Skowronski, A.
Osaka J. Math.
30 (1993), 515-527

GENERALIZED STANDARD AUSLANDER-REITEN
COMPONENTS WITHOUT ORIENTED CYCLES

ANDRZE] SKOWRONSKI

(Received April 8, 1992)
(Revised June 2, 1992)

Introduction

Let A be an artin algebra, mod A the category of finitely generated right
A-modules, rad” (mod 4) the infinite radical of mod 4, and T', the Auslander-
Reiten quiver of 4. It is known that T', describes the quotient cagegory
mod 4/rad” (mod 4). We are intersted in the behaviour of connected compo-
nents of I', in the module category mod A. We introduced in [14] the concept of a
generalized standard component and proved some facts on such components. A
component C of T', is called generalized standard if rad= (X, Y)=0 for all X and
Y from C. Examples of generalized standard components are all preprojective
components, preinjective components, and connecting componets of tilted
algebras. We proved in [14] that a generalized standard connected component
of T', admits at most finitely many nonperiodic DTr-orbits. Moreover, we
described regular and semi-regular generalized standard components of T,
containing no oriented cycle, and proved that all but a finite number of gen-
eralized standard components of T, are stable tubes.

The main aim of this paper is to describe arbitrary generalized standard
components without oriented cycles. As an application we obtain new charac-
terizations of tilted algebras and concealed algebras.

The paper is organized as follows. In Section 1 we recall some notions and
facts from the representation theory of artin algebras needed in the paper. Sec-
tion 2 contains a description of generalized standard components without orient-
ed cycles. In Section 3 we characterize generalized standard components con-
taining sections, and prove some characterizations of tilted algebras. Section
4 contains some new characterizations of concealed algebras.

1. Preliminaries

Let A be an artin algebra over a commutative artin ring R. We denote by
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mod A the category of all finitely generated right A-modules, and by D:
mod A—mod A the standard duality Homg (—, I), where I is the injective enve-
lope of R/rad R inmod R. By a module we usually mean a finitely generate right
module. We denote by rad(mod A) the radical of mod 4 and by rad~(mod A)
the intersection of all powers rad’(mod 4), =1, of rad(mod 4). A path in
mod 4 is a sequence of non-zero non-isomorphisms M,—>M,—---—M,, where
the modules M, are indecomposable. A full subcategory % of mod A4 is said
to be closed under predecessors (resp. closed under successors) if any path in mod 4
with the target (resp. source) in 2% consists entirely of modules in &. We de-
note by ", the Auslander-Reiten quiver of 4, and let 7, 77 be the Auslander-
Reiten operators D'T'r, TrD, respectively. We shall not distinguish between an
indecomposable A-module, its isomorphism class and the vertex of T, corre-
sponding to it. By a component of I", we mean a connected component of T',.
A component C of T, is called preprojective (resp. preinjective) if C has no ori-
ented cycle and each module in C belongs to the 74-orbit of a projective (resp.
injective) module. A component C of T', is called sincere if any simple A-module
occurs as a simple composition factor of a module in . For a component C of
T,, we denote by ann C the annihilator of C in A4, that is, the intersection of the
annihilators ann X of all modules X from C. If ann =0, the component C is
called fasthful. Clearly, a faithful component is sincere.

Let H be a hereditary artin algebra, T a tilting H-module and B=Endy(T)
the associated tilted algebra. Then 7" determines a torsion theory (<(T), G(T))
in mod H, where F(T)={Xy|Homy (T, X)=0} and G(T)={Yy|Exty(T, Y)=
0}, and a splitting torsion theory (Y(T'), 2Z(T)) in mod B, where Y(T)={Np|
Torf (N, T)=0} and 2(T)={M;]| M@T: 0}. Then by the theorem of

Brenner and Butler the functor F=Homy (T, —) induces an equivalence be-
tween G(T') and Y(T'), and the functor F'=Exty (T, —) an equivalence between
F(T) and 2(T). Then the injective cogenerator DH of mod H belongs to 4(T')
and the indecomposable direct summands of F(DH) form a set & belonging to
one component of I';, called the connecting component of I'; corresponding to
T. Moreover § is a slice of mod B (see [11, (4.2)]), that is, & satisfies the fol-
lowing conditions:
() & is sincere.
(B) & is path closed (any path in mod 4 with source and target in S con-
sists entirely of modules in &S.
(v) If M isan indecomposable nonprojective A-module, then at most one
of M, .M belongs to &S.
(8) If M—S is an irreducible map with M and S indecomposable and
S in &, then either M belongs to & or M is noninjective and 77M
belongs to S.
Observe that the condition (8) is very difficult for checking.
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We shall need the following lemma proved in [13].

Lemma 1. Let A be an artin algebra and n be the number of isoclasses of
simple A-modules. Let X,, -+, X, be pairwise nonisomorphic indecomposable A-
modules such that Hom,(X;, 7,X;)=0 for all 1=i,j<r. Then r=n.

The following simple lemma will be also useful.

Lemma 2. Let A be an artin algebra, C a component of T'y and B=
Alann C. Then C is a generalized standard component of T, if and only if C is a
generalized standard component of T'p.

Proof. Clearly, C is a full component of T';. From the existence of Aus-
lander-Reiten sequences in mod A we know that rad(mod A4) is generated by
the irreducible maps as a left and as a right ideal. Let X and Y be two indecom-
posable modules from C, and suppose that f: X—Y is a nonzero map from
rad”(mod 4). Then there are modules X; and maps g;: X;— X, #;: X;,,—Y in
rad (mod B), i =0, such that X,=X and, for eachz, X; is a direct sum of indecom-
posable modules from C and f=#hg,---g,. Then f belongs to rad”(mod B).
This proves the lemma because clearly rad~(mod B) is contained in
rad=(mod 4).

2. Generalized standard components without oriented cycles

Let A4 be an artin algebra and C be a component of T', without oriented
cycles. We are interested in criteria for C to be generalized standard. We
shall first define a full translation subquiver C of C closed under predecessors,
called the left end of C, and a full translation subquiver C.. of C closed under
successors, called the right end of C.

Denote by ,C the left stable part of C, obtained from C by removing the 7 ,-
orbits of projective modules. Then ,C is a disjoint union of finitely many left
stable full translation connected subquivers 9, -, 9, of C. From [6, (3.4)], for
each 1=</=<s, there exists a valued quiver A; without oriented cycles such that
9); is isomorphic to a full translation subquiver of ZA; which is closed under
predecessors. Let 3; be a fixed copy of A; in 9); such that the modules form-
ing the vertices of 3; are neither successors of indecomposable direct summands
of the radicals of projective modules in C nor suscessors of injective modules in
C. Let .3 be the disjoint union of the quivers 3, ---, ,. Then denote by C
the full translation subquiver of C formed by all predecessors in C of modules
from .%. Observe that .C is a left stable full translation subquiver of C which
is closed under predecessors. Denote by ..[N the direct sum of all modules from
w2, and put «M=.N@P, where P is the direct sum of all projective modules
from C. If ,C is empty, put «/N=0. Dually, denote by C, the right stable part
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of C, obtained from C by removing the 74-orbits of injective modules. Assume
that C, is nonempty. Then C, is a disjoint union of finitely many full transla-
tion connected subquivers 94, -+, D, of C. Again, from [6], for each 1= j=m,
there is a valued quiver A} without oriented cycles such that 9} is isomorphic
to a full traslation subquiver of ZA} which is closed under successors. Let 3}
be a fixed copy of A} in 9} such that the modules forming the vertices of =
are neither predecessors of indecomposable direct summands of the socle factors
of injective modules in C nor predecessors of projective modules in C. Let S
be the disjoint union of the quivers i, -+, 5. Then denote by C. the full
translation subquiver of C formed by all successors in C of modules from 773..
Observe that C.. is a right stable full translation subquiver of C which is closed
under successors. Denote by N.. the direct sum of all modules from 3., and
put Mo=0@N., where Q is the direct sum of all injective modules from C.
If C, is empty, we put N.=0. We may assume that .C and C. have no com-
mon modules.

The following theorem gives a characterization of generalized standard
components without oriented cycles.

Theorem 1. Let A be an artin algebra, C be a component of T, without
oriented cycles and B=A[ann C. Then, in the above notation, the following condi-
tions are equivalent.

(1)  C is a generalized standard component of T ,.

(i) Homy(P, .N)=0 and Hom,(X,7,Y)=0 for all modules X and Y

from 3.
(i) Hom, (N, Q)=0 and Hom,(72X,Y)=0 for all modules X and Y
from 3.

(iv) X s finite and rad™ (.M, ~N)=0.

(V) S is finite and rad”(Ne, M..)=0.

(Vi) = or 2. is finite and Hom (N, «N)=0.

(vii) The following conditions hold :

(a) There is a hereditary aritn algebra .H and a tilting H-mdoule .. T with-
out preinjective direct summands such that the tilted algebra .B=End_y(.T) is
a factor algebra of B and the torsion-free part Y(~T) of mod .B is a full exact
subcategory of mod B which is closed under predecessors.

(b) There is a hereditary artin algebra H and a tilting .H-module ..T with-
out preprojective direct summands such that the tilted algebra B.=Endy_(T.) is
a factor algebra of B and the torsion part X(T.) of mod B. is a full exact sub-
category of mod B which is closed under successors.

() Y(«T) and HX(Tw) have no common nonzero modules.

(d) C is the torsion-free part of the connecting component of T _g correspond-
ing to . T.
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(e) Cw is the torsion part of the connecting component of T'p_ corresponding
to T..

(f) The class of indecomposable B-modlues which are neither in Y(.T) nor
in X(Tw) is finite and coincides (up to isomorphism) with the class of modules in C
which are neither in .C nor in Ce.

Proof. Without loss of generality we may assume that A4 is basic and con-
nected. The implications (i)=>(ii) and (i)=>(iii) follow directly from our choice
of % and Z.. We shall show now that (ii) implies (iv), and (iii) implies (V).
First observe that, by Lemma 1, if Hom, (X, 7,Y)=0 (resp. Hom, (72X, Y)=0)
for all modules X and Y from .5 (resp. from 3..), then .3 (resp. Z) is finite.
Moreover, we have Hom, (oM, »-N)=Hom,(P, .N)®Hom,(.N, -N) and
Hom(Ne, M.)=Hom,(Nw, No)®Hom (N, Q). If .3 is finite, then any map
from rad®(.N, »N) factors through a module 74(~V)*, for some a=1. Simi-
larly, if 3. is finite, then any map from rad*(N., N.) factors through 73(V.)?,
for some b=1. Therefore, (ii) implies (iv), and (iii) implies (v). We claim now
that each of the conditions (iv) and (v) implies (vi). First observe that .3, is
finite if and only if 3 is finite,. Assume that .3 and 3., are finite, and suppose
that Hom, (Nw, «/N)=#0. Then clearly rad”(Nw.,.N)=0. Since any epimor-
phism A°—>N., factors through a module M9, for some d=1, there is an epi-
morphism o M?—>N,. Then rad” (.M, .IN)=0 because rad*(«.NV, »/N)=0. Simi-
larly, any monomorphism ~N—(DA)? factors through a module M, for some
g¢=1, and hence there is a monomorphism «N—=>M¢%. Then rad*(Ne, M.)=0
because rad* (N, »/N)#+0. This proves our claims. We shall show now that
(vi) implies (i). Suppose that rad=(U, V)=0 for some indecomposable modules
Uand V from C. Then there is an infinite path in C

U= Uo_>U1_>...—>U‘.-—>U,.+1—>---

such that rad=(U;, V)=+0 for all /=0. Since from (vi) . and .3 are finite,
there is m=0 such that U, is a successor of 3. in C. Further, rad=(U,, V)0
implies existence of an infinite path in C

---—>Vj+1-—>V’_—->...—>V1—>V° =V

such that rad=(U,, V';)=0 for all j=0. Again, since .= and =.. are finite, there
is =0 such that ¥, is a predecessor of .= in C. Then any epimorphism A*—
U,, factors through a module NZ, for some =1, and hence there is an epimor-
phism N.—U,. Similarly, any monomorphism V,—(DA)* factors through a
module .N¥, for some #=1, and hence we have a monomorphism V,—.N*.
Then rad®(U,, V,)#0 implies that rad*(N., .N)==0, a contradiction to (vi).
Hence (vi) implies (i). Consequently, we proved that the conditions (i)-(vi) are
equivalent. We shall show now that (vii) implies (vi). Assume that (vii) holds.
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Then clearly .= and 3. are finite. Moreover, Hom (N, «N)=Homp(Nw, «IV)
=0, because Y(~T) and X(T.) have no common indecomposable modules,
Y(T) is closed under predecessors in mod B, and 2¥(T.) is closed under suc-
cessors in mod B. Hence (vi) holds. Finally, assume that C is a generalized
standard component of I',. Then, from Lemma 2, C is also a generalized
standard component of I';. We shall show that the conditions (a)-(f) of (vii)
hold. First observe that C, as a generalized standard component, has by [14, (2.3)]
only finitely many 7p-orbits, and hence .5 and 3. are finite. Write B=P'@P
as a B-module. Assume that P'+0, and put .B=Endz(P’). We claim that .N
is a faithful tilting .B-module. For simplicity of notations we put N=.N and
F=,B. First observe that Homg (P, N)=rad>=(P, N)=0 since (i) is equivalent
to (ii), and hence N is a F-module. Further, since C is a faithful component of
T'; and B is an artin algebra, there are indecomposable modules Z), -+, Z,, in C
such that Z=Z,P.--PZ, is a faithful B-module. We claim that there are in-

decomposable B-modules W, :++, W, in C which are not proper predecessors of
%, and such that W=W,@---@ W, is a faithful B-module. Suppose that some
Z; is a proper predecessor of ..5. We may assume that Z,, -+, Z,, s<m, are all

proper predecessors of % in the family Z,, ---, Z,. Let Z'=Z,®---PZ, and
Z'=Zy B PZ,. Since Z is a faithful B-module, there is an epimor-
phism f: Z*—DB, for some k=1. Then, since .= has no injective predeces-
sors, the restriction of f to (Z’)* factors through a module N/, for some j=1.
Hence there is an epimorphism W*—DB, for some a=1, and W=N@®Z", and
so W is a required faithful B-module. In particular, there is a monomorphism
g: B—>W’, for some r=1. Since F=P’ as a right F-module, restriction of g to
F gives a monomorphism k: F—W’. But P’ has no indecomposable direct
summands in C, and so % factors through a module N, for some £=1. Hence
there is a monomorphism e: F—N*, and N is a faithful F-module. Further,
since C is a generalized standard component of T'5, we have Homy (P, U)=0 for
all modules U in L. Consequently, ..C consists entirely of F-modules. More-
over, by our choice of 3, for any module X from .3, the module 73X is also a
F-module. Hence 73N=7;N and 75N=7rN. Then, since C is generalized
standard, we get Homg(N, 7N)=0, Homg(77N, N)=0, and Ext; (N, N)==
DHom (N, 7zN)=0. Also, if Homy (N, ¥)=0 for an indecomposable F-module
V which is not a direct summand of N, then Homg (77N, V)=0, because .3 is
finite. Then, by Lemmas 1.6, 1.5 and its dual, in [9], IV is a tilting F-module.
Moreover, o H=End; (V) is a hereditary algebra, since C is generalized standard.
Therefore, there exists a tilting ~H-module T such that .B=F=End_y(.T')
and ..C is the torsion-free part of the connecting component of T'_, correspond-
ing to »T. Further, since .C has no projective modules, T has no preinjective
direct summands. Observe also that Homg (P, P')=0, since Homp(P, N)=0

and P’ is a submodule of N*. This implies that B is isomorphic to [g f‘]’
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where C=Endp(P), F=Endz(P’) and E=Homy(P’, P). In particular, «.B=F
is a factor algebra of B. We shall prove now that the torsion-free part Y(.T)
of mod F is closed under predecessors in mod B. We know that (.. T) is closed
under predecessors in mod F. First observe that Ey is a direct sum of indecom-
posable B-modules which are in C but not in L. Indeed, Ey is the largest F-
submodule of P and any epimorphism F"—Ej factors through a module N¥,
for some £=1. Moreover, by our choice of .3, rad P and N have no common
indecomposable direct summands. In order to prove that Y(.T) is closed under
predecessors in mod B, it is sufficinent to show that there are no nonzero maps
from indecomposable B-modules which are not F-modules to indecomposable
F-modules in Y(T). Each B-module can be viewed as a triple (Ug, V5, ¢),
where ¢: U ?E—»V is a F-homomorphism. Let (0, %) be a nonzero map from

an indecomposatble B-module (Ug, Vi, ¢) which is not in mod F to an indecom-
posable F-module W=(0, W, 0). Then h: V—W is nonzero. Let L be an in-
decomposable direct summand of V' such that Homy(L, W)=0, and let p: V—L
be the canonical projection. Since (U, Vi, ¢) is indecomposable and not in
mod F, the composition p¢ is nonzero. Hence HomF(U?E, L)#0. Consider

now an epimorphism C"—U in mod C. Then we get an epimorphism E"=<
C"QE—>UQE, and consequently we have Hom(E, L)#0. This implies that
c c

L belongs to X(.T), and hence W belongs to X(..T"), because Homy(L, W)=0.
Therefore, Y(.T) is closed under predecessors in mod B. We proved that
«B, «H, and .. T satisfy the required conditions (a) and (d). Dually, we define
B.., H.,, and T.. such that the conditions (b) and (e) are satisfied. Moreover, by
our choice of »C and C., the condition (c) also holds. Finally, all but a finite
number of modules in C beling to the union of ..C and C., because C has only
finitely many 7z-orbits. Let now X be an indecomposable B-module. Suppose
that X is neither in Y(.T") nor in C. Observe that, if X is a ~B-module; then
Homg (N, X)=0, because any epimorphism ..B?’—X factors through NN, for
some ¢=1. If X is not a «B-module, then Homp(P, X)=0. Therefore, since
X does not belong to C, we have either rad”(.N, X)=0 or rad>(P, X)=0.
Hence there is Y in C. such that Hompz(Y, X)4=0. But then X belongs to
X(T.), because Y belongs to X(.T") and X(T.) is closed under successors in
mod B. This proves that the condition (f) also holds. We proved that (i) im-
plies (vii), and this finishes our proof.

3. Generalized standard components with sections

Components with sections form a special class of components without
oriented cycles. The aim of this section is to give simple characterizations of
generalized standard components with sections. As an application we obtian
some new simple characterizations of tilted algebras. We would like to inform
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that similar results to those presented in this section were also proved indepen-
dently by Shiping Liu (a private communication).

Let A be an artin algebra and C be a component of T',. A full connected
subquiver 3, of C is called a section if it satisfies the following conditions:

(1) = has no oriented cycle.

(2) = intersects each 74-orbit of C exactly once.

(3) Each path in C with source and target from 3, lies entirely in =.

(4) If X—Yis an arrow in C with X from 3 (resp. Y from X)), then either
Yorr,Y (resp. Xor 73 X)isin 3.
It is easy to see that if C contains a section 3, then C has no oriented cycle
(see [3, (8.1)]). Moreover, if C admits a slice (in the sense of Section 1), then
C admits a section.

We shall need the following simple lemma.

Lemma 3. Let A be an artin algebra and C be a component of T, having
a finite section 3. Let M be the direct sum of all modules forming the vertices of
3. Then ann C=ann M.

Proof. Clearly ann C is contained in ann M. Let B=A/ann C. 'Then
C is a faithful component of I'z. It is sufficient to show that M is a faithful B-
module. Since B is an artin algebra, there are indecomposable modules
Zy, +++, Z, in C such that Z=Z,P---PZ, is a faithful B-module. Let Z=UDV,
where U is a direct sum of predecessors of = in C, and V' has no such direct
summands. Suppose that '==0. Since Z is a faithful B-module, there is a
monomorphism f: B—=>Z!=U*@V*, for some t=1. Moreover, since = is finite,
we have then f=gh, where h: B->U*PM* g: U*PM°*'—-UPV?, for some s=1.
Then 4 is a monomorphism, and hence L=U®M is a faithful B-module. Let
L=E®F, where F is a direct sum of modules from 3 and E has no direct sum-
mands from 3. Suppose that E==0. Then, since L is a faithful B-module,
there exists an epimorphism p: L"—DB, for some m=1. Hence, since 3 is
finite, we have p=ge, where e: L"->M*@F", q: M*F"—DB, for some k=1.
Observe that ¢ is an epimorphism, and so M@F is a faithful B-module. But
MOF is a direct sum of modules from 3. Therefore, M is a faithful B-module.

Theorem 2. Let A be an artin algebra and C be a component of T, con-
taining a section %. Denote by M the direct sum of all modules from 3. Then
the following conditions are equivalent.

(1)  Cis a generalized standard component of T .

(i) Hom,(X,7,Y)=0 for any modules X and Y from =.

(iii) Homy, (72X, Y)=0 for any modules X and Y from =.

(iv) = is finite and rad~ (M, M)=0.

Proof. The implications (i)=>(ii), and (i)=>(iii) are clear. Observe that, if
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(ii) or (iii) holds, then, by Lemma 1, = is finite. Suppose that 3, is finite and
rad®(M, M)=0. Then any nonzero map from rad*(M, M) factors through a
module (r,M)’, for some =1, and also factors through a module (v7M)° for
some s=1. Hence (ii) implies (iv), and (iii) implies (iv). Finally, assume that
(iv) holds. We claim that C is generalized standard. Suppose that rad=(U, V)
#+0 for some indecomposable modules U and ¥ from C. Then there is an infi-
nite path

U= U0—>U1_>"'_>Ui—>Ui+1—)"'

in C such that rad=(U;, V) =0 for all  >0. Since I is finite, there is m=0 such
that U, is a successor of % in C. Then rad*(U,, V)=#0 implies existence of
an infinite path

ver—> i+1"V,~""'_>V1—>Vo =V

in C such that rad=(U,, V,)#0 for all j=0. Again, since %, is finite, there is
r=0 such that V, is a predecessor of 3 in C. Let f: A"-U,, be an epimorphism.
Then f=gh, where h: A "—>M* and g: M*—U,,, for some ¢=<1, because U, is a
successor of the finite section %. Clearly, then g is an epimorphism. Similarly,
let ¢: V,—~(DA)’ be a monomorphism. Then ¢=0Ra, where a: V,—»M* g: M*
—(DA)*, for some k=1, because V, is a predecessor of the finite section 3.
Clearly, « is a monomorphism. Now, if v is a nonzero map from rad>(U,, V,),
then ayg: M*—M?* is nonzero and belongs to rad”(mod 4). Hence, rad=(M, M)
=0, a contradiction to (iv). Therefore, (iv) implies (i).

We may prove now the following characterization of tilted algebras.

Theorem 3. Let A be an artin algebra. Then the following conditions are
equivalent.

(1) A is a tilted algebra.

(i) T, admits a faithful generalized standard component C containing
a section.

(iil) T, admits a component C having a faithful section = such that
Hom, (X, 7,Y)=0 for all modules X and Y from =.

(iv) T, admits a component C having a faithful section 3, such that
Hom, (12X, Y)=0 for all modules X and Y from =.

(v) T, admist a component C having a faithful finite section 3. such that
rad> (M, M)=0, where M is the direct sum of all modules from =..

Proof. The equivalence of the conditions (ii)-(v) is a direct consequence of
Theorem 2 and Lemma 3. Assume now tht that A=Endy(T") for some heredi-
tary artin algebra H and a tilting H-module 7. Denote by C the connecting
component of T', corresponding to 7T (see Section 1). It is well known (see
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[11, (4.2)]) that the family S of modules F(I)=Homg(T, I), where I are inde-
composable injective H-modules, is a finite faithful slice in . Then the full sub-
quiver 3 of C formed by the modules from & is a finite faithful section of C.
Moreover, the torsion-free part Y(T )N C of C consists of all predecessors of =
in C whereas the torsion part (1) NC of C consists of all successors of 733 in
C. Since there are no nonzero maps from modules in X(T') to modules in
Y(T), we have Hom, (77X, Y)=0 for all modules X and Y from 3. Conse-
quently, (i) implies (iv). Assume now that C is a component of I', with a sec-
tion 3 such that the equivalent conditions (ii)-(v) are satisfied. Then X is a
finite section. ILet M be the direct sum of all modules from 5. Then M is a
faithful A-module. Moreover, by (iii), (iv) and the well known Auslander-Reiten
formula, we have Hom, (M, ,M)=0, Hom, (3 M, M)=0, and Ext} (M, M)==
DHom (M, 7,M)=0. Finally, since % is a finite section, if Hom,(M, Z)=+0
for an indecomposable A-module Z which is not a direct summand of M, then
Hom,(72M, Z)=#0. Then, by Lemmas 1.6, 1.5 and its dual, from [9], we infer
that M is a tilting A-module. Since also rad>(M, M)=0, then H=End, (M) is
a hereditary artin algebra. Therefore, 4 is a tilted algebra of the form Endy,(T')
for some tilting H-module 7. 'This finishes the proof.

4. Concealed algebras

Following [11, (4.3)] a concealed algebra is an artin algebra of the form
Endy(T), where H is a connected, representation-infinite, hereditary artin alge-
bra and T is a preprojective (equivalently, preinjective) tilting H-module. Con-
cealed algebras form an important class of tilted algebras. It follows from
[16, (7.5)] that every representation-infinite tilted algebra has a factor algebra
which is a concealed algebra. Moreover, the concealed algebras play a crucial
role in the Bongartz criterion for finite representation type [1], the author’s cri-
terion for polynomial growth [15], and it is expected that they will play a similar
role in a criterion for tame type (see [8]). Using the concept of derived cate-
gories, Ringel proved in [12] (see also [2]) that the class of concealed algebras
coincides with the class of algebras 4 such that T, has two different components
containing slices. This fact is also a direct consequence of [4, (4.1)] and [16,
(7.5)]. We have also the following characterization of concealed algebras.

Lemma 4. Let A be an artin algebra. Then the following conditions are
equivalent.

(i) 4 is a concealed algebra.

(i) T, admits a sincere preprojective component without injective modules
and a sincere preinjective component without projective modules.

Proof. It is a direct consequence of [11] and [16, (7.5)].
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We shall prove the following characterization of concealed algebras.

Theorem 4. Let A be a basic, connected, artin algebra. Then the following
statements are equivalent.

(i) A is a concealed algebra.

(it) T, admits exactly two different faithful generalized standard components
without oriented cycles : a preprojective component and a preinjective component.

(iii) T4 admits at least two different faithful generalized standard com-
ponents without oriented cycles.

(iv) T, admits two different generalized standard components C and 9 with-
out oriented cycles and such that C is faithful and 9 is sincere.

(v) T4 admit two different components with sections satisfving ome of the
conditions imposed on C in the statements (iii)-(v) of Theorem 3.

Proof. 'The implications (ii)=>(iii) and (iii)=>(iv) are obvious. Moreover,
the implication (v)=>(iii) is a direct consequence of Theorem 3. Assume now
that A is a concealed algebra. Then, by [10], [11], T, consists of a preprojec-
tive component & containing all projective modules, a preinjective component J
containing all injective modules, and regular components which are either tubes
(if A is tame) or of the form ZA. (if A is wild). Then @ and J are faithful,
without oriented cycles, and generalized standard (see Theorem 1). Clearly, the
tubes contain oriented cycles. The components of the form ZA4.. have infinitely
many nonperiodic 7 4-orbits, so they are not generalized standard, by [14, (2.3)].
Therefore, P and J are unique generalized standard faithful components of T,
without oriented cycles. Hence (i) implies (ii). Observe also that & and J con-
tain sections, because they contain slices, and so (i) implies also (v). Assume
now that I", admits a faithful generalized standard component C without oriented
cycles and a sincere genrealized standard component 9 without oriented cycles.
Then ann =0 and C satisfies the conditions (a)-(f) of Theorem 1. We use the
notations of Theorem 1. Then B=4 and 9 is contained either in Y(.T') or in
X(T.). By duality, we may assume that 9 is contained in Y(.T). We know
that 9), as a generalized standard component of T',, has at most finitely many
nonperiodic 74-orbits. Then, by the known description of components of tilted
algebras (see [5], [7]), we deduce that 9 is a preprojective component of T"_z,
and hence of T',. Moreover, B is connected because 9 is sincere. Observe
also that 9) has no injective modules because C is sincere and 9, as a preprojec-
tive component of I'y, is closed under predecessors in mod 4. Clearly, then 9
is a faithful component of T',. 'Then, applying the dual arguments, we infer
that C is a preinjective component of I", without projective modules. Then, by
Lemma 4, 4 is a concealed algebra. This finishes the proof.

ReMARK. In [14] we presented an example of an algebra A of infinite glo-



526

A. SKOWRONSKI

bal dimension such that T', admits three sincere genrealized standard com-
ponents without oriented cycles. Hence, in the condition (iv) of Theorem 4,
we cannot replace the assumpiton C is faithful by the weaker one C is sincere.
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