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AND ALMOST RELATIVE INJECTIVES
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This paper is supplemental to [4], [6] and [7]. We shall show, under as-
sumption of finite length, that when we study almost relative projectives, we
may restrict ourselves only to certain special homomorphisms % in the defini-
tion of almost relative projectives [6] (see $1). In the similar manner to proof
of the above fact, we shall give a criterion for an R-module M, to be almost M-
projective, where R is a perfect ring and M, is an indecomposable R-module.
We shall obtain, in 83, a generalization of [6], Theorem 1, where direct sums of
local modules were studied. In this section we shall show the same property on
direct sum of indecomposalbe modules. $32 and 4 are the dual versions of

§81 and 3.

1. Almost relative simple-projectives

In this paper we always assume that R is a ring with identity and that every
module is a unitary right R-module. Let M be an R-module. We denote the
socle, the Jacobson radical, and the length of M by Soc(M), J(M) and |M],
respectively. If Endg(M) is a local ring, we say M is an LE module. We recall
here the definition of almost relative projectives [6]. Let M and N be R-
modules. For any diagram with row exact:

h
Ml o'o—),N

(1) k.
@/V lh
M — M|K— 0

if there exists #: N—M with vh=Fh or there exist a non-zero direct summand
M, of M and k: M,—N with hk=v|M,, then N is called almost M-projective.
(if we obtain only the first case, we say that N is M-projective [2]).

Here we shall introduce a little weaker condition than the above. In the
diagram (1) we take only the #': N—M/K whose image is simple. If for any
k' above there exists Z in the definition, then we say N is almost M-simple-
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projective. We can similarly define M-simple-projective (resp. simple-projective).
As an application of [10], Theorem?, we shall show in this section that the above
weaker conditon coincides with original one when R is a semi-perfect ring and
M, N are R-modules of finite length.

Remark 1. If we restrict » to have a simple image, i.e., K is maxiaml,
instead of % in (1), then this is nothing but the lifting property of simple modules
(see the definition before Theorem 1 below).

First we note that many arguments in [6] and [8] are valid for almost rela-
tive simple-projectives. We shall use those facts without proofs, and refer
[6], [8] and [9] for definitions of local (hollow) modules and uniform modules.

Lemma 1. Let R be any ring and let My, M be R-modules with | M,| <<oo
or |M|<<oco. Then M, is M-projective if and only if M, is M-simple-projective.

Proof. Take a diagram with row exact:
M,
@ |
M= H—0

Since | M| <oo or |M|<<oo, we can find a maximal submodule 7' in k(1,).
Then we obtain a new diagram

M,

/ lv'k

M2 v g —0

where »’: H—H|T is the canonical epimorphism.

Since v'h(M,) is simple, there exists By My—M with v’ vh,=v'h. Hence
(vh,—h) (M))C TSh(M,). Replacing h.by vh,—h, we obtain %,: My—>M such
that (vh,—(wh,—h)) (My) S (wh,—h) (M) S h(M,). |h(My)| <o implies h=
»(31o1(—1)"** &) for some n.

Corollary. Let M, be an R-module of finite length. Then M, is projective
if and only if M, is simple-projective.

From the above proof and the definition, we obtain

Lemma 2. Let M, and M be as above and M an indecomposable R-module.
Assume that M, is almost M-simple-projective. If the h in the diagram (2) is not
an epimorphism, h is liftable to k: M,—M.

From [7], Theorem 1 we note the following fact:
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Lemma 3. Let R be any ring and N, M R-modules. Further we assume
that M is a non-hollow and indecomposable module. If, for any non-epic homo-
morphism h in (1), there exists k: N—>M with vh=h, then N is M-projective.

Proof. From the assumption and the technique in the proof of [7], The-
orem 1, we can reduce the # in (1) to non-epimorphism by relpacing K with
suitable submodule of K.

Corollary. Let R be any ring and let M, M be as in Lemma 2. If M, is
almost M-simple-projective and M is not a hollow module, then M, is M-projective.

Proof. This is clear from Lemmas 2 and 3.
From the above corollary we study in a case where M is a local module.

Lemma 4. Let R be a semi-perfect ring and let M, and M—=eR|A be R-
modules with | M,| <<oo or |eR[A| <oo, where e is a primitive idempotent. As-
sume that M, is almost eR|A-simple-projective. Then M, is almost eR|A-projec-
tive.

Proof. Take a diagram for any right ideal BD A4:
M,

3 , |
eR/A —— eR/IB — 0

By Lemma 2 we may assume that % is an epimorphism. Then from (3) we ob-
tain the derived diagram:

M,

’ ll/’h
eR|A 2> eR|B —> eRJe] — 0

By assumption and Lemma 2, if there exists %’': My—eR/A with v’ vh'=v'h,
then we can find %: M,—eR/A with vh=h (cf. the proof of Lemma 1). Hence
we assume that there exists %': eR|A—M,with v'hl'=v'v. Puth'(é)=my=mye),
where é=e+A in eR/A. Since v’ hk'=v"v, h(m)=v(é(e-+j)) for some jEe]e.
Therefore putting (e+j) '=e+j': j' Eefe, v(&)=h(mye+j’)). We note that [8],
Lemma 3 was obtained from [8], Lemma 2, where we used the property of
almost simple-projectives and the fact: ~(M,) J"=0 for some n. Hence there
exists f: My—>M, with f(m)=me+myj'. Put h=fh', and hh(e)=hfk'(&)=
hf (mg)=h(my(e+j’))=v(é). Hence hh=v. Therefore M, is almost eR/A-pro-

jective.

We recall here the definition of LPSM. Assume that M/J(M) is semisimple.
If for any simple submodule .S in M/J(M) there exists a direct decomposition
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M=M,PM, such that (M,+J(M))/J(M)=S, we say that M has the lifting
property of simple modules modulo radical, briefly LPSM [5] and [8].

The following theorem is useful when we want to check almost relative pro-
jectivity.

Theorem 1. Let R be a semi-perfect ring. Then the concept of almost
relative projectivity coincides with one of almost relative simple-projectivity on R-
modules of finite length.

Proof. First we note that every module of finite length has a projective
cover. Let M, and M be R-modules of finite length. Assume that M, is almost
M-simple-projective. We take a direct decomposition M=3,PT;PBZ,DBN,
into indecomposable modules such that M, is almost T);-simple-projective (but
not T;-projective) and M, is N,-projective (cf. Lemma 1). Then T} is a local
module by Corollary to Lemme 3, and hence M, is almost T;-projective from
Lemma 4. It is clear that M, is almost T, T -simple-projective for i==j. As
the remark given before Lemma 1, we used only a property of almost relative
simple-projectives in the proof of [7], Proposition 5. Hence T;®T; has LPSM.
As a consequence T; and T are mutually almost relative projective by [10],
Lemma 3* and the dual result to Corollary to Lemma 2 in [10] (cf. [10], the proof
of Lemma 4¥). Therefore M, is almost M-projective by [10], Theorem?.

Using the above argument we shall give a criterion for M, to be almost
M,-projective (cf. [7], Proposition 2).

Theorem 2. Assume that R is a perfect ring. Let M, be an indecomposa-
ble R-module and M, an R-module. Then M, is almost M,-projective if and only

if the following conditions are satisfied. Let P iMo be a projective cover of M,

1) Homg(P, N,)=Homg(M,, N,), where N, is any maximal submodule of M,
(cf. [1], p.22, Exercise 4).

2) Any element in Homg(M,/N,, M,/N,) is liftable to an element in Hom,
(M,, M,) or in Homg(M,, M), where N,, N, are any maximal submodules of M,
and M, respectively.

Proof. We have Homg(P, N,) D Homg(M,, N,) for any maximal submodule
N, of M,. First we assume that M, is almost M,-projective. Let f be in
Homg(P, N,). Then f is not an epimorphism onto M;. Hence f induces an
element in Homg(M,, N,) by [8], Lemma 1. 2) is clear from definition. Con-
versely we assume 1) and 2). Consider a diagram with K a submodule of M,:
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If 7 is not an epimorphism, then 2(M,) C N, /K, where NN, is a maximal submodule
of M,. Since P is projective, there exists %’: P—M, with vk'=h6, and h'(P)C
N,. Hence from 1) there exists #: My,—M, with vh=h. Therefore if M, is not
local, then M, is M,-projective by the remark in the proof of Lemma 3. Finally
suppose that M, is local. If % is not an epimorphism, we obtain % above. We
assume that % is an epimorphism. We reproduce the same argument in the
proof of Lemma 2. From the above diagram we can derive the following one:

M,
Vv
My/N, |v'h
v v lv'h
M, > MyK 2 MY (M) — 0

where Ny=(v'h)7%(0).

From 2) we assume first that v’k is liftable to an element %,: M;—M,. Then
vh,—h: M,—J(M,)/K is not an epimorphism onto M,/K;. Hence by the initial
argument there exists B2 My—> M, such that vh,=vh,—h. Therefore h=
v(h,—h,). We assume next that »’h is liftable to an element 4’: M,—M,.
Then in the manner given in the proof of Lemma 4, we can find %: M,—M,
with k2=v. Hence M, is almost M;-projective.

RemARks 2. In the above, if M, is not indecomposable, then the situation
is very much different. If M, is a finite direct sum of indecomposable modules,
then we can use [8], Theorem.

3. Let Z be the ring of integers and p prime. Put R=Z,. Then O,
the module of rationals, is a hollow and infinitely generated R-module. Hence
O is trivially almost 27@Q-simple projective, but O is not almost ZPQ-
projective by [6], Theorem 1 and the remark on p. 450.

2. Almost relative simple-injectives

We shall study dual properties to ones in §1. We recall here the defini-
tion of almost relative injectives [3]. Let UDV and U, be R-modules. Con-
sider the following diagram with 7 the inclusion and two conditions 1) and 2):

U— TV «—0
\\h l
4) S2/N
@, |

U <. U,

1) There exists #: U—U, such that zi—h or
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2) There exist a non-zero direct summand U’ of U and %: U;—U’ such
that kh=nr i, where z: U—U" is the projection of U onto U’.

Then U, is called almost U-injective if the above 1) or 2) holds true on the above
diagram with any V and any % (U, is called U-injective if we have only 1) [2]).

In the above definition we consider only 2": V' —U,, whose image is simple.
Then we shall call this restricted property almost relative simple-injective. Si-
milarly we can define relative simple-injective. We shall show that almost re-
lative injectivity coincides with one of almost relative simple-injectivity under
some assumptions.

We assume that every module in this section contains a non-zero socle.
The following three lemmas are dual to ones in §1, and their proofs are categroi-
cal. Hence we skip them.

Lemma 1* (dual to Lemma 1). Let U, and U, be R-modules and either
[ Uil <o or |Uy|<oo. If U,is U-simple-injective, then U, is U,-injective.

Lemma 2%  Let U, and U, be as above and U, indecomposable. Assume
that U, is almost U,-simple-injective, and that the h in the diagram (4) is not monic.
Then there exists h: U,—U, such that hi=h.

Lemma 3% Let U, and U, be as in Lemma 2. If U, is an indecomposable,
non-uniform module, and U, is almost U,-simple-injective, then U, 1s U,-injective.

Let R be a semiperfect ring and U,, U; R-modules. Assume that U, is a
uniform module with Soc(U,)=S,. We consider the following situation: there
exist submodules 7,2 T'(=#0) in U, such that 7}/T'~S; (=~eR/e]), and Soc (U,)
contains a simple component .S;,” isomorphic to S;; e is a primitive idempotent.
Take any element ¢ in T with t=te and T\=tR+T.

Lemma 5. Let R be semi-perfect, and let U,, UDTy(2t)DT, S, and S{
be as above. If U, is almost U,-simple-injective, then for any element x in S| with
xe=ux there exists k: U,— U, such that h(t)=x and h(T)=0.

Proof. Since t=te and x=uxe, we obtain an isomorphirm A’: T\/T~S{

(~eR[e]) with h'(t4T)=x. Then we have a homomorphism 4: Tl—u> T,/T—S1
c U,, where v is the natural epimorphism. Hence by assumption there exists a
homomorphism %: U,— U, with %&(t)=x and A(T)=0.

The following lemma is very useful when we examine almost injectivity
for modules.

Lemma 4. Let R be semi-perfect and U,, U, R-modules. Assume that
either U, or U, is of finite length and that U, is indecomposable. If U, is almost
U,-simple-injective, then U, is almost U,-injective.
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Proof. From Lemmas 1* and 3* we may assume that U, is uniform (and
U, is not Ui-injective). Take a diagram with 7 a submodule of U;:

U, —— V' (8, = Soc(U)) < 0

| 7

Us
We may suppose from Lemma 2¢ that # is a monomorphism.
a): Assume that there exists £: U,—U, with h(h|S)=i|S,. Put f=(hh—i)|
V: V—-U, and T=ker fDS,. Then

(5) Fh|T=i|T.

Suppose T'=V and put T)=f"!(S;). Then T,/T~S, (=~eR/e]), since U, is uni-
form. Take ¢ in 7} such that t=te and tR+T=T,. Put t,=hh(t)EU,, and
t,e=t,. V being uniform, kh: V—U, is a monomorphism. Further since U,
is uniform, xRD S, for any non-zero x in U;,. Hence there exists j in R such
that

ty—t = (hh—i) (t) = f(t) = toj = toJe, i.e., t=t(1—7) (j = je) -

From the fact that #,j .S, and %k is a monomorphism, we have #€.S,, and
h(tj)=h(tj) e is in a simple submodule S{ of U, Further S,~T,/T~(tR+
hh(T))/hk(T). Hence there exists &': U;—U, such that

B'(t) = h(t) and E'(hh(T)) =0
by Lemma 5. Put 'h*=1U —k' kh: Uy—U,, and

(Bh*) h(1) = Fh(t)— Il Bh(t) = to— W' (ts) = to—hih(tf) = to(1—j) = ¢, i.e.
(6) (Rh¥) (h(t)) =t and
(7 (hh*)h|T = (1;—hh' hR)|T = 1 by (5),

since 2’ Bh(T)=0. Hence we obtain &,:=hh*: U,—U, with
hh|T, =1

by (6), (7) and the fact: T'=tR+T, and further T'227TDS,. Repeating this
argument, we finally obtain h,: Uy—U, with &, h=i since |V | <co.

b): Assume that there exists k: U—U, with %i|S,=h|S,.

Put hy=h—hi: V—U, Then ker #,D>S,%0. Hence there exists %': U,—U,
with &' i=h=h—hi from Lemma 2% Therefore h=(h+%')i and h+h':
U,—-U,.
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Theorem 1* (dual to Theorem 1). Let R be a semi-perfect ring. Then
the concept of almost relative injectivity coincides with that of almost relative
simple-injectivity on R-modules of finite length.

Theorem 2!, Assume that R is a right semi-artinian ring. Let U, be an
indecomposable R-module and U, an R-module. Then U, is almost U,-injective if
and only if the following conditions are satisfied. Let E be an injective hull of U,,.

1) Homg(U,/S,, Uy)=Homg(U,/S,, E), where S, is any smiple submodule of
U..

2) Any element in Homg(S,, Sp) is extendible to an element in Homg(U,, U,)
or in Homg(U,, U,), where S,, S, are simple submodules of U, and U,, respectively.

ReEMARK 4. Let R be a local commutative and non-valuation domain.
Then R is not almost R-injective as R-modules. However R is semi-perfect
and trivially R is almost R-simple-injective. Hence we need the assumption
on length in Lemma 4%,

3. Condition (D)

We shall give a supplemental reslut of [6]. We recall the condition (D)
in [6]. Let {M;}, be a set of R-modules and M=3,PM;. By =, we denote
the projection of M onto M;. Concerning to this decomposition we consider
the following condition:

(D) any submodule N of M with n(N)=M; for some i contains a non-zero direct
summand of M.

If all the M; are hollow and [ is a finite set, then (D) is equivalent to M
being a lifting module by [6], Theorem 1.

In the above let I be a finite set {1, 2, -+, n}, and M, M; R-modules, where
the M; are indecomposable. Suppose that M, is almost M;-projective for all z.
Consider a diagram with K a submodule of M:

M,
(8) ] [
M — M|K —0
We can derive the following diagram from (8):

M,

(8—) ' o [

M, > MK —0,
where 7 is the inclusion of M into M, K'=x,(K) and v}: M|K—M|(ZBK')=
S@M,[Ki—M,[K’ (see [8]).
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Lemma 6. In the above we assume that v} h(My)+M /K’ for all j. Then
there exists b: My—>M with vh=h.

Proof. We can prove the lemma by induction on 7 in a manner similar to the
proof of [4], Lemma 1.

The following theorem is given in [4] and [6], when the M, are hollow.
In general we obtain

Theorem 3. Let {M;}, be a set of LE modules and M=3,DM;. Then (D)
holds true for the decomposition M=Z,DM; if and only if Z;PM,; is almost
31— 1D M-projective for any subset J of 1. If I is finite, then (D) holds true for
any direct decomposition of M if and only if M, is almost M -projective whenever
i].

Proof. The first part was given in [11]. Hence we shall show the second
half. Assume that [ is finite and M; is almost M -projective for any pair
i and j (¢=4). By making use of an argument similar to the proof of [4],
Theorem 1, we shall show that (D) holds true for the decomposition M=3,,PM,.
If I={1,2}, i.e. M=M,@BM,, then M satisfies (D) by definition. We shall
show (D) by induction on n; I={1, 2, ---,n}. Let N be the submodule of M
given in (D). We may assume z,(N)=M,. Put z*=1—zn,, M*=M,H---PM,
and N*=z*(N). Further putting N;=N N M, and Ny=N N M*, we obtain an
isomorphism k: M;/N,~N*|Ny, i.e., N=M,(k) N* (see [6]). From those data
we have the diagram:

M,
2
M, [N,

o
M* — M*|Ny, —> 0

We can derive the diagram similar to (8 —j) from the above. Considering the
diagram

M,/N,
e

N+ 210 N*/N* s 7 (N*¥)}z (Ny)

N +« N , n

M* " M*INy 55 M jm (Ny)

we have v} kv (M)=v]v* 7 (Ny)=viv*z(N). If z;(N)*M, for all j>2,
v} h v, is not an epimorphism for allj>2. Hence there exists %;: M,—M?* with
v* y=h v, by Lemma 6. Therefore N=M,(k) N*> M,(h,) (cf. the proof of [6],
Theorem 1). As a consequence we may assume z;(IN)=2»M; for some 7 >2, say
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i=2. Now M*=M,P---@M, and let z; be the projection of M* onto M,.
Then #y(N*)=n}z*(IN)=mn,(IN)=M,. Hence by induction hypothesis, there
exists a non-zero direct summand M of M* contained in N*; M*=M;PM}.
Put N'=z*"'(M3;)NN. Then N'CN and N'CM,PM; with =5 (N')=Mj3,
where 73'(==*|Mj) is the projection of M,@BM; onto M;. Here we note
that M3 is isomorphic to some M (j>1). Hence N’ contains a non-zero direct
summand of M,@ M} from the initial and hence of M. Since every direct sum-
mand of M is a direct sum of indecomposable modules isomorphic to {M;}, (D)
holds true for any direct decomposition of M. The converse is clear from the
first equivalence.

ReMARK 5. If I is infinite in the second part, Theorem 3 is not true (see
[4]). We shall give a module which satisfies the conditions in Theorem 3,
but which is not a lifting module. Let K be a field and put

K 0 K
R=(0KK)
0 0 K/

Then Soc(e,; R)~Soc (e, R) via f, where e;; is a matrix unit. Put M,=e,, R and
M,=(e;; RPey, R)/{x+f(x)|xESoc(e;; R)}. Then M, is an indecomposable
and non-local module. Hence M=M,;PM, is not a lifting module, but M
satisfies (D) by Theorems 2 and 3.

4. Condition (D%
We shall give the property dual to one in the previous section. Let {V;};.:
be a set of R-modules and V=3>3_,@V,. We define the dual condition to (D).
(D¥ For a submodule N of V, if NN V,;=0 for some i, then N is contained in a
proper direct summand of V.
Clearly from [4], Theorem 4, (D?) is equivalent to V" being an extending module,
provided the V; are uniform and LE modules.

Lemma 6% Let {U}i.o be a set of indecomposable R-modules. Assume
that U, is almost U;-injective for all i>1 and take any diagram with V a sub-
module of U, B---PU,,:

U3 @U, < V0
LA
U

Put V'=ker h. If V' NU,=*0 for all i>1, then there exists h: U,®---DU,—U,
with hi=h.
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Lemma7. Let X=X,®X,DX; be an R-module. If X satisfies (D¥) for
the above decomposition, then so does X, P X,.

Proof. Put Y=X,PX,. Let N be a submodule of Y with X;NN=0.
Setting W=N@X;CX, we know WNX,=0. Hence there exists a proper
direct summand V of X such that VO W, ie. X=V @&V’ and VV'+0. Since
X, WV, V=X;®(YNV)and X=VBV'=X,B(YNV)BV’'. Hence Y=
(YNVae(YN(X;dr’)) and YNVDON. If Y=YNV, X=X;H(YNV)D
V'=X;®Y®V"' and hence V''=0, a contradiction. Therefore Y satisfies (D?).

The following theorem is given in [4], when the U; are uniform. We ob-
tain in general

Theorem 3'. Let {U;}}.. be a set of LE R-modules and U=3);..DU,.
Then the following are equivalent:

1) U satisfies (D*) for any direct decomposition of U.

2) U, is almost U -injective for all i j.

Proof. 1)—2). U;@U; satisfies (D¥) by Lemma 7. Hence we obtain 2)
from the proof of [4], Lemma 8.
2)—1) Since the U; are LE, we may take a direct decomposition into inde-
composable modules U;. We shall show the implication by induction on n. If
n=1, this is clear. Let IV be a submodule of U=3>}}.,D U, with NN U;=0 for
some Z, say i=1. Then N=N*(h) N', where z,: U—-U,, n*: U->U*=3,,,D
U, are the projections, N*=zr*(N), N'=n(N) and h: N*->N*|(N N U*)~N*
(see the proof of Theorem 3 and note NN U,=0). Since N*/(NNU*)=~N?,
Ny=NNU*=h"'(0). First assume that U, N Ny=+0 for all j>2. Then there
exists #: U*—U, with hki| N¥*=h by Lemma 6!. Hence N C U*(%)= U, which
is a proper direct summand of U. Accordingly we may assume Ny N U,=0.
Then from the induction hypothesis, there exists a direct decomposition U*=
s@USPD--- DU, such that U/ is isomorphic to some in {U;}%.; and V'=U}
B DULDNL(U*=Ui{DV’). Consider U=U/N=U,QULBDV'|NyDN|Ny,
and take any element x; in N'. 'Then there exists 2 in [NV such that z=x,+x,+’,
ie. h(x+x)=x; ;, €U, ,€U; and x'€V’, ¥’ EV’'[Ny. Further if 2'=
x+x+x"EN; x,€U3, x” €V, then (x,—x5)+(x'—x")ENNU*=N,CV’,
namely x,=x5. Hence the mapping g: N'—U} given by g(x,)=x, is a homomo-
rphism, i.e. 2=x,4g(x;)+x’. From this observation we obtain the following
diagram:

U« N'e—0

P

U;
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Since Uj is almost Uj-injective, there exists either %: U,—U} with k=g or k:
Uj—U, with ﬁg=i. In the formar case U= Ul(ﬁ)EBUé@-~-GBU$ and NC Ul(ii)
QU - PU; (in the later case g is a monomorphism and N C Ué(ﬁ)@UéGB---
@U,).
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