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In this note, generalizing recent works of Masaike [15] and Hoshino
[9], we will provide another approach to the theory of QF-3 rings. We
will also provide an explanation to the symmetry established by Masaike
[14, Theorem 2].

Recall that a ring R is called left (resp. right) QF-3 if it has a minimal
faithful left (resp. right) module, i.e., a faithful left (resp. right) module
which appears as a direct summand in every faithful left (resp. right)
module (see, e.g., Tachikawa [30] for details). In his recent paper [15],
K. Masaike showed that a left QF-3 ring R is also right QF-3 if and
only if it contains an idempotent / such that RfR is a minimal dense left
ideal and every finitely solvable system of congruences {x=fxλ(mod /A)}AGA
with each Iλ a left ideal is solvable. Generalizing this, we will provide
a characterization of left and right QF-3 rings. To do so, we will
introduce the notion of τ-absolutely pure rings in Section 1 and the
notion of τ-semicompact modules in Section 2, where "τ-" means "relative
to Lambek torsion theory". With those notions, we will show that a
ring R is left and right QF-3 if and only if it is τ-absolutely
pure, left and right τ-semicompact and contains idempotents e, f such
that ReR and RfR are minimal dense right and left ideals, respectively.

Throughout this note, R stands for an associative ring with identity,
modules are unitary modules, and torsion theories are Lambek torsion
theories. Sometimes, we use the notation RX (resp. XR) to stress that
the module X considered is a left (resp. right) jR-module. We denote
by Modi? (resp. Modί?op) the category of left (resp. right) .R-modules
and by ( )* both the R-dual functors. For a module X, we
denote by E(X) its injective envelope and by εx: X-+X** the usual
evaluation map. Recall that a module X is said to be torsionless if ε^
is a monomorphism, and to be reflexive if εx is an isomorphism. Note
that for a submodule Xr of a module X, if X/X' is torsionless then
Ker εx c: Xr. For an JfeMod/?, we denote by τ(X) its Lambek torsion
submodule. Namely, τ(X) denotes a submodule of X such that
HomR(τ(X), E(RR)) = 0 and X/τ(X) is cogenerated by E(RR). For also
an MeMod/?op, we denote by τ(M) its Lambek torsion submodule.
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Let us recall several definitions. A module X is said to be torsion
if τ(X) = X, and to be torsionfree if τ(X) = 0. Note that for a submodule
X of X, if X/X is torsionfree then τ(X) a X', in particular, we have
τ(JQ d Ker εx. A nonzero torsionfree module X is said to be cocritical
if XIX is torsion for every nonzero submodule X of X. A submodule
X of a module X is said to be dense if X/X is torsion, and to be closed
if X/X is torsionfree. A dense left (resp. right) ideal / is called a
minimal dense left (resp. right) ideal if it is contained in every dense
left (resp. right) ideal. Note that a minimal dense left ideal, if exists,
has to be an idempotent two-sided ideal, that a minimal dense left ideal
exists if and only if the class of all torsion left modules is closed under
taking direct products, and that in case R is right perfect, R contains an
idempotent / with RfR a minimal dense left ideal.

The authors would like to thank Professor T. Sumioka for his helpful
advice.

1. τ-Absolute purity of rings

In this section, we introduce the notion of τ-absolutely pure
rings. With that notion, we formulate the symmetry established by
Masaike [14, Theorem 2],

We have to recall several more definitions. A module X is said to
be τ-finitely generated if it contains a finitely generated dense
submodule. A finitely generated module X is said to be τ-finitely
presented (resp. τ-coherent) if for every epimorphism (resp. homomor-
phism) π: X-* X with X finitely generated, Ker π is τ-finitely
generated. Note that every finitely generated submodule of a τ-coherent
module is τ-finitely presented. Also, a module X is said to be τ-artinian
(resp. τ-noetherian) if it satisfies the descending (resp. ascending) chain
condition on closed submodules. Finally, a ring R is said to be left
(resp. right) τ-artinian if RR (resp. RR) is τ-artinian, to be left (resp.
right) τ-noetherian if RR (resp. RR) is τ-noetherian, and to be left (resp.
right) τ-coherent if RR (resp. RR) is τ-coherent.

REMARKS. (1) A module X is τ-finitely presented if and only if
there exists an exact suquence Q-*X*-*X'-+X-+Q with X finitely
presented and X" torsion.

(2) A module X is τ-noetherian if and only if every submodule of
X is τ-finitely generated (see Faith [5, Proposition 3.1]).

(3) A ring R is left τ-noetherian if and only if every finitely generated
left module is τ-finitely presented (see, e.g., Sumioka [28]). In particular,
a left τ-noetherian ring R is left τ-coherent.
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(4) A left τ-artinian ring R is left τ-noetherian (see Miller and Teply
[17, Theorem 1.4]).

The next lemma follows immediately from the fact that τ(X) c: Ker εx

for every module X.

Lemma 1.1. For a module X the following are equivalent.

(a) τ(X) = Keτεx.

(b) Ker εx is torsion.

(c) X/τ(X) is torsionless.

The next lemma will play a key role in our arguments below.

Lemma 1.2 (Hoshino [9, Theorem A]). For a ring R the following
are equivalent.

(a) τ(^Q = Ker εx for every finitely presented XeModR.

(a)op τ(M) = Ker εM for every finitely presented MeModRop.

(b) Every τ-finitely presented torsionfree XeNίodR is torsionless.

(b)op Every τ-finitely presented torsionfree MeMod7?op is torsionless.

(c) ExtR*(X, R) is torsion for every finitely presented XeModR.

(c)op ExtR

i(My R) is torsion for every finitely presented Me Mod jRop.

Proof. (a)<^(a)op. See Hoshino [9, Theorem A].

(a) => (b). Let Xe Mod R be τ-finitely presented. Then there exists
an epimorphism π: X' -> X with X' finitely presented and Ker π
torsion. Since π** is an isomorphism, π induces an epimorphism
Ker εx> -> Ker εx. Hence by Lemma 1.1 the assertion follows.

(b)=>(a). Let XεModR be finitely presented. Then X/τ(X) is
τ-finitely presented. Hence by Lemma 1.1 the assertion follows.

(a)o(c)op. Let P1 -»P0-»M->0 be a finite presentation in Mod7?op

and put ^\Γ =Cok(P0*-»jP1*). Then we have a finite presentation
P0*->P1*-> A'->0 in ModR with Cok(P^-^P0^)^M. Note that Ext^1

(M,/?) = Ker εx by Auslander [1, Proposition 6.3]. Hence by Lemma 1.1
the assertion follows.

In the following, a ring R will be called τ-absolutely pure if it satisfies
the equivalent conditions of Lemma 1.2. We notice the following.

REMARK. In Lemma 1.2, the conditions (a) and (c) are equivalent to
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the following conditions (a)' and (c)', respectively:
(a)' τ(X) = Ker εx for every τ-finitely presented XeModR.
(c)' ExtR

i(XJ R) is torsion for every τ-finitely presented Xe Mod R.

Lemma 1.3. For a ring R the following are equivalent.

(a) τ(X) = Ker εx for every finitely generated XeModR.
(b) Every finitely generated torsίonfree XeModR is torsionless.
(c) Every finitely generated submodule of E(RR) is torsionless.

Proof. (a)=>(b). By Lemma 1.1.

(b) => (c). Obvious.
(c)=>(a). See Hoshino [9, Lemma 5].

Lemma 1.4. The implications (a) => (b)=>(d) and (a) => (c) => (d) hold
among the following conditions:

(a) Every finitely generated submodule of E(RR) embeds in a projectίve
module.

(b) E(RR) is flat.
(c) Every finitely generated submodule of E(RR) is torsionless.
(d) R is τ-absolutely pure.

Proof. (a)=>(b). See, e.g., Rutter [22, Lemma 2].

(a)=>(c). Obvious.
(b)=>(d). See the proof of Hoshino [9, Proposition B].
(c)=>(d). By Lemma 1.3.

Lemma 1.5. Assume that R is τ-absolutely pure. Then the following

are equivalent.

(a) R is left τ-noetherian.
(b) R satisfies the ascending chain condition on annihilator left ideals.

Proof, (a) => (b). Obvious.

(b)=>(a). Let I be a left ideal of R. We claim that / is τ-finitely
generated. By Faith [5, Proposition 3.1] / contains a finitely generated

subideal /' such that (R/Γ)* ^ (R/IJ. Hence (R/I'Γ ^ (R/IΓ and UT

embeds in Ker εR/Γ. Since R/Γ is finitely presented, Ker εΛ/r is torsion,

so is ///'.

The next proposition generalizes results of Morita [18, Theorem 1]
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and Sumioka [28, Lemma 7].

Proposition 1.6 (cf. Hoshino [9, Proposition B]). Assume that R is
right τ-coherent. Then the following are equivalent.

(a) R is τ-absolutely pure.
(b) Every torsionfree injective EeWlodR is flat.
(c) E(RR) is flat.

Proof. (a)=>(b). Let EeModi? be torsionfree injective and let
Me Mod Rop be finitely presented. We claim that Tor^M, E) = 0. Let
Q-+N-+F-+M-*Q be an exact sequence in Mod/?op with F free of finite
rank. Since N is a finitely generated submodule of a τ-coherent module
F, it follows that N is τ-finitely presented (see Jones [11]). Thus there
exists an exact sequence Q-+K-+L-+N-+Q in ModRop with L finitely
presented and K torsion. Let π denote the composite L—»Λf—>F. It
suffices to show that π®RE is monic. Note that Ker (π®ΛjE") = Ker
(Hom/?(π*,£1)) because both L and F are finitely presented (see Cartan
and Eilenberg [3, Chap. VI, Proposition 5.3]). Since Cok π^Ext^1^,
R) is torsion, it follows that HomR(π*, E) is monic.

(b)=>(c). Obvious.
(c)=>(a). By Lemma 1.4.

Proposition 1.7 (cf. Hoshino [9, Proposition C]). Assume that R is
left τ-noetherian. Then the following are equivalent.

(a) R is τ-absolutely pure.
(b) Every finitely generated submodule of E(RR) is torsionless.
(c) E(RR) is flat.

Proof. (a)<=>(b). Since R is left τ-noetherian, every finitely
generated left module is τ-finitely presented (see Sumioka [28]). By
Lemma 1.3 the assertion follows.

(a)<=>(c). By Proposition 1.6.

Finally, we formulate the symmetry established by Masaike [14,
Theorem 2] as follows (cf. Sumioka [27, Proposition 1]).

Theorem 1.8. Assume that R is τ-absolutely pure. Then the following
are equivalent.

(a) R is left and right τ-noetherian.
(b) R is left and right τ-artίnίan.
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(c) R is left τ-artinian.
(c)op R is right τ-artinian.

Proof. We have only to prove (a)<=>(c).

(a) => (c) By Lemma 1.3 and Proposition 1.7 every finitely generated
torsionfree left module is torsionless. Also, R satisfies the descending
chain condition on annihilator left ideals. Hence R is left τ-artinian.

(c)=>(a). By Miller and Teply [17, Theorem 1.4] R is left
τ-noetherian. Also, since R satisfies the acending chain condition on
annihilator right ideals, R is right τ-noetherian by Lemma 1.5.

2. τ-Semicompactness of modules

In this section, we introduce the notion of τ-semicompact modules,
which is closely related to the notion of reflexive modules.

Recall that a homomorphism π: X' -> X is called a τ-epimorphism if
Cok π is torsion. In the following, a module X will be called
τ-semicompact if for every inverse system of τ-epimorphisms {nλ:
X^> Yλ}λe\ with each Yλ torsionless, lim πΛ is τ-epic. A ring R will be
called left (resp. right) τ-semicompact if RR (resp. RR) is τ-semicompact.

REMARKS. (1) Every epimorphic image of a τ-semicompact module
is τ-semicompact.

(2) The τ-semicompactness is just the .R-linear compactness, in the
sense of Gomez Par do [7], relative to Lambek torsion theory.

(3) Even if R is commutative, the τ-semicompactness differs from
the semicompactness, in the sense of Matlis [16], relative to Lambek
torsion theory in general. However, for modules RR and RR, the
τ-semicompactness coincides with the semicompactness, in the sense of
Stenstrόm [25], relative to Lambek torsion theory.

The next lemma is due essentially to Miiller [19, Lemma 1] (cf. also
Sandomierski [24, Lemma 3.4]).

Lemma 2.1. Assume that every finitely generated submodule of E(RR)
is torsionless. Let XeModR and let j: M-+X* be monic in ModRop with
M finitely generated. Then j*°εx is τ-epic.

Proof. Let mi9 9 mneMbe generators over .R and put α = ί(/(m1), ,
y(mn)): X->F=RR(n}. Then we have an epic π: F*-»M such that
oι*=jon. Put Y=Cokα. Then we have the following commutative
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diagram with exact rows:

x Λ F -> y -> o

AT

Hence Cok(/oεχ)^Ker εy is torsion by Lemma 1.3.

Corollary 2.2. Assume that every finitely generated submodule of
E(RK) is torsionless. Then sx is τ-epicfor every τ-semicompact X e Mod R.

Proof. Let XeModR be τ-semicompact. Take a direct system of
monomorphisms {jλ: Mλ-*X*}λeA with each Mλ finitely generated such
that lirη jλ: }imMλ^>X*. Then by Lemma 2.1 we get an inverse system

of τ-epimorphisms {jχ*°εx: X-+Mλ*}λeA with each Mλ* torsionless. Thus

(UlϊiyA*)06jr = liϊϊϊ (/λ*°εx) is τ-epic. Hence, since lim jλ*^ (lim jλ)* is an
isomorphism, εx is τ-epic.

REMARK. The argument above yields that if R is τ-absolutely pure
then εx is τ-epic for every finitely generated τ-semicompact XeModR.

Lemma 2.3. Assume that R has a minimal dense left ideal. Then
for an XeModJR the following are equivalent.

(a) X is τ-semicompact.
(b) For every inverse system of epimorphisms {πλ: X-+Yλ}λ€A

with each Yλ torsionless, lim πλ is τ-epic.
In particular, every ^ΓeModjR which satisfies the descending chain condition
on submodules X' with X/X' torsionless is τ-semicompact.

Proof, (a) => (b). Obvious.

(b) => (a). Let [nλ: X—>Yλ}λeA be an inverse system of τ-
OLλ βλ

epimorphisms with each Yλ torsionless. For each Λ,eΛ, let X-»Xλ>-* Yλ

be an epic-monic factorization of πλ. Since lim πλ = (lim βλ) o (lim αA) with
lim^Λ monic, we get the following exact sequence:

0 -> Cok(lim αA) -» Cok(lim πλ) -> Cok(lim βλ) -̂  0.

Note that the class of all torsion left modules is closed under taking
direct products. Since we have a sequence of embeddings Cok(lim βλ)
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c> Jim Cok βλ c; ΠAeΛ Cok βλy Cok(lim βλ) is torsion. Also, CokQim αA)
is torsion by hypothesis. Hence Cok(lim πλ) is torsion.

Proposition 2.4. Assume that R contains an idempotent f with RfR
a minimal dense left ideal and fR an injective right ideal. Then every
Xe^ΛodR with εx τ-epic is τ-semicompact. In particular, every finitely
generated XeModR is τ-semicompact.

Proof. Let XεModR with εx τ-epίc. Let {πλ: X-* YA}AeΛ be an
inverse system of epimorphisms with each Yλ torsionless. Since
(lim εγ )°(limπA) = (lirnπλ**)oεx, limε r induces homomorphisms α: Im(lim
πA) -> Im(lirn πA**) and β : Cok(lim πA) -> Cok(lim πA**). Since lim εγ is
monic, Ker β embeds in Cok α. On the other hand, Cok α is an
epimorphic image of Cok εx. Thus Ker β is torsion. Next, since lim
πA* is monic, /R®R(lim π/*) = HomR(lim πA*, fR) is epic. Hence Cok
(limπA**) is torsion, so is Im/J. Therefore Cok(limπA) is torsion and by
Lemma 2.3 X is τ-semicompact. Finally, we claim that εx is τ-epic for
every finitely generated XeModR. Let π: F'-> X be epic in Mod/?
with F free of finite rank. Put M=Cokπ*. Since F is reflexive,
Cok ε^Cok π**^ Ext^^M, R). Thus fR®RCok εx^ExtR\M, fR) = 0,
so that εx is τ-epic.

REMARK. Let XeModR be torsionless with εx τ-epic. Then εx is
an essential monomorphism, so that ΠA€Λ Ker αA** = 0 for every family
{αA}AeΛ of homomorphisms αAe^Γ* with πAeΛ Ker αλ = 0. Thus, if X
embeds in a direct product of copies of RR as a closed submodule, then X is
reflexive. Hence, putting Corollary 2.2 and Proposition 2.4 together,
one can obtain an extension of a result of Masaike [15, Theorem 3].

Lemma 2.5. Assume that every finitely generated submodule of E(RR)
is torsionless, and that R has a minimal dense left ideal. Then for a finitely
generated XeModR the following are equivalent.

(a) X is τ-semicompact.

(b) For every inverse system of epimorphisms {nλ: X—> Yχ}χe^ UΠΪπ;ι
is τ-epic.

(c) For every inverse system of τ-epimorphisms (πA: X -> y^lλeΛ* 1ΪΠ1
πλ is τ-epic.

Proof. (a)=>(b). Let {πλ: X-+ Yλ}λ€A be an inverse system of
epimorphisms. For each Λ,eΛ, let aλ: Yλ-+ yA/τ( YA) denote the canonical
epimorphism. Then lim αA induces the following exact sequence:

Ker(lim αA) ->• Cok(lim πλ) -> Cok(lim αAoπA).
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Since the class of all torsion left modules is closed under taking direct
products, Ker(lim αj^lim τ(Yλ) is torsion. On the other hand, each
Yλ/τ(Yλ) is finitely generated torsionfree and thus torsionless by Lemma
1.3. Hence Cok(lim αA o πA) is torsion by hypothesis. Therefore Cokflim
πA) is torsion.

(b)=>(c). By the same argument as in the proof of (b) => (a) in
Lemma 2.3.

(c)=>(a). Obvious.

a β

Corollary 2.6. Let 0 -> X -> X -* X" -> 0 be an exact sequence of

finitely generated modules in Mod/?. Assume that every finitely generated
submodule of E(RR) is torsionless^ and that R has a minimal dense left
ideal. Then the following are equivalent.

(a) X is τ-semίcompact.
(b) Both X' and X" are τ-semicompact.

Proof. (a)=>(b). Let {π/: X —> Yλ'}λE\ be an inverse system of
epimorphisms. For each /leΛ, take a push-out of π/ along with α:

0 -> X 4 X -> X" -> 0

V i MA II

o -> YA -> yA -> x" -> o.

Then Cok(limπ/)^Cok(limπΛ) is torsion. Next, let {π/: Jf" -» y/'}A6A

be an inverse system of epimorphisms. Then Cok(lim πA") = Cok(lim
β°πλ") is torsion.

(b) => (a). Let {πλ : X -+ Y^}χE\ be an inverse system of epimorphisms.
πλ αA

For each λeΛ, let X'-» y/>-* ̂  be an epic-monic factorization of π λoα,

let βλ: Yλ^> Yλ" denote a cokernel of αA, and let πλ" : X" -> Xλ" satisfy
πλ"°β = βλ°πλ' Then we get the following exact sequence:

Cok(lim π/) -> Cok(lim πλ) -+ Cok(lim π/')

Since both Cok(limπ/) and Cokίlimπ/') are torsion, so is Cok(limπA).

Lemma 2.7. For a ring R the following are equivalent.

(a) R is τ-absolutely pure and left τ-semicompact.
(b) ExtR

1(.R//, R) is torsion for every right ideal I.
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Proof. (a)=>(b). Let / be a right ideal. Take a direct system of
inclusions {jλ : Iλ -> I}λe\ with each Iλ a finitely generated subideal of /

such that linj.fo: lim Iλ^I. Let j: I -+ R denote the inclusion. Since

lim yA* = (lim jλ)* is an isomorphism, Ext R* (R/L R) = Cok Γ^Cok(lim

J λ ° f ) F°r eacrι Λ e Λ , // is torsionless, and CokO'/o^^Ext^1

(R/Iλ,R) is torsion. Hence Cok(limyA*o/) is torsion.

(b) =>(a). By induction on the number of generators, it follows that
ExtR

i(MJR) is torsion for every finitely generated MeMod7?op. In
particular, R is τ-absolutely pure. Next, let [πλ : RR — » Y^}χ€A be an
inverse system of τ-epimorphisms with each Yλ torsionless. Since limβy

is monic, Cok(limπΛ) embeds in Cok(limπ/*). Identify (RR)* with RR and
put /=Im(limπλ*). Since lim πΛ* is monic, and since lim lV = (lim YA*)*>
Cok(lim π/^Extji1 (R/I,R). Thus Cok(lim π/*) is torsion, so is Cok
(limπA).

3. Idempotent generated minimal dense ideals

In this section, we collect several basic results on idempotent generated
minimal dense ideals which we use in the next section.

REMARKS. (1) For an idempotent fe R, RfR is a minimal dense left
ideal if and only if Ker(/R(x)κ-) = Ker(HomR(- E(RR))). Thus, if RfR
is a minimal dense left ideal with / an idempotent, then fR®R—:
Mod R-* Mod fRf induces ModR/τ^ModfRf, where ModR/τ denotes
the quotient category of Modi? over the full subcategory Ker

(HomR(-E(RR))).
(2) Assume that R is right perfect. Then R contains an idempotent

/ with RfR a minimal dense left ideal (see Storrer [26]).

Lemma 3.1 (Rutter [23, Theorem 1.4]). For an idempotent feR
the following are equivalent.

(a) RfR is a minimal dense left ideal.
(b) fRR is faithful and every simple homomorphίc image of RRf is

torsionless.

Corollary 3.2. Let /e R be an idempotent with RfR a minimal dense
left ideal and fR an injective right ideal, and let fi εfRf be a local
idempotent. Then (Rfi/Jfi)* is cocritίcal and embeds inf±RR, where J denotes
the Jacobson radical of R.

Proof. Note that RRfι/Jfι and fRffR®R(Rfι/Jfι) are simple.
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Thus by Lemma 3.1 (Rf^/Jf^^O. Since fRR is injective and faithful
by Lemma 3.1, it is sufficient for (Rfι/Jfι)* to be cocritical that

/Λ/HomΛ((Λ/1///1)*, fR)*fRffR®R(Rfι/JΛr is simple. Let π: Rf, -*
Rfi/Jfi denote the canonical epimorphism. Then, since Rfi is reflexive,
Cok Szf^jf^Cok π**. Thus, since fR(x)Rπ** = Homκ(π*, fR) is epic, so is

fR^R^Rf^jfi- Hence fRffR®R(Rfι/Jfι)** is simple. The last statement
is obvious.

Corollary 3.3 (cf. Rutter [23. Corollary 1.2]). Let /=/i 4- ••• +/„ be
an orthogonal sum of local idempotents fi in R. Assume that fRR is faithful
and injective, and that each fιRR contains a cocritical submodule Mt. Then
RfR is a minimal dense left ideal. In particular, R is left τ-semicompact.

Proof. Let J denote the Jacobson radical of R. We claim that each
ftRfi/Jfi is torsionless. Since every nonzero heHomR(Mh fR) is monic,
it follows that fRfHomR(Mh fR)^fRffRfi/fJfi. Thus Hom^/R/////^
/R)^0, which implies HomR(Rfi/Jfh R)^0. Hence by Lemma 3.1 RfR
is a minimal dense left ideal. It then follows by Proposition 2.4 that R
is left τ-semicompact.

Lemma 3.4. Let /e jR be an idempotent with RfR a minimal dense
left ideal. Then RRfX is simple for every XeModR with X/τ(X)
cocritical. In particular, every cocritical XGModR has a nonzero socle.

Proof. Let Xe Mod R with X/τ(X) cocritical. We may assume that
τ(^Q = 0. Let X' be a nonzero submodule of X. Then X/X' is torsion,
so that RfX<^Xf. Hence RRfX is simple.

As pointed out by Stenstrδm [25, Proposition 2.5], the argument of
Matlis [16, Propositions 2 and 3] would yield the following.

Proposition 3.5. Let feR be an idempotent with RfR a minimal
dense left ideal. Then the following are equivalent.

(a) fR is an injective right ideal.
(b) R is τ-absolutely pure and left τ-semicompact.

Proof. (a)=>(b). For an MeMod/?op, fR®RE^R

l(M,R)^E^R

l

(MJR) = 0 implies Ext^M, R) torsion. Thus R is τ-absolutely
pure. Also, R is left τ-semicompact by Proposition 2.4.

(b) => (a). By Lemma 2.7 ExtR

1(R/IJR)^fR®RExtR

i(R/I, R) = 0for
every right ideal /.



740 M. HOSHINO AND S. TAKASHIMA

Proposition 3.6. Let /eJR be an idempotent with RfR a minimal
dense left ideal. Assume that every finitely generated submodule of E(RR)
is torsionless, and that R is left τ-semicompact. Then every XeModfRf
with RRf® fRf X finitely generated is linearly compact in the usual sense. In
particular, fRf is a semiperfect ring.

Proof. Let Xe Mod fRf with RRf®fRfX finitely generated. Let {πλ :
X -* Yλ}λ€Λ be an inverse system of epimorphisms in Mod/R/. Then
{Rf®fRfUλ\ Rf®fRfX^>Rf®fRfYλ}λeA is an inverse system of epimor-
phisms in Mod R. It follows by Corollary 2.6 that every free left 7?-module
of finite rank is τ-semicompact. Thus every finitely generated left
7?-module is τ-semicompact. Hence by Lemma 2.5

Cok(lim πλ) = Cok(lim

Rf, \jmRf ®fRfπλ))

, Cok(lim Rf®fRfnλ})

= 0,

so that X is linearly compact in the usual sense (see, e.g., Gomez Pardo
[7, Proposition 1]). Since κRf®fRffRf is finitely generated, it follows
that//?/ is a semiperfect ring (see Kasch and Mares [12] and Sandomierski
[24]).

4. QF-3 rings

In this section, generalizing a result of Masaike [15, Theorem 5],
we provide a characterization of left and right QF-3 rings.

To point out the difference between "one-sided QF-3 rings" and
"two-sided QF-3 rings", we first provide a characterization of right QF-3
rings.

Proposition 4.1. For a ring R the following are equivalent.

(1) R is right QF-3.

(2) (a) R is τ-absolutely pure.
(b) R is left τ-semicompact.
(c) R contains an idempotent f such that RfR is a minimal dense

left ideal and fRf is a semiperfect ring.
(d) Every cocritical right module has a nonzero socle.

Proof. (1)=>(2). Let feR be an idempotent with fR a minimal
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faithful right module. Then by Rutter [21, Theorem 1] fRR is faithful,
injective of finite Goldie dimension and has an essential socle. Also, by
Rutter [23, Corollary 1.2] RfR is a minimal dense left ideal. Thus by
Proposition 3.5 (a) and (b) hold. Since fRR is injective of finite Goldie
dimension, fRf=End(fRR) is semiperfect, so (c) holds. It is obvious
that every cocritical right module embeds in fRR. Since fRR has an
essential socle, (d) holds.

(2) =>(!). We may assume that fRf is a selfbasic ring. Note that
fRR is faithful by Lemma 3.1 and injective by Proposition 3.5. Let
/=/ι H h/M be an orthogonal sum decomposition into local idempotents.
Then by Corollary 3.2 each f^RR contains a cocritical submodule, so that
each fiRR has a nonzero socle. Hence by Rutter [21, Theorem 1]
//?£=/! jRΛφ ©/n.Rκ is a minimal faithful right module.

Theorem 4.2. For a ring R the following are equivalent.

(1) R is left and right QF-3.

(2) (a) R is τ-absolutely pure.

(b) R is left and right τ-semicompact.

(c) R contains idempotents e, f such that ReR and RfR are
minimal dense right and left ideals, respectively.

Proof. (1)=>(2). By Proposition 4.1.

(2) => (1). By symmetry, it suffices to show that R is right QF-3. By
Lemma 3.1 and Proposition 3.5 RRe is faithful and injective. Hence
every torsionfree left module is torsionless, so that by Proposition 3.6
fRf is a semiperfect ring. Also, by Lemma 3.4 every cocritical right
module has a nonzero socle. Hence by Proposition 4.1 R is right QF-3.

REMARK. Assume that R is left and right perfect. Then in
Proposition 4.1 (c) and (d) of (2) are satisfied. Thus R is right QF-3
if and only if R is τ-absolutely pure and left τ-semicompact.

Corollary 4.3 (cf. Sumioka [28, Theorem 8]). For a ring R the
following are equivalent.

(1) .R is semiprίmary, left and right QF-3.

(2) (a) R is τ-absolutely pure.

(b) R is left perfect.

(c) R is either left τ-noetherίan or right τ-coherent.
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Proof. (1)=>(2). It only remains to see that (c) holds. We claim
that R is left and right τ-artinian. Let feR be an idempotent with fR
a minimal faithful right module. By Rutter [23, Corollary 1.2] RfR is
a minimal dense left ideal. Also, by Colby and Rutter [4, Theorem 1.3]
fRffR is artinian. Thus R is left τ-artinian, since fR®R-: Modi?—>
Mod//?/induces Mod R/τ ̂  Mod//?/, where ModR/τ denotes the quotient
category of Mod R over tha full subcategory Ker(Homκ(-, E(RR))). By
symmetry, R is also right τ-artinian.

(2) =>(!). It suffices to show that R is semiprimary, left and right
τ-semicompact. In case R is right τ-coherent, by Proposition 1.6 every
torsionfree injective left module is projective and by Masaike [14, Theorem
1] R is left τ-artinian. So we may restrict ourselves to the case where
R is left τ-noetherian. Then by Faith [5, Proposition 4.1] R is semiprimary
and thus left τ-artinian. By Theorem 1.8 R is also right τ-artinian. It
now follows by Lemma 2.3 that R is left and right τ-semicompact.

5. Maximal quotient rings

In this section, we deal with the case where R has a maximal
two-sided quotient ring. Recall that a maximal left (resp. right) quotient
ring Qι (resp. Qr) of R is defined as a biendomorphism ring of E(RR)
(resp. E(RR)), and that R is said to have a maximal two-sided quotient
ring if Qt = Qr as ring extensions of R.

In the following, we denote by Modi?/τ the quotient category of
Modi? over the full subcategory Ker(HomΛ(-, E(RR))). Also, Modi?op/τ
denotes the quotient category of Mod,/?op over the full subcategory
Ker(Hom(-, E(RR))).

REMARKS. (1) Let RQ be a maximal rational extension of RR. Then
Q has a ring structure such that the inclusion R—>Q is a ring
homomorphism. Furthermore, as a ring extension of R, Q is isomorphic
to a maximal left quotient ring of R.

(2) Let Q be a maximal left quotient ring of R, and let J5f:
Mod R —> Mod R denote the localization functor associated with Lambek
torsion theory. Then the correspondence /1—>J5?(/) gives rise to an
isomorphism from the lattice of all closed left ideals of R to the lattice
of aΊl closed left ideals of Q. Hence 7? is left τ-artinian (resp. τ-noetherian)
if and only if so is Q.

(3) Let Q be a maximal left quotient ring of R. Then
Home(QQK,-):2 Mod Q-> Modi? induces Mod Q/τ^Modi?/τ.
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In his proof of [14, Lemma 1], K. Masaike showed the following.

Proposition 5.1 (cf. Vinsonhaler [31, Theorem A]). Assume that
E(RK) is τ-noetherian. Then R is left τ-artinian.

Proof. Let Q be a maximal left quotient ring of R. It sufficies to
show that Q is left τ-artinian. Since RHomQ(QQRy E(QQ)) = E(RR) is
τ-noetherian, it follows that E(QQ) is τ-noetherian. In particular, Q is
left τ-noetherian. On the other hand, it follows by the argument of
Masaike [14, Lemma 1] that Q is semiprimary. Hence Q is left τ-artinian.

The next lemma seems to be known.

Lemma 5.2. Assume that R is left τ-artinian. Then ModR/τ =
Mod A with A left artinian.

Proof. Let Q be a maximal left quotient ring of R. It is known
that Q is semiprimary (see Faith [6, Part I, Corollary 7.5]). However,
for the benefit of the reader, we provide an elementary proof of this
fact. Let H=End(E(RR))op, the opposite ring of End(E(RR)), operate on
E(RR) by the right hand side. We claim that E(RR)H has a finite
composition length. Note that R is also left τ-noetherian by Miller and
Teply [17, Therem 1.4]. Thus there exists a chain of left ideals of .R :

* n =R

such that (Ii + i/Ii)/τ:(Ii+i/Ii) is cocritical for 0<i<n (see, e.g., Sumioka
[28]). Hence it suffices to show that HomR(Xy E(RR))H is simple for
every XεModR with X/τ(X) cocritical. Let XεModR with X/τ(X)
cocritical. Since HomR(X/τ(X), E(RR))H^HomR(X, E(RR))H, we may
assume that τ(X) = 0. Let α, βεHomR(X, E(RR)) with α^O. Then α
is monic, so that β = a.h for some hεH. Hence TΛomR(Xy E(RR))H

is simple. Therefore Q is semiprimary. Note that Mod 0/τ = Modί?/τ.
Since Q contains an idempotent / with QfQ a minimal dense left ideal
of 0, Mod Q/τ ̂  ModfQf. Consequently, Mod R/τ ̂  ModfQf. Finally,
since QQ is τ-artinian, /Q//Q is artinian. In particular, fQf is left artinian.

After completing the first version of this note, the authors found
that the next proposition had been observed by Gomez Pardo and Guil
Asensio [8].

Proposition 5.3. Assume that R is τ-absolutely pure and left
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τ-artinian. Then there exist a left artίnian ring A and a right artinian
ring B such that ModR/τ^ModA, Mod,Rop/τ ^ModBop and A is left
M or it a dual to B.

Proof. By Proposition 1.7 and Masaike [14, Theorem 2], R has a
maximal two-sided quotient ring Q which is semiprimary, left and right
QF-3. Let €, /eQ be idempotents such that QQe and fQQ are minimal
faithful left and right Q-modules, respectively. Then by Tachikawa [30,
Theorem 5.1] fQf is left Morita dual to eQe, and then by Osofsky [20,
Theorem 3] fQf is left artinian and eQe is right artinian. Finally, by
Lemma 5.2 Mod#/τ^Mod/0/ and ModRop/τ^ModeQeop.

In case R is commutative, the next proposition is well known (see
Bass [2, Proposition 6.1]).

Proposition 5.4. Assume that R is left and right noetherίan. Then
the following are equivalent.

(1) E(RR) is flat.
(2) (a) R has a maximal two-sided quotient ring.

(b) X* is reflexive for every finitely generated X e Mod JR.

Proof. (1)=>(2). By Proposition 1.7 and Masaike [14, Theorem
2], (a) holds. Also, by Jans [10, Corollary 1.5] and Cartan and Eilenberg
[3, Chap. VI, Proposition 5.3], (b) holds.

(2) =>(!). By Hoshino [9, Proposition F], it suffices to show that
weak dim E(RR) < 1. Let Me Mod ̂ op be finitely generated. By Jans [10,
Corollary 1.5] Ext|(M, /?)* = 0, thus by Sumioka [29, Proposition 3]
Ext|(M, R) is torsion. Hence by Cartan and Eilenberg [3, Chap. VI,
Proposition 5.3] TorK

2(M, E(RR))^HomR(ExtR

2(My R), E(RR)) = 0.
Therefore weak dim E(RR)<1.

Proposition 5.5. Assume that R is τ-absolutely pure, left and right
τ-semicompact. Then R has a maximal two-sided quotient ring.

Proof. By Lemma 2.7 and Sumioka [28, Proposition 6].

Proposition 5.6. Let Q be a maximal left quotient ring of R. Assume
that R has a minimal dense right ideal. Then the following are
equivalent.

(a) κO is torsionless.
(b) Every finitely generated submodule of RQ is torsionless.
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Proof, (a) => (b). Obvious.

(b) => (a). It suffices to show that for each nonzero qe Q there exists
an reR such that QrciR and qr^O. Note that by Masaike [13,
Proposition 2] the inclusion RR -* QR is a rational extension. Put
I={reR\Qr ciR}. Since R/I embeds in a direct product of copies of
(Q/R)R, I is a dense right ideal and HomR(R/Iy Q) = 0. Hence for each
nonzero qeQ there exists an re/ with
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