NOTE ON ALMOST RELATIVE PROJECTIVES AND ALMOST RELATIVE INJECTIVES

MANABU HARADA

(Received April 19, 1990)

This paper is supplemental to [4], [6] and [7]. We shall show, under assumption of finite length, that when we study almost relative projectives, we may restrict ourselves only to certain special homomorphisms h in the definition of almost relative projectives [6] (see §1). In the similar manner to proof of the above fact, we shall give a criterion for an R-module M_0 to be almost M_1 projective, where R is a perfect ring and M_1 is an indecomposable R-module. We shall obtain, in §3, a generalization of [6], Theorem 1, where direct sums of local modules were studied. In this section we shall show the same property on direct sum of indecomposable modules. \$2 and 4 are the dual versions of \$31 and 3.

1. Almost relative simple-projectives

In this paper we always assume that R is a ring with identity and that every module is a unitary right R-module. Let M be an R-module. We denote the socle, the Jacobson radical, and the length of M by Soc(M), J(M) and |M|, respectively. If $End_R(M)$ is a local ring, we say M is an LE module. We recall here the definition of almost relative projectives [6]. Let M and N be R-modules. For any diagram with row exact:

(1)
$$\begin{array}{cccc}
\tilde{h} & & \\
M_1 & \cdots & N \\
& & & & \\
\tilde{h} & & \downarrow h \\
& & M & \xrightarrow{\nu} & M/K \longrightarrow 0
\end{array}$$

if there exists $\tilde{h}: N \to M$ with $\nu \tilde{h} = h$ or there exist a non-zero direct summand M_1 of M and $\tilde{h}: M_1 \to N$ with $h\tilde{h} = \nu | M_1$, then N is called *almost M-projective*. (if we obtain only the first case, we say that N is *M-projective* [2]).

Here we shall introduce a little weaker condition than the above. In the diagram (1) we take only the $h': N \rightarrow M/K$ whose image is simple. If for any h' above there exists \tilde{h} in the definition, then we say N is almost M-simple-

projective. We can similarly define M-simple-projective (resp. simple-projective). As an application of [10], Theorem[‡], we shall show in this section that the above weaker conditon coincides with original one when R is a semi-perfect ring and M, N are R-modules of finite length.

REMARK 1. If we restrict ν to have a simple image, i.e., K is maxiaml, instead of h in (1), then this is nothing but the lifting property of simple modules (see the definition before Theorem 1 below).

First we note that many arguments in [6] and [8] are valid for almost relative simple-projectives. We shall use those facts without proofs, and refer [6], [8] and [9] for definitions of local (hollow) modules and uniform modules.

Lemma 1. Let R be any ring and let M_0 , M be R-modules with $|M_0| < \infty$ or $|M| < \infty$. Then M_0 is M-projective if and only if M_0 is M-simple-projective.

Proof. Take a diagram with row exact:

(2)
$$\begin{array}{c} M_{0} \\ \downarrow h \\ M \xrightarrow{\nu} H \longrightarrow 0 \end{array}$$

Since $|M_0| < \infty$ or $|M| < \infty$, we can find a maximal submodule T in $h(M_0)$. Then we obtain a new diagram

$$M_{0}$$

$$\downarrow \nu' h$$

$$M \xrightarrow{\nu} H \xrightarrow{\nu'} H/T \longrightarrow 0$$

where $\nu': H \to H/T$ is the canonical epimorphism. Since $\nu'h(M_0)$ is simple, there exists $\tilde{h}_1: M_0 \to M$ with $\nu' \nu \tilde{h}_1 = \nu'h$. Hence $(\nu \tilde{h}_1 - h) (M_0) \subset T \subseteq h(M_0)$. Replacing h by $\nu \tilde{h}_1 - h$, we obtain $\tilde{h}_2: M_0 \to M$ such that $(\nu \tilde{h}_2 - (\nu \tilde{h}_1 - h)) (M_0) \subseteq (\nu \tilde{h}_1 - h) (M_0) \subseteq h(M_0)$. $|h(M_0)| < \infty$ implies $h = \nu(\sum_{i=1}^n (-1)^{i+1} \tilde{h}_i)$ for some n.

Corollary. Let M_0 be an R-module of finite length. Then M_0 is projective if and only if M_0 is simple-projective.

From the above proof and the definition, we obtain

Lemma 2. Let M_0 and M be as above and M an indecomposable R-module. Assume that M_0 is almost M-simple-projective. If the h in the diagram (2) is not an epimorphism, h is liftable to $\tilde{h}: M_0 \rightarrow M$.

From [7], Theorem 1 we note the following fact:

Lemma 3. Let R be any ring and N, M R-modules. Further we assume that M is a non-hollow and indecomposable module. If, for any non-epic homomorphism h in (1), there exists $\tilde{h}: N \rightarrow M$ with $v\tilde{h} = h$, then N is M-projective.

Proof. From the assumption and the technique in the proof of [7], Theorem 1, we can reduce the h in (1) to non-epimorphism by relpacing K with suitable submodule of K.

Corollary. Let R be any ring and let M_0 , M be as in Lemma 2. If M_0 is almost M-simple-projective and M is not a hollow module, then M_0 is M-projective.

Proof. This is clear from Lemmas 2 and 3.

From the above corollary we study in a case where M is a local module.

Lemma 4. Let R be a semi-perfect ring and let M_0 and M=eR|A be R-modules with $|M_0| < \infty$ or $|eR|A| < \infty$, where e is a primitive idempotent. Assume that M_0 is almost eR|A-simple-projective. Then M_0 is almost eR|A-projective.

Proof. Take a diagram for any right ideal $B \supset A$:

(3)

$$eR/A \xrightarrow{\nu} eR/B \longrightarrow 0$$

 M_0

By Lemma 2 we may assume that h is an epimorphism. Then from (3) we obtain the derived diagram:

$$eR/A \xrightarrow{\nu} eR/B \xrightarrow{\nu'} eR/eJ \longrightarrow 0$$

By assumption and Lemma 2, if there exists $\tilde{h}': M_0 \rightarrow eR/A$ with $\nu' \nu \tilde{h}' = \nu' h$, then we can find $\tilde{h}: M_0 \rightarrow eR/A$ with $\nu \tilde{h} = h$ (cf. the proof of Lemma 1). Hence we assume that there exists $\tilde{h}': eR/A \rightarrow M_0$ with $\nu' h \tilde{h}' = \nu' \nu$. Put $\tilde{h}'(\tilde{e}) = m_0(=m_0 e)$, where $\tilde{e} = e + A$ in eR/A. Since $\nu' h \tilde{h}' = \nu' \nu$, $h(m_0) = \nu(\tilde{e}(e+j))$ for some $j \in eJe$. Therefore putting $(e+j)^{-1} = e+j': j' \in eJe$, $\nu(\tilde{e}) = h(m_0(e+j'))$. We note that [8], Lemma 3 was obtained from [8], Lemma 2, where we used the property of almost simple-projectives and the fact: $h(M_0) J^n = 0$ for some n. Hence there exists $f: M_0 \rightarrow M_0$ with $f(m_0) = m_0 + m_0 j'$. Put $\tilde{h} = f \tilde{h}'$, and $h \tilde{h}(\tilde{e}) = h f \tilde{h}'(\tilde{e}) =$ $hf(m_0) = h(m_0(e+j')) = \nu(\tilde{e})$. Hence $h \tilde{h} = \nu$. Therefore M_0 is almost eR/A-projective.

We recall here the definition of LPSM. Assume that M/J(M) is semisimple. If for any simple submodule S in M/J(M) there exists a direct decomposition

 $M=M_1\oplus M_2$ such that $(M_1+J(M))/J(M)=S$, we say that M has the lifting property of simple modules modulo radical, briefly LPSM [5] and [8].

The following theorem is useful when we want to check almost relative projectivity.

Theorem 1. Let R be a semi-perfect ring. Then the concept of almost relative projectivity coincides with one of almost relative simple-projectivity on R-modules of finite length.

Proof. First we note that every module of finite length has a projective cover. Let M_0 and M be R-modules of finite length. Assume that M_0 is almost M-simple-projective. We take a direct decomposition $M = \Sigma_i \oplus T_i \oplus \Sigma_k \oplus N_k$ into indecomposable modules such that M_0 is almost T_i -simple-projective (but not T_i -projective) and M_0 is N_k -projective (cf. Lemma 1). Then T_i is a local module by Corollary to Lemma 3, and hence M_0 is almost T_i -projective from Lemma 4. It is clear that M_0 is almost $T_i \oplus T_j$ -simple-projective for $i \neq j$. As the remark given before Lemma 1, we used only a property of almost relative simple-projectives in the proof of [7], Proposition 5. Hence $T_i \oplus T_j$ has LPSM. As a consequence T_i and T_j are mutually almost relative projective by [10], Lemma 3[‡] and the dual result to Corollary to Lemma 2 in [10] (cf. [10], the proof of Lemma 4[‡]). Therefore M_0 is almost M-projective by [10], Theorem[‡].

Using the above argument we shall give a criterion for M_0 to be almost M_1 -projective (cf. [7], Proposition 2).

Theorem 2. Assume that R is a perfect ring. Let M_1 be an indecomposable R-module and M_0 an R-module. Then M_0 is almost M_1 -projective if and only

if the following conditions are satisfied. Let $P \xrightarrow{\theta} M_0$ be a projective cover of M_0 .

1) $\operatorname{Hom}_{\mathbb{R}}(\mathbb{P}, N_1) = \operatorname{Hom}_{\mathbb{R}}(M_0, N_1)$, where N_1 is any maximal submodule of M_1 (cf. [1], p.22, Exercise 4).

2) Any element in $\operatorname{Hom}_{\mathbb{R}}(M_0/N_0, M_1/N_1)$ is liftable to an element in $\operatorname{Hom}_{\mathbb{R}}(M_0, M_1)$ or in $\operatorname{Hom}_{\mathbb{R}}(M_1, M_0)$, where N_0, N_1 are any maximal submodules of M_0 and M_1 , respectively.

Proof. We have $\operatorname{Hom}_{\mathbb{R}}(P, N_1) \supset \operatorname{Hom}_{\mathbb{R}}(M_0, N_1)$ for any maximal submodule N_1 of M_1 . First we assume that M_0 is almost M_1 -projective. Let f be in $\operatorname{Hom}_{\mathbb{R}}(P, N_1)$. Then f is not an epimorphism onto M_1 . Hence f induces an element in $\operatorname{Hom}_{\mathbb{R}}(M_0, N_1)$ by [8], Lemma 1. 2) is clear from definition. Conversely we assume 1) and 2). Consider a diagram with K a submodule of M_1 :

$$M_{0}$$

$$\downarrow h$$

$$M_{1} \xrightarrow{\nu} M_{1}/K \longrightarrow 0$$

- -

If *h* is not an epimorphism, then $h(M_0) \subset N_1/K$, where N_1 is a maximal submodule of M_1 . Since *P* is projective, there exists $\tilde{h}': P \to M_1$ with $\nu \tilde{h}' = h\theta$, and $\tilde{h}'(P) \subset N_1$. Hence from 1) there exists $\tilde{h}: M_0 \to M_1$ with $\nu \tilde{h} = h$. Therefore if M_1 is not local, then M_0 is M_1 -projective by the remark in the proof of Lemma 3. Finally suppose that M_1 is local. If *h* is not an epimorphism, we obtain \tilde{h} above. We assume that *h* is an epimorphism. We reproduce the same argument in the proof of Lemma 2. From the above diagram we can derive the following one:

$$\begin{array}{c|c} & M_{0} \\ & \downarrow \nu_{0} \\ M_{0}/N_{0} \\ M_{0}/N_{0} \\ \downarrow \nu'h \\ \downarrow \nu'h \\ M_{1} \longrightarrow M_{1}/K \longrightarrow M_{1}/J (M_{1}) \longrightarrow 0 \end{array}$$

where $N_0 = (\nu' h)^{-1}(0)$.

From 2) we assume first that $\nu'h$ is liftable to an element $\tilde{h}_1: M_0 \to M_1$. Then $\nu \tilde{h}_1 - h: M_0 \to J(M_1)/K$ is not an epimorphism onto M_1/K_1 . Hence by the initial argument there exists $\tilde{h}_2: M_0 \to M_1$ such that $\nu \tilde{h}_2 = \nu \tilde{h}_1 - h$. Therefore $h = \nu(\tilde{h}_1 - \tilde{h}_2)$. We assume next that $\nu'h$ is liftable to an element $\tilde{h}': M_1 \to M_0$. Then in the manner given in the proof of Lemma 4, we can find $\tilde{h}: M_1 \to M_0$ with $h\tilde{h} = \nu$. Hence M_0 is almost M_1 -projective.

REMARKS 2. In the above, if M_1 is not indecomposable, then the situation is very much different. If M_1 is a finite direct sum of indecomposable modules, then we can use [8], Theorem.

3. Let Z be the ring of integers and p prime. Put $R=Z_p$. Then Q, the module of rationals, is a hollow and infinitely generated R-module. Hence Q is trivially almost $\sum_{i=1}^{\infty} \bigoplus Q$ -simple projective, but Q is not almost $\Sigma \bigoplus Q$ -projective by [6], Theorem 1 and the remark on p. 450.

2. Almost relative simple-injectives

We shall study dual properties to ones in §1. We recall here the definition of almost relative injectives [3]. Let $U \supset V$ and U_0 be *R*-modules. Consider the following diagram with *i* the inclusion and two conditions 1) and 2):

$$U \xleftarrow{i} V \longleftarrow 0$$

$$\bigoplus \begin{array}{c} \ddots \\ \widetilde{h} \\ \downarrow_{h} \\ U' \xleftarrow{\cdots} \\ \widetilde{h} \end{array} \begin{array}{c} U_{0} \\ \downarrow_{h} \\ U_{0} \end{array}$$

(4)

1) There exists $\tilde{h}: U \rightarrow U_0$ such that $\tilde{h}i = h$ or

2) There exist a non-zero direct summand U' of U and $\tilde{h}: U_0 \rightarrow U'$ such that $\tilde{h}h=\pi i$, where $\pi: U \rightarrow U'$ is the projection of U onto U'.

Then U_0 is called *almost U-injective* if the above 1) or 2) holds true on the above diagram with any V and any $h(U_0$ is called *U-injective* if we have only 1) [2]).

In the above definition we consider only $h': V \rightarrow U_0$, whose image is simple. Then we shall call this restricted property *almost relative simple-injective*. Similarly we can define *relative simple-injective*. We shall show that almost relative injectivity coincides with one of almost relative simple-injectivity under some assumptions.

We assume that every module in this section contains a non-zero socle. The following three lemmas are dual to ones in \$1, and their proofs are categorical. Hence we skip them.

Lemma 1^{*} (dual to Lemma 1). Let U_0 and U_1 be R-modules and either $|U_1| < \infty$ or $|U_0| < \infty$. If U_0 is U_1 -simple-injective, then U_0 is U_1 -injective.

Lemma 2[‡]. Let U_0 and U_1 be as above and U_1 indecomposable. Assume that U_0 is almost U_1 -simple-injective, and that the h in the diagram (4) is not monic. Then there exists $\tilde{h}: U_1 \rightarrow U_0$ such that $\tilde{h}i=h$.

Lemma 3[‡]. Let U_0 and U_1 be as in Lemma 2[‡]. If U_1 is an indecomposable, non-uniform module, and U_0 is almost U_1 -simple-injective, then U_0 is U_1 -injective.

Let R be a semiperfect ring and U_0 , U_1 R-modules. Assume that U_1 is a uniform module with $\operatorname{Soc}(U_1)=S_1$. We consider the following situation: there exist submodules $T_1 \supset T \ (\pm 0)$ in U_1 such that $T_1/T \approx S_1 \ (\approx eR/eJ)$, and $\operatorname{Soc}(U_0)$ contains a simple component S_1' isomorphic to S_1 ; e is a primitive idempotent. Take any element t in T_1 with t=te and $T_1=tR+T$.

Lemma 5. Let R be semi-perfect, and let $U_0, U_1 \supset T_1(\ni t) \supset T$, S_1 and S'_1 be as above. If U_0 is almost U_1 -simple-injective, then for any element x in S'_1 with xe = x there exists $\tilde{h}: U_1 \rightarrow U_0$ such that $\tilde{h}(t) = x$ and $\tilde{h}(T) = 0$.

Proof. Since t=te and x=xe, we obtain an isomorphirm $h': T_1/T \approx S'_1$ $(\approx eR/eJ)$ with h'(t+T)=x. Then we have a homomorphism $h: T_1 \xrightarrow{\nu} T_1/T \rightarrow S'_1 \subset U_0$, where ν is the natural epimorphism. Hence by assumption there exists a homomorphism $\tilde{h}: U_1 \rightarrow U_0$ with $\tilde{h}(t)=x$ and $\tilde{h}(T)=0$.

The following lemma is very useful when we examine almost injectivity for modules.

Lemma 4⁸. Let R be semi-perfect and U_{c} , U_{1} R-modules. Assume that either U_{0} or U_{1} is of finite length and that U_{1} is indecomposable. If U_{0} is almost U_{1} -simple-injective, then U_{0} is almost U_{1} -injective.

Proof. From Lemmas 1^{\sharp} and 3^{\sharp} we may assume that U_1 is uniform (and U_0 is not U_1 -injective). Take a diagram with V a submodule of U_1 :

$$U_{1} \xleftarrow{i} V \supset (S_{1} = \operatorname{Soc}(U_{1})) \leftarrow 0$$
$$\bigcup_{U_{0}} h$$

We may suppose from Lemma 2[‡] that h is a monomorphism. a): Assume that there exists $\tilde{h}: U_0 \to U_1$ with $\tilde{h}(h|S_1) = i|S_1$. Put $f = (\tilde{h}h - i)|$ $V: V \to U_1$ and $T = \ker f \supset S_1$. Then

$$\tilde{h}h | T = i | T.$$

Suppose $T \neq V$ and put $T_1 = f^{-1}(S_1)$. Then $T_1/T \approx S_1 (\approx eR/eJ)$, since U_1 is uniform. Take t in T_1 such that t = te and $tR + T = T_1$. Put $t_0 = \tilde{h}h(t) \in U_1$, and $t_0 = t_0$. V being uniform, $\tilde{h}h: V \rightarrow U_1$ is a monomorphism. Further since U_1 is uniform, $xR \supset S_1$ for any non-zero x in U_1 . Hence there exists j in R such that

$$t_0 - t = (\tilde{h}h - i)(t) = f(t) = t_0 j = t_0 je$$
, i.e., $t = t_0(1-j)(j = je)$.

From the fact that $t_0 j \in S_1$ and $\tilde{h}h$ is a monomorphism, we have $tj \in S_1$, and h(tj) = h(tj) e is in a simple submodule S'_1 of U_0 . Further $S_1 \approx T_1/T \approx (t_0R + \tilde{h}h(T))/\tilde{h}h(T)$. Hence there exists $\tilde{h}': U_1 \rightarrow U_0$ such that

$$\tilde{h}'(t_0) = h(tj)$$
 and $\tilde{h}'(\tilde{h}h(T)) = 0$

by Lemma 5. Put $h^* = 1_{U_0} - \tilde{h}' \tilde{h}: U_0 \rightarrow U_0$, and

$$(\tilde{h}h^*)h(t) = \tilde{h}h(t) - \tilde{h}\tilde{h}'\tilde{h}h(t) = t_0 - \tilde{h}\tilde{h}'(t_0) = t_0 - \tilde{h}h(tj) = t_0(1-j) = t$$
, i.e.

(6)
$$(\tilde{h}h^*)(h(t)) = t$$
 and

(7)
$$(\tilde{h}h^*) h | T = (1_T - \tilde{h}\tilde{h}' \tilde{h}h) | T = 1_T \text{ by } (5),$$

since $\tilde{h}' \tilde{h}h(T) = 0$. Hence we obtain $\tilde{h}_1 := \tilde{h}h^* : U_0 \to U_1$ with

$$\tilde{h}_1 h | T_1 = 1_{T_1}$$

by (6), (7) and the fact: $T_1 = tR + T$, and further $T_1 \supseteq T \supset S_1$. Repeating this argument, we finally obtain $\tilde{h}_n: U_0 \rightarrow U_1$ with $\tilde{h}_n h = i$ since $|V| < \infty$. b): Assume that there exists $\tilde{h}: U_1 \rightarrow U_0$ with $\tilde{h}i |S_1 = h|S_1$.

Put $h_1 = h - \tilde{h}i$: $V \to U_0$. Then ker $h_1 \supset S_1 \neq 0$. Hence there exists \tilde{h}' : $U_1 \to U_0$ with $\tilde{h}' i = h_1 = h - \tilde{h}i$ from Lemma 2[‡]. Therefore $h = (\tilde{h} + \tilde{h}')i$ and $\tilde{h} + \tilde{h}'$: $U_1 \to U_0$. **Theorem 1ⁱ** (dual to Theorem 1). Let R be a semi-perfect ring. Then the concept of almost relative injectivity coincides with that of almost relative simple-injectivity on R-modules of finite length.

Theorem 2⁴. Assume that R is a right semi-artinian ring. Let U_1 be an indecomposable R-module and U_0 an R-module. Then U_0 is almost U_1 -injective if and only if the following conditions are satisfied. Let E be an injective hull of U_0 .

1) $\operatorname{Hom}_{\mathbb{R}}(U_1/S_1, U_0) = \operatorname{Hom}_{\mathbb{R}}(U_1/S_1, E)$, where S_1 is any smiple submodule of U_1 .

2) Any element in $\operatorname{Hom}_{\mathbb{R}}(S_1, S_0)$ is extendible to an element in $\operatorname{Hom}_{\mathbb{R}}(U_1, U_0)$ or in $\operatorname{Hom}_{\mathbb{R}}(U_0, U_1)$, where S_0, S_1 are simple submodules of U_0 and U_1 , respectively.

REMARK 4. Let R be a local commutative and non-valuation domain. Then R is not almost R-injective as R-modules. However R is semi-perfect and trivially R is almost R-simple-injective. Hence we need the assumption on length in Lemma 4^{\sharp} .

3. Condition (D)

We shall give a supplemental reslut of [6]. We recall the condition (D) in [6]. Let $\{M_i\}_I$ be a set of *R*-modules and $M = \sum_I \bigoplus M_i$. By π_i we denote the projection of *M* onto M_i . Concerning to this decomposition we consider the following condition:

(D) any submodule N of M with $\pi_i(N) = M_i$ for some *i* contains a non-zero direct summand of M.

If all the M_i are hollow and I is a finite set, then (D) is equivalent to M being a lifting module by [6], Theorem 1.

In the above let I be a finite set $\{1, 2, \dots, n\}$, and M_0, M_i R-modules, where the M_i are indecomposable. Suppose that M_0 is almost M_i -projective for all *i*. Consider a diagram with K a submodule of M:

(8)
$$\begin{array}{c} M_{0} \\ \downarrow h \\ M \xrightarrow{\nu} M/K \longrightarrow 0 \end{array}$$

We can derive the following diagram from (8):

where i_j is the inclusion of M_j into $M, K^i = \pi_i(K)$ and $\nu'_j: M/K \to M/(\Sigma \oplus K^i) = \Sigma \oplus M_i/K^i \to M_j/K^j$ (see [8]).

. .

Lemma 6. In the above we assume that $\nu'_j h(M_0) \neq M_j/K^j$ for all j. Then there exists $\tilde{h}: M_0 \rightarrow M$ with $\nu \tilde{h} = h$.

Proof. We can prove the lemma by induction on n in a manner similar to the proof of [4], Lemma 1.

The following theorem is given in [4] and [6], when the M_i are hollow. In general we obtain

Theorem 3. Let $\{M_i\}_I$ be a set of LE modules and $M = \Sigma_I \oplus M_i$. Then (D) holds true for the decomposition $M = \Sigma_I \oplus M_i$ if and only if $\Sigma_J \oplus M_i$ is almost $\Sigma_{I-J} \oplus M_k$ -projective for any subset J of I. If I is finite, then (D) holds true for any direct decomposition of M if and only if M_i is almost M_j -projective whenever $i \neq j$.

Proof. The first part was given in [11]. Hence we shall show the second half. Assume that I is finite and M_i is almost M_j -projective for any pair *i* and *j* ($i \neq j$). By making use of an argument similar to the proof of [4], Theorem 1, we shall show that (D) holds true for the decomposition $M = \sum_I \bigoplus M_i$. If $I = \{1, 2\}$, i.e. $M = M_1 \bigoplus M_2$, then M satisfies (D) by definition. We shall show (D) by induction on n; $I = \{1, 2, \dots, n\}$. Let N be the submodule of M given in (D). We may assume $\pi_1(N) = M_1$. Put $\pi^* = 1 - \pi_1, M^* = M_2 \oplus \dots \oplus M_n$ and $N^* = \pi^*(N)$. Further putting $N_1 = N \cap M_1$ and $N_* = N \cap M^*$, we obtain an isomorphism $h: M_1/N_1 \approx N^*/N_*$, i.e., $N = M_1(h) N^*$ (see [6]). From those data we have the diagram:

$$\begin{array}{ccc} & & M_1 \\ & & \downarrow \nu_1 \\ & & M_1/N_1 \\ & & M^* \xrightarrow{\boldsymbol{\nu}^*} & & \downarrow h \\ M^* \xrightarrow{\boldsymbol{\nu}^*} & & M^*/N_* \longrightarrow 0 \end{array}$$

We can derive the diagram similar to (8-j) from the above. Considering the diagram

$$\begin{array}{ccc} & & M_{1}/N_{1} \\ & & & \downarrow h \\ N^{*} \xrightarrow{\nu^{*} \mid N^{*}} & & N^{*}/N_{*} \xrightarrow{\nu_{j}^{\prime}} \pi_{j}(N^{*})/\pi_{j}(N_{*}) \\ & \cap & & & \\ M^{*} \xrightarrow{\nu^{*}} & M^{*}/N_{*} \xrightarrow{\nu_{j}^{\prime}} & M_{j}/\pi_{j}(N_{*}) \end{array}$$

we have $\nu'_j h \nu_1(M_1) = \nu'_j \nu^* \pi_j(N_*) = \nu'_j \nu^* \pi_j(N)$. If $\pi_j(N) \neq M_j$ for all $j \ge 2$, $\nu'_j h \nu_1$ is not an epimorphism for all $j \ge 2$. Hence there exists $\tilde{h}_1: M_1 \rightarrow M^*$ with $\nu^* \tilde{h}_1 = h \nu_1$ by Lemma 6. Therefore $N = M_1(h) N^* \supset M_1(\tilde{h}_1)$ (cf. the proof of [6], Theorem 1). As a consequence we may assume $\pi_i(N) = M_i$ for some $i \ge 2$, say

i=2. Now $M^*=M_2\oplus\cdots\oplus M_n$ and let π'_2 be the projection of M^* onto M_2 . Then $\pi'_2(N^*)=\pi'_2\pi^*(N)=\pi_2(N)=M_2$. Hence by induction hypothesis, there exists a non-zero direct summand M'_2 of M^* contained in N^* ; $M^*=M'_2\oplus M'_*$. Put $N'=\pi^{*-1}(M'_2)\cap N$. Then $N'\subset N$ and $N'\subset M_1\oplus M'_2$ with $\pi'_2(N')=M'_2$, where $\pi'_2(=\pi^*|M'_2)$ is the projection of $M_1\oplus M'_2$ onto M'_2 . Here we note that M'_2 is isomorphic to some $M_j(j>1)$. Hence N' contains a non-zero direct summand of $M_1\oplus M'_2$ from the initial and hence of M. Since every direct summand of M is a direct sum of indecomposable modules isomorphic to $\{M_i\}$, (D) holds true for any direct decomposition of M. The converse is clear from the first equivalence.

REMARK 5. If I is infinite in the second part, Theorem 3 is not true (see [4]). We shall give a module which satisfies the conditions in Theorem 3, but which is not a lifting module. Let K be a field and put

$$R = \begin{pmatrix} K & 0 & K \\ 0 & K & K \\ 0 & 0 & K \end{pmatrix}$$

Then $\operatorname{Soc}(e_{11} R) \approx \operatorname{Soc}(e_{22} R)$ via f, where e_{ii} is a matrix unit. Put $M_1 = e_{22} R$ and $M_2 = (e_{11} R \oplus e_{22} R) / \{x + f(x) | x \in \operatorname{Soc}(e_{11} R)\}$. Then M_2 is an indecomposable and non-local module. Hence $M = M_1 \oplus M_2$ is not a lifting module, but M satisfies (D) by Theorems 2 and 3.

4. Condition (D^{*})

We shall give the property dual to one in the previous section. Let $\{V_i\}_{i=1}^n$ be a set of *R*-modules and $V = \sum_{i=1}^n \bigoplus V_i$. We define the dual condition to (D). (D^{\ddagger}) For a submodule N of V, if $N \cap V_i = 0$ for some i, then N is contained in a proper direct summand of V.

Clearly from [4], Theorem 4, (D^{\sharp}) is equivalent to V being an extending module, provided the V_i are uniform and LE modules.

Lemma 6^{*}. Let $\{U_i\}_{i=0}^n$ be a set of indecomposable R-modules. Assume that U_0 is almost U_i -injective for all $i \ge 1$ and take any diagram with V a sub-module of $U_1 \oplus \cdots \oplus U_n$:

$$U_1 \oplus \dots \oplus U_n \stackrel{i}{\leftarrow} V \leftarrow 0$$
$$\downarrow h$$
$$U_c$$

Put V' = ker h. If $V' \cap U_i \neq 0$ for all $i \geq 1$, then there exists $\tilde{h}: U_1 \oplus \cdots \oplus U_n \rightarrow U_0$ with $\tilde{h}i = h$.

Lemma 7. Let $X=X_1\oplus X_2\oplus X_3$ be an R-module. If X satisfies (D^{*}) for the above decomposition, then so does $X_1\oplus X_2$.

Proof. Put $Y = X_1 \oplus X_2$. Let N be a submodule of Y with $X_1 \cap N = 0$. Setting $W = N \oplus X_3 \subset X$, we know $W \cap X_1 = 0$. Hence there exists a proper direct summand V of X such that $V \supset W$, i.e. $X = V \oplus V'$ and $V' \neq 0$. Since $X_3 \subset W \subset V, V = X_3 \oplus (Y \cap V)$ and $X = V \oplus V' = X_3 \oplus (Y \cap V) \oplus V'$. Hence Y = $(Y \cap V) \oplus (Y \cap (X_3 \oplus V'))$ and $Y \cap V \supset N$. If $Y = Y \cap V, X = X_3 \oplus (Y \cap V) \oplus$ $V' = X_3 \oplus Y \oplus V'$ and hence V' = 0, a contradiction. Therefore Y satisfies (D^{\bullet}) .

The following theorem is given in [4], when the U_i are uniform. We obtain in general

Theorem 3[‡]. Let $\{U_i\}_{i=1}^n$ be a set of LE R-modules and $U = \sum_{i=1}^n \bigoplus U_i$. Then the following are equivalent:

- 1) U satisfies (D^{\ddagger}) for any direct decomposition of U.
- 2) U_i is almost U_i -injective for all $i \neq j$.

Proof. 1) \rightarrow 2). $U_i \oplus U_j$ satisfies (D^{\ddagger}) by Lemma 7. Hence we obtain 2) from the proof of [4], Lemma 8.

2) \rightarrow 1) Since the U_i are LE, we may take a direct decomposition into indecomposable modules U_i . We shall show the implication by induction on *n*. If n=1, this is clear. Let N be a submodule of $U=\sum_{i=1}^{n} \oplus U_i$ with $N \cap U_i=0$ for some *i*, say i=1. Then $N=N^*(h) N^1$, where $\pi_1: U \to U_1, \pi^*: U \to U^*=\Sigma_{i\geq 2} \oplus$ U_i are the projections, $N^* = \pi^*(N)$, $N^1 = \pi_1(N)$ and $h: N^* \to N^*/(N \cap U^*) \approx N^1$ (see the proof of Theorem 3 and note $N \cap U_1 = 0$). Since $N^*/(N \cap U^*) \approx N^1$, $N_* = N \cap U^* = h^{-1}(0)$. First assume that $U_i \cap N_* \neq 0$ for all $j \ge 2$. Then there exists $\tilde{h}: U^* \to U_1$ with $h\tilde{h} | N^* = h$ by Lemma 6[‡]. Hence $N \subset U^*(\tilde{h}) \neq U$, which is a proper direct summand of U. Accordingly we may assume $N_* \cap U_2 = 0$. Then from the induction hypothesis, there exists a direct decomposition $U^*=$ $U'_2 \oplus U'_3 \oplus \cdots \oplus U'_n$ such that U'_i is isomorphic to some in $\{U_i\}_{i=2}^n$ and $V' = U'_3$ $\oplus \cdots \oplus U'_n \supset N_*(U^* = U'_2 \oplus V'). \quad \text{Consider } \bar{U} = U/N_* = U_1 \oplus U'_2 \oplus V'/N_* \supset N/N_*,$ and take any element x_1 in N^1 . Then there exists z in N such that $z = x_1 + x_2 + x'$, i.e. $h(x_2+\bar{x}')=x_1; x_1\in U_1, x_2\in U_2'$ and $x'\in V', \bar{x}'\in V'/N_*$. Further if z'= $x_1 + x_2' + x'' \in N; x_2' \in U_2', x'' \in V', \text{ then } (x_2 - x_2') + (x' - x'') \in N \cap U^* = N_* \subset V',$ namely $x_2 = x'_2$. Hence the mapping $g: N^1 \rightarrow U'_2$ given by $g(x_1) = x_2$ is a homomorphism, i.e. $z = x_1 + g(x_1) + x'$. From this observation we obtain the following diagram:

$$U_{1} \xleftarrow{i} N^{1} \xleftarrow{0} 0$$
$$\downarrow g$$
$$U'_{2}$$

Since U'_2 is almost U_1 -injective, there exists either $\tilde{h}: U_1 \rightarrow U'_2$ with $i\tilde{h} = g$ or $\tilde{h}: U'_2 \rightarrow U_1$ with $\tilde{h}g = i$. In the formar case $U = U_1(\tilde{h}) \oplus U'_2 \oplus \cdots \oplus U'_n$ and $N \subset U_1(\tilde{h}) \oplus U'_3 \oplus \cdots \oplus U'_n$ (in the later case g is a monomorphism and $N \subset U'_2(\tilde{h}) \oplus U'_3 \oplus \cdots \oplus U'_n$).

References

- [1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs Textbooks Pure Appl. Math. 84, Marcel Dekker Inc., New York and Basel.
- [2] G. Azumaya, F. Mbuntum and K. Varadarajan: On M-projective and M-injective modules, Pacific J. Math. 59 (1975), 9-16.
- [3] Y. Baba: Note on almost M-injectives, Osaka. J. Math. 26 (1989), 687-698.
- [4] Y. Baba and M. Harada: On almost M-projectives and almost M-injectives, Tsukuba Math. J. 14 (1990), 53-69.
- [5] M. Harada: Uniserial rings and lifting properties, Osaka J. Math. 19 (1982), 217-229.
- [6] M. Harada and A. Tozaki: Almost M-projectives and Nakayama rings, J. Algebra 122 (1989), 447–474.
- [7] M. Harada and T. Mabuchi: On almost M-projectives, Osaka J. Math. 26 (1989), 837-848.
- [8] M. Harada: On almost relative projectives ovre perfect rings, Osaka J. Math. 27 (1990), 655-665.

- [11] A. Tozaki: Almost M-projectives and one-sided serial rings, Doctoral Dissertation at Osaka City Univ. 1988.

Department of Mathematics Osaka City University Sugimoto-3, Sumiyosi-ku Osaka 558