we provide an elementary proof of this
fact. Let H=End(E(gxR))°®, the opposite ring of End(E(gxR)), operate on
E(xR) by the right hand side. We claim that E(xR)y has a finite
composition length. Note that R is also left t-noetherian by Miller and
Teply [17, Therem 1.4]. Thus there exists a chain of left ideals of R :

O=IOCII [enprpys CIn=R

such that (1;,/I,)/1(I;, /1) is cocritical for 0<i<n (see, e.g., Sumioka
[28]). Hence it suffices to show that Homg(X, E(zxR))y is simple for
every Xe Mod R with X/1(X) cocritical. Let XeModR with X/1(X)
cocritical. Since Hompg(X/1(X), E(xR))gy=Homg(X, E(xR))y, we may
assume that 7(X)=0. Let a, fe Homg(X, E(zxR)) with a#0. Then «
is monic, so that f=ah for some he H. Hence Hompg(X, E(zR))u
is simple. Therefore Q is semiprimary. Note that Mod Q/tr=~Mod R/z.
Since Q contains an idempotent f with QfQ a minimal dense left ideal
of Q, Mod Q/t=Mod fOf. Consequently, Mod R/1=~ModfQf. Finally,
since oQ is T-artinian, ;o fQ is artinian. In particular, fOf is left artinian.

After completing the first version of this note, the authors found
that the next proposition had been observed by Gémez Pardo and Guil
Asensio [8].

Proposition 5.3. Assume that R is t-absolutely pure and left
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t-artinian. Then there exist a left artinian ring A and a right artinian
ring B such that Mod R/t=Mod A, Mod R°®/t =Mod B°® and A is left
Morita dual to B.

Proof. By Proposition 1.7 and Masaike [14, Theorem 2], R has a
maximal two-sided quotient ring Q which is semiprimary, left and right
QF-3. Let e, feQ be idempotents such that ,Qe and fQ, are minimal
faithful left and right O-modules, respectively. Then by Tachikawa [30,
Theorem 5.1] fOf is left Morita dual to eQe, and then by Osofsky [20,
Theorem 3] fOf is left artinian and eQe is right artinian. Finally, by
Lemma 5.2 Mod R/t=Mod fOf and Mod R°®*/1 =~ Mod eQeP.

In case R is commutative, the next proposition is well known (see
Bass [2, Proposition 6.1]).

Proposition 5.4. Assume that R is left and right noetherian. Then
the following are equivalent.

(1) E(RR) is flat.
(2) (a) R has a maximal two-sided quotient ring.
(b) X is reflexive for every finitely generated X € Mod R.

Proof. (1)=(2). By Proposition 1.7 and Masaike [14, Theorem
2], (a) holds. Also, by Jans [10, Corollary 1.5] and Cartan and Eilenberg
[3, Chap. VI, Proposition 5.3], (b) holds.

(2)=(1). By Hoshino [9, Proposition F], it suffices to show that
weak dim E(zR)<1. Let M eMod R be finitely generated. By Jans [10,
Corollary 1.5] Ext3 (M, R)’=0, thus by Sumioka [29, Proposition 3]
ExtZ (M, R) is torsion. Hence by Cartan and Eilenberg [3, Chap. VI,
Proposition 5.3] Tor®,(M, E(xR))=~Homg(Extg?(M, R), E(xR))=0.
Therefore weak dim E(zxR)<1.

Proposition 5.5. Assume that R is t-absolutely pure, left and right
t-semicompact. Then R has a maximal two-sided quotient ring.

Proof. By Lemma 2.7 and Sumioka [28, Proposition 6].

Proposition 5.6. Let Q be a maximal left quotient ring of R. Assume
that R has a minimal dense right ideal. Then the following are
equivalent.

(@) RO is torsionless.
(b) Ewvery finitely generated submodule of gQ 1is torsionless.
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Proof. (a)=-(b). Obvious.
(b) = (a). It suffices to show that for each nonzero ge Q there exists

an re€R such that Orc R and ¢r#0. Note that by Masaike [13,
Proposition 2] the inclusion Rz — Qg is a rational extension. Put
I={reR|Qr<R}. Since R/I embeds in a direct product of copies of
(Q/R)g, I is a dense right ideal and Homg(R/I, Q)=0. Hence for each
nonzero g€ Q there exists an rel with gr#0.
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