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A. Tozaki and the author defined almost relative projective modules in [5],
and the author has given a new concept of almost projective modules in [6].
On the other hand, we know that an artinian ring R is hereditary if and only if
the Jacobson radical of R is projective, namely the Jacobson radical of P is pro-
jective for any finitely generated R-projective module P. Analogously we call
R a right almost hereditary ring if the Jacobson radical of P is almost projective.
In the first section, we shall show the following two theorems: 1) R is right al-
most hereditary if and only if R is a direct sum of i) hereditary rings, ii) serial
(two-sided Nakayama) rings and iii) special tri-angular matrix rings over heredi-
tary rings and serial rings in the first category; 2) R is two-sided almost heredi-
tary if and only if R is a direct sum of hereditary rings and serial rings.

We shall give a proof of the second theorem in the third section. In the
fourth section, we shall study more strong rings such that every submodule of P
is again almost projective (resp. the Jacobson radidal of Q is almost projective
for any finitely generated and almost projective module Q).

1. Main theorems

In this paper every ring R is an artinian ring with identity and every
module M is a unitary right R-module. By |M |, J(M), E(M) and Soc,(M)
we denote the length, the Jacobson radical, the injective hull and the k**-lower
Loewy series of M, respetively. M means M/J(M). We shall denote J(R) by
J. As is well known, if J is R-projective, then R is called a hereditary ring [1].
Analogously if J is almost projective as a right R-module [5], then we call R
a right almost hereditary ring. We can define similarly a left almost hereditary
ring. The above definition is equivalent to the following: J(P) is almost projec-
tive for any finitely generated projective module P. Therefore the definition
of almost hereditary ring is Morita equivalent, and hence we may assume that
R is a basic artinian ring, when we study the structure of R.

If R is hereditary, every submodule of P is again projective. However if
R is right almost hereditary, then every submodule of P is not necessarily almost
projective (see § 4).
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From now on, R is a basic right artinian ring and {e;} is a set of mutually
orthogonal primitive idempotents with 1=3¢;. In this paper following [8],
we call two-sided Nakayama rings serial rings. Consider a sequence {e,, e, -,
e} (or {e,R, &R, -+, eR}). If & J~i, ., R for 1<i<s—1 (and ¢,J ~¢R), then
we call this sequence a (cyclic) Kupisch series, Let D be a division ring. Con-
sider a factor ring of tri-angular matrix ring over D by an ideal:

{ DDD-D|0  oeene 0
™ DD-D|o 0
{ DDD-D|00
" DD--D| 00

: 0
D

By T(m, n,, «--, n,: D) we denote the above ring. It is well known that the
above ring is a serial (two-sided Nakayama) ring. We call this ring a serial ring
in the first category and a serial ring with cyclic Kupisch series is called a serial
ring in the second category [8].

Lemma 1. Let R be a right almost hereditary ring. 1): Assume that e,R
is not injective and e, | 0. Thene, J does not contain a direct summand X isomor-
phic to e R|A, for any A,CeR. 2): Assume that e,R is injective and 0=Fe, [~
e;R|A; for some e; and some A; in e,R. Then e; | does not contain a direct summand
Y isomorphic to e,R|B; for any B, in ¢;R, provided e;R~e,R.

Proof. The first half is clear from [6], Theorem 1, for |eR|>|e J]|.
Assume that e, / contains a direct summand Y isomorphic to ¢;R/B;. Then
B;DA; or B,C A; by [6], Theorem 1. If B;DA4,, ¢;R|A;~e,] is injective by [6],
Theorem 1, a contradiction. Similarly we obtain the same result for B;CA4;,
since e;R (De,; J) is indecomposable. Hence B;=4;. Consider a diagram

&R < e; ] < 0

where p is the projection.
Since ¢,R is injective, there exists g: e;R—e,R, which makes the above
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diagram commutative. Since e;R~e,R, g(e;R)=e, J=g(e,J). Hence e;R being
local, e;R=e, J, a contradiction,
The following two lemmas are well known (cf. [4], Proposition 1).

Lemma 2. Let R be a basic ring and 1=g,+g,+-+g,+fi+fot - +fo
where {g;, f;} isa set of mutually orthogonal primitive idempotents. Assume
g J=0 or g J~3.Dg»R for all i<tand f;]J=0 or f,J~Z,Bf, R for all
j=s. Then R=(g,+-+g)R(&i+ - +8)D(h+ -+ IR(fi++++]) as rings,
where {g;»} C{g}t and {fip} C{f}.

Proof. We assume that g‘,-]"f’~2®g‘j(,,,)1§, where g,; »nE {8, =", 8-
Then g; J’=a,R+a,R+---+a,R+g; J**', where a,=a,g,;,,». Then g; J**'=
agipJt et anga p S+ J?2. Hence g J**' is a homomorphic image of
3:,;®&;»J by assumption. As a consequence g; T~ D g R and
&, s €18, -, g). Thus any simple factor module in the composition
series of g.RP-+-Pg,R is isomorphic to some qu Therefore R=(g,+ - +g;)-
R(gi+-+8)®(fit - +fIR(fi-k -+, as rings.

From the above argument we obtain

Lemma 3. Assume & J~¢R and é,J~eR. Then eR and e,R are
uniserial and the simple factor modules in the composition series of e, R (resp &R) is
{e,R, & J~e,R, e J*~eR, ¢ J*~e,R, -} ({&,R, &, ] ~e,R, e, J*~&,R,-+}). We

obtain the similar result for a cyclic Kupisch series {e,, e,, +*-, €,}.

Lemma 4. If R is a hereditary ring or a serial ring, then R is a (right)
almost hereditary ring.

Proof. If R is hereditary, then R is clearly right almost hereditary. We
assume that R is serial. We take a cyclic Kupisch series {e, e, -, e,}.
Then ¢; J~e¢; . R|A;,, for some A4;, provided ¢; J 0. Hence

le,R| —1=<|e;, R|,
Further |e;R|~|e;R|<n—1 for any i and j .

Put m=|eR|. If | ,R|=m—1, e J~e; 1R, and hence ¢; J is projective.
Assume |e; . R|=m, and take any % such that |e;,; R/Soc,(e, inR)[=m. Let
Socyi(e;1R)[Soc,(e; 4 R)~e, R for some g, and put E=E(e, R). Since R is
serial, E~e,R/A, and Soc(e,R/A,)~¢, R for some s and A,. Further

|eR|A,| is the largest one among |eys R/Ay |, with

1 ©
(1) Soc(eyR|Ay)~%,R .

On the other hand, by the structure of e;R (see Figer (2) below) |e; R/
Soci(e;+;R)| is a unique largest one among |e,R/4,| with Soc(e,R/A,)~¢,R.
Hence e, R[Soc;(é;+; R) is injective. Furthermore J Soc(e;;R)=0 from (2).
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Hence ¢; J is almost projective by [6], Theorem 1. We obtain the similar result
for a non cyclic Kupisch series.

e A
e: 1 1+1 1 i+1
¢ < (simple factor module isomrophic to ¢,R)
4 -
‘ n e: 1 zl i+1 n
(2) mo e 0---+----5
9 -9
q 9
l N -0
meQecepem et Qe
0
A
0 0 0

Lemma 5. Let R be a basic ring. Assume that eR is injective and
{ey, €5, *=, e,} is a Kupisch series such that O=e; [~e;. R for i<n—1, e, J=0
and 3,e;=1. Then R~T(n: D).

Proof. R is right Nakayama by Lemma 2 and its proof, and R is heredi-
tary, Hence R has the following form:

D1 M12 Mln
0 D2 Mzn
0

(3)
Dﬂ

where the D; are division rings and the M;; are D,—D; bimodules (cf. [3],
Theorem 1. We denote the above ring by T(D,, D,, -:-, D,)). We shall show
the lemma by induction on 7. Let {¢;;} be the set of matrix units. Then we
may suppose ¢;=e;. Now R is a two-sided ideal in R. Put R=R/eR.
Since ¢, J is characteristic in ¢,R and e, J~e,R, &R is injeative as an R-module
by Bare’s criterion. Furthermore {g, -+, &,} is a Kupisch series in R, which
satisfies the condition in the lemma. Put E=e,++--+e,. Then 7: R~ERE
and @: T(n—1: D)~R as rings by induction. Let u;=76(g;;), where the g;;
are the matrix units in T(z—1: D). Then u;~e; E=3 g, u; and hence
{ey, 5, +++, u,} is a set of mutually orthogonal primitive idempotents in R with
1=6+3,5,u;. Hence we can suppose that R is of the form
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D, M, --M,
D D-«D
0 D-.
0o
D
Since ¢ J~e¢,R, M; =v,;D. Consider any element d in D~Homg(e,R, &R).
Since ¢,R is injective and vy, e,R~e, J, (vy,d;, ") |6, J is given by a left muti-
plication of an element d; in D;. Then d,v,=v,,dv;, v}, =17,,d, and hence
d,v;=v,d. On the other hand, D,v,,Cv,D. Hence there exists an isomor-
phism g of D to D, such that g(d)v,,=7v,,d. We may assume v;=v,,¢,;. Then
g(d)v;=v,;d. Hence we obtain an isomrophism G of T(n: D) to R:
[y Xyt Xy, 8(dy) V13 ++ V10,
G( dzxza ces Koy = ( dzxza oo xZ")
d, dy !
where the d; and the «;; are elements in D (cf. [3], Lemma 13).

Lemma 6. Let R be right almost hereditary. If any e;R is never injective
or all i, then R is hereditary.

Proof. This is clear from by [6], Theorem 1.

Let R be a basic and (right) artinian ring and 1=317., ¢; as before. We
assume that R is right almost hereditary. If R is not hereditary, then there
exists an injective module ¢;R for some j from Lemma 6. From now on we
shall denote an injective module ¢;R by f,R and a non-injective module ¢,R by
g;R. Hence 1=3f;+2g;, We start from f;. If f, J=0, then since f, ] is
uniform, f; J~f,R/A4, or f; J~gu,R by [6], Theorem 1. In either case f,R and
guR are uniform. Hence g, J~g,R or g, J~f,R|A, provided g, J=+0 (resp.
foJ~gaR or fo J~f;R|A;, provided f, J+0). Furthermore we have monomor-
phisms 0,: g,,R—gyR and 6,: gyR—f,R. Repeating this procedure, we can
get a Kupisch series fiR, gy R, -, 81, 1R, f,R, -+, f,R, -+, g,sR, each of which is
uniform.

Lemma 7. Let R be a basic and right almost hereditary ring. We assume
that there exists a cyclic Kupisch series fiR, gyR, -+, 2,,R, LR, <+, f,R, +++, g4,sR
such that 1=3 f;+ 3 gy;=Z ¢;. Then R is serial.

Proof. By m (resp.n;;) we denote |f;R| (resp. |g;;R|). Then n;,i=
n;—r; for any j. Since g, J~f; \R|A; o fiaR[(Soc,i41 ui_piy (f1 R), f R
S0C,i1-(ujmr il fj11R), =, f,1R[Soc(e,.1R), ;1R are injeative by [6], Theorem
1. Clearly f,R/Soc,(f;R) fiR[Soc,(fiR) for j=k. 'Therefore there exist
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2(nq—n;+r;4+1)=s+Z7,=n distinct injective modules. Since the f;R, the
gi;R are uniserial by Lemma 3, R is right Nakayama and right co-Nakayama.
As a consequence R is serial by [2], Theorem 5.4.

Lemma 8. Let R be as above. Assume that f\R, gy R, -+, 8.,1R, f,R, ++,
G2 R, [ R, -+, g,sR is a cyclic Kupisch series. Then R=FRF®(1—F)R(1—F)
and FRF is serial, where F=3. f;-+3. g;..

Proof. From the stucture of {f;R, g;,R}, every simple factor module in
the composition series of FR is isomorphic to some f;R or gj,,E. Let % be an
idempotent in {e;} —{f;, g;s}. Suppose that 2] contains a direct summand X
isomorphic to g,,R. Since g;,RC f,R (isomorphically), there exists a homomor-
phism : hR— f,R since f,R injective, which is a contradiction from the above
observation. Next assume X~f;R/A;. Then f,_,RDg; ,,i-1J~f,R|A; by [6],
Theorem 1 (cf. the proof of Lemma 1). Hence we have the same result.
Accordingly %] does not contain a simple component isomrophic to f;R or g‘].,,I?
again by [6], Theorem 1. Therefore R=FRF@®(1—F)R(1—F) by Lemma 2,
and FRF is serial by Lemma 7.

Lemma 9. Let R be a basic and right almost hereditary ring. Assume that
R is two-sided indecomposable, not hereditarv and e; J+0 for all i. Then R is
serial.

Proof. Since R is not hereditary, there exists some injective module ¢,R
by Lemma 6. Let {f;R} be the set of injective modules ¢,R and {g; R} the set
of non-injective modules e,/R as before. Since ¢, J40 for all %, extending a
Kupisch series from f,R as long as possible, we obtain finally a Kupisch series
{fiRy guR, -+, fR, guR, -+, g,:R, €,R} such that

ii) e,R=f,R (a<s) or

i) e,R=g,R (a<5s).

i) {f.R, gaR, -+, e,R} is cyclic.

ii) Soc(f,R)~Soc(e, R) = Soc(g,; R) ~Soc(f,R), and hence s=a. Then
{84((R, gw11R, -+, g4,sR} is a cyclic Kupisch series. Since g; J~g,;.+. R by [6],
Theorem 1, |g,;R|>|g,;+:R|, which is a contradiction to a cyclic series.
Hence we obtain always a cyclic Kupisch series in i). Therefore by Lemmas 7
and 8 a=1 and R is serial, since R is two-sided indecomposable.

From Lemma 9 we may suppose that there do not exist any cyclic Kupisch
series. Hence we study the structure of R in case of there exists a simple
module ¢;R, i.c. ¢; J=0 for somej. We note that if f,R, g, R, 8 R, f,R,
&R, -+, g,°R is a Kupisch series with g,2R simple, then g,,R=+g, R for any &
and ¢, for iR~ f,R. Now we obtain Kupisch series
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flR’ gnRs '"’szx "'nst’ '"’gsr’R and gn’j= 0,

( 4 ) fllR’ g’uR’ ""flzR: glc’r"'-R and g's’r"/., =0,

If g,,=g'vy, for some (¢, ) and (¢, j'), then Soc(f,R)~Soc(f’+R) and
hence f,=f'y. If t=1, or t'=1 one series is a part of the other. Hence we
assume t>1, t'>1, Since g;,_,+-1J~fR|A,, g'v-1p7 1 J~f vR|A'y, A=Ay by
[6], Theorem 1. Accordingly Soc(g,,+-1R)~Soc(gysy,’-1R), and hence
fl—lzflt’—l- Iffqu’q’) {fq)gqla "'}: {f’q') g,q’l"'}- Therefore {fb F4I0) "':g:rs}'
c{f'y, gt or {fyy g s ek DS, &' s’}, provided they have a
common component. Hence we may assume that the Kupisch series in (4) are
the longest series and they are disconnected and contains all f,R. We put
{hl’ hz: R hp}z{ei}'_{fh g1t srss f1’7 '"’g’s'r"/’ - in (4)} and H:kl_,'hz_l'
..._}_hp_

Lemma 10. Let R and H be as above. Then HRH is a hereditary ring,
(1—H)RH=0 and (1—H)R(1—H)=32®,T(n,0), m@), ***, micgiy* D;).

Proof. From the proof of Lemma 8 we know that 4; J does not contain a
direct summand X isomorphic to g;;®R (or f{¥R/A;® i=%1), where f;¥R and
g;PR arein (4). Since {A} N {f;®, £} =¢, (1—H)RH=0 and

(5) PR = f®(1—-H)R(1—H), g,;’R = g,X(1-H)R(1—H)

from Lemma 2 and the structure of {f;¥R, g,PR}. On the other hand, from
the above we have

hz]NZ@j._‘:i(th)(m(i,i))Ga(flR/Al)(mm)))
@(f’lRl/A'l)(n(il))@..., A1:|:0’ AI1=|=0'°- :

Accordingly #; JH~Z@ j+; (h;HRH)™""), and hence HRH is hereditary. Next
we shall show (1—H)R(1—H)~T(n,, ny, -+, n,: D) by induction on n=%#{f®,,
g%, -}, From (5) we may replace R by (1—H)R(1—H). Since e,Rf,=0 for
all e, fy, fiR is a two-sided ideal. Put R=R/,R. Then g, R is injective and
{8, =+ for o+, 8, -} is a Kupisch series with the same property as {f,, -+,
&4 -} (cf. the proof of Lemma 5). Hence R~T(n';, ny, +++, n,: D) by induc-
tion. Further f{R is injective and f, J~g,, R, and hence we can show in the
manner given in the proof of Lemma 5 that R~T(n',+1, n,, -+, n,: D).

We shall discuss the structure of HR(1—H). Since HRH is hereditary,
HRH is of the form (3). We may assume k;=e¢;; in (3). We shall first rewrite
(4) in more detail.

fl,lR’ gl,llR) 0y gl,lruR’ fl.ZR) "y fl,is) "')gl.sl,rl’lR
( 7 ) fZ,lR! gz.uR, R gZ,IrﬂRr fz,zR» "'»fz,szR’ % gZ,sz.rz"zR

...............

fx,lR’ gx,uR» R g,',le, fz,zR) ’"’fx,s‘R, "ty gx,c’r‘"R

(6)
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Since HRH iS hereditary, if e,',‘ HN(ei+li+1 RH—)(m(i'i+1))@(ei+2i+z.RH)(m(i'i+2))®"'
@D (e, RH)™®) then we have from (6)

By J ~ (B R (B4, RY DD e
D R) ™D (f1aR[ A1) "D D(fo 1R Ay ) "D o+,

where m(3, a), n(z, b) are non-negative integers, i.e.,

3 ) hiR(l __H)N(},HIR(] _H))(m(i,i+l))®(hi+2R(1 ___H))(m(i,i+2))@
( ."EB(fl,lR/Al,l)('(i'l))@(fz,lR/‘qz,l)(”(i'Z))eB -,

where the 4;,%0, {m(i, i41), m(z, i4-2), ---} are the integers given in the
above and /,R(1—H)=(/1R/411) B (fo.R/ A1) P D+~
Summarizing the above we have

Theorem 1. Let R be a (basic) artinian ring. Then R is right almost here-
ditary if and only if R is a direct sum of the following rings :

1) Hereditary rings.

2) Serial rings.

3) T, X
(9) 0 T
where T, is a hereditary ring and T, is a serial ring in the first category and X is
a T,—T, bimodule given by (8) (see the example bleow).

Proof. We have shown the first half. Assume that R is of the form (9).
Then for each primitive idempotent e in T,, any simple module in the compo-
sition series of eR is never isomrophic to other one. Hence we can easily show
SiaR/[Soc,(fi1R), fi1R[Soce—y( /1,1 R), =+, iR are injective by Baer’s criterion and
JA,;,=0, where Soc,,(f;1R)=4,,. Accordingly f,,R/A4,, is almost projective by
[6], Theorem 1. We have the same results for f; ,R and g;;-,,t-1J. Further
fixJ and g; 4 J (¢7,) are projective from the structure of 7,. Therefore R in
(9) is right almost hereditary.

Theorem 2. Let R be as above. R is right and left almost hereditary if
and only if R is a direct sum of hereditary rings and serial rings.

We shall give a proof in the third seation.

2. Corollaries
In this section we shall give some corollaries to Theorem 1.

Corollary 1. Let R be a basic ring with 1=3)}_1¢. R is right almost
hereditary if and only if
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R is a direct sum of hereditary rings and serial rings, provided n<2,
If n=3, R is either a direct sum of hereditary rings and serial rings or the fol-

lowing form :
Dy X 0
(0 D, Dz)
0 0 D,

where Dy, D, are division rings and X is a D;— D, bimodule.
Proof. This is clear from Theorem 1.

We note that the above ring is right almost hereditary, but not left almost
hereditary if [X:D;]>1.

Corollary 2. If R is right almost hereditary ring, then R is a direct sum
of serial rings and factor rings of hereditary rings.

Proof. This is clear from Theorem 1 and [3], Theorem 5.

Corollary 3. Let R be a hereditary and two-sided indecomposable ring.
If ¢;R is injective for some i, then R is serial, i.e. R=TT(n: D). Hence there do not
exist two non-isomorphic injective modules e;R and e;R.

Proof. From Lemma 8 and [3], Theorem 1 we obtain a Kupisch series
aR, &R, -+, g,R and g, J=0, where g;=e¢;. Let i be a primitive idempotent
not in {g;}. Since gR is injective, ~J does not contain a direct summand X
isomorphic to giR. If X~gR for some {31, hR~g,R for some k as in the
proof of Lemma 8. Hence (g+--*+g.)R(g+-+g,) is a direct summand of
R as rings by Lemma 2. Therefore R=(g,++*+ g,)R(g,++** +gs)=T (n: D)
Lemma 5.

Corollary 4 ([8]). Let R be a serial and two-sided indecomposable ring. If
e;R is simple for some i, then R="T'(n,, ny, +++, n,: D).

Proof. Taking a Kupisch series, we obtain the corollary from the proof
of Lemma 10.

It is well known for a hereditary ring R that R is a QF-ring if and only if
R is semisimple. If we replace “hereditary”’ by “almost hereditary’’, we obtain

Corollary 5. Let R be a (non-semisimple) two-sided indecomposable basic
and artinianring. Let {e;}’.. be a set of mutually orthogonal primitive idempotents
with 1=3¢;. Consider the following conditions :

1) Risa QF-ring.

2) R is a right almost hereditary ring.
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3) Ris a(right Nakayama) ring with the followmg properties : 1) & J~e, R
for 1<i=<n—1 and e, ] J~eR,ie., {e, e, -, e} is a cyclic Kupisch series. i)
|e;R|=|eR]| for all i.
Then any two of the above conditions imply the remainder.

Proof. This is clear from Theorem 1, [2], Theorem 5.4 and [6], Theorem

3. Proof of Theorem 2

We shall give here a proof of Theorem 2. “If” part is clear from Lemma

4. Assume that R is a two-sided almost hereditary ring.
Let Ty, T, be the hereditary ring and the serial ring in (9), respectively.
We assume first that 7} and T, are two-sided indecomposable rings. We put
T,="T(H,, H,, -+, H,) and we may assume 7,=T(m: D) (cf. the proof of
Lemma 10), where the H; and the D are division rings. Further we set T\=
1a@®hR, T,=37.1Pd,;R and E=3Xd,, where {h} and {d;} are sets of

orthogonal primitive idempotents.

Put
H’1 ]W12 MM N11 ]Vlz NM
HZ M23 Mzu N21 N22 NZc
Hk . Mlm Nkl lez jvln'
Hn an an o Nnc
(10) R=
Dl D1 °° D1 D1 Dl
D1 D1 D1 °t D1
0 D, D, D,
-Dl

where (Ny, Nig, -+, Nkc)N(le/Al)tk and A,=d\Tyd,1,+dTyd 1yt +d, Tod, =
(0, =+, 0, Dy, ++, D).

We note the following fact. Since R is a generalized tri-angular matrix ring,
Rh;,D(My;,y +++y M; ) D+ D(M,;, 0 -+, 0) is a chain of submodules in R#;,
where () is the transpose matrix of ( ). We have a similar result for Rd;. From
(10) Jd.; is not projective (X #0). Hence since R is left almost hereditary,
we have by [6], Theorem 1

(11) Rd,[(Ny, *++, N, ) is injective for any k<<n, provided
N, +0 for some k' > k.

Now we suppose
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(12) X~(hRE) P (h2RE) D @ (hs RE)=

where a,<a,<---<a, and x,>0, h,;RE~d,T,/4, for all 1.

Suppose M,:;+0 for some j & {aj, a,, -, a,} =Z. We note that M,i;=(M,;,"--,
M ) (M, ++) Moy ) (C Rhgi[(My, -y Moioy;)) and  Ngig ~(Ng, «++, Noip)'/
(N, oy Nyi-1,)' (CRA, (N, -+, N,i-1,)) are semisimple H,i-modules. Since
Rd,|(Ny, -+, N,i-1,)! is injective from (11), there exists a non-zero homomor-
phism of Rhk,; to Rd,/(N,,, -+, N,i_,;)'. Hence N; 30 from the structure (10), a
contradiction to (12). Hence

M,;,=0 for all j&Z and all q; .

Now Rd, is injective from (11). If Rd, is injective for some ¢<c, then since
N_,#+0 and N, =0, there exists a non-zero homomorphism of RA, to RhA,.
However A.Rh,=0 from (10). Accordingly Rd, is not injective for all t<c.
Hence {Rd,, Rd,-,, -+, Rd;} is a Kupisch series such that Jd,~Rd,_, and the Rd,
are uniform by the initial remark after (10) and [6], Theorem 1. Next we
consider Rh,s. First we assume that

any R#; is not injective.

Since RhA,» is not injective by assumption and Jd, is uniform, Jd,~Rd,» by the
initial remark and [6], Theorem 1. Then noting Jd,=(0, «-+, N, O, -,
N2y, 0, +ocy Nopyy +++, 0, -+, 0)f, we have similarly Jh,s~Rh,s_,, -+, Jh2~Rh, and
Jha=0, since Rh; is not injective by assumption. Hence.

M=0 for all j&Z and all g; .

Therefore (a,++--+a,)Ty(a,++--+a,) is a direct summand of T} as rings, and
hence {a, *+-, a,} ={1, 2, +-,n} since T) is indecomposable. Then {Rd,, -,
Rd,, Rh,, -+, Rh} is a Kupisch series from the above. Hence

(13) R = T(n+-c, (m—c): D)
by Lemma 10. Next suppose that
some R#; is injective.

Then i=mn by Corollary 3, and T,=T(n: D). We note as above that
{Rd,, Rd,_,, -+, Rd,} is a Kupisch series such that Jd,~Rd,_, and the Rd, are
unifrom. Let N,=+0 for some k. Then RA,/(M,,, -+, M,_,,)" is isomorphic
to a submodule of the injective module Rd,/(Ny, -+, N;-,.)* by (11). Hence
Nin=#0 for all k" >k, and so Jd,=(0, 0, 0, N,,, --+, N,,;)! for some 7 and N,=0
for all ¢>r. Then {Rd,, -, Rd,.,, Rd,, -, Rd,, Rh,, -+, Rh} is a Kupisch
series. Hence
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(14) R ="T(n, c, m—c: D).

Finally we study the general form in (9). Let Ty, -+, T}, be two-sided inde-
composable and hereditary rings and T, :++, Ty two-sided indecomposable and
serial rings. Then

Tx
0

Ty

Let {h;}; (resp. {d;;};) be the matrix units in the diagonal of T; (resp. T),
and E;=3,d;;. Put F;=Z%;h;. Now

X~E®X1k, Whel‘e X,k = FJXEk .

First we consider the following ring:

Tll Xll
0
Tla X al
o [z

It is clear from the above structure and (9) that Rd, D3P, X, 4, and X;;+0
if and only if X;d;2#0. On the other hand, since R is left almost hereditary,
Rdy is injective. Therefore X;;+0 only for one 7 and X;=0 for all j=i.
Similarly X;,,=0 only for one i’ and X,,,=0 for all j’#:" and any k. Next we
consider the following ring:

N® . NO 1 N .. NO o
Ty
N® . NO 1 N® ... N®, ,
T | o
0 S —
T

Assume N®, 120 and N®, 220 for some k. Then Rd;1/(N®,z, -, N®, _ 1)
(=M®), Rd,2[(N®,z2, +++, N®,_ 2)/(=M @) are injective. Hence there exists a
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non-zero homomorphism of M® to M®, a contradiction. As a consequence if
N®, 150 for some k, then N®; =0 for all 7, j, (if N®,.250, then N®; ;=0 for
all 4, ), because if N®,130, N®, 120 from the argument to obtain (13) and
(14). Thus we have shown

(Tu Xn) (resp. (Tn Xa ))
0 T, 0 T,

is a direct summand of R, provided X;;=+0 (resp. X,=+0). We obtain the
same result for any set (7};, Ty, T5). Therefore R is serial from (13) and (14).

4. Strongly almost hereditary rings

Among right almost hereditary rings, we shall determine the structure of
such rings with

(15) Every submodule of finitely generated projective module is again almost
projective.

Lemma 11. If a simple module eR[e] is almost projective, then either eR
is uniserial and eR|[e]?, -+, eR[e]", eR are injective or eR is simple, where e ***=0.

Proof. 'This is clear from [6], Theorem 1.

First we suppose that R is a right almost hereditary ring with (15). Then
we may study the following rings from Theorem 1:

a) Hereditary rings.

B) Serial rings in the first category.

Then R=T(n, -, n,: D). Let {e"’j}i_l’,-_’l"' be matrix units in the
diagonal of R. Take Soc(e“"PR). Then it is almost projective and isomorphic
to e™,R/e", J for some k from the structure of R. Hence k=1 or ™R is
simple from Lemma 11. However we do not have the latter. Hence
Soc(e” "D, R)~e™, R/e; J. Similarly we obtain Soc(e®,R)~e¢+R/e(*D, T for
n>i>1. (See the diagram below.)

(16) Dy

) Serial rings in the second category.
Since R has a cyclic Kupisch series, eR/eJ~Soc(fR) for some f. Hence
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eR is injective by Lemma 11 for each e. Then |eR| is same for all e (cf. the
proof of Lemma 4), say |eR|=n and eR/eJ* is injective for all k>1 by
Lemma 11. Therefore there exist m(n—1) distinct injectives, where 1=31;.7 ¢;.
Accordingly m(n—1)<m (R is basic), and hence n=<2.
8) (T, X
(o )

From ) T, is a direct sum of serial rings in the first category as in B).
For the sake of simplicity, we study R in which T, is indecomposable. Since
X=36® fuR/A, as in (8), we have A;,=e, J by B) and applying Lemma 11 to
Soc(fR/A;). Hence X is semisimple.

Conversely we shall show that the above rings with stated properties satisfy
the condition (15).

a) This is clear.

B)and v) Let A be a submodule of projective module 33;.i®Pe,R. If
n=1, we can easily see that A4 is almost projective by the structure of R
and [6], Theorem 1. Assume n>1. Since R is a serial ring, A~3;Pe’;R/B,;.
¢’;R|B; being uniserial, ¢’;R/B; is monomorphic to a submodule of some ¢;R.
Hence A4 is almost projective by the initial remark.

8) First we shall show that every submodule in Z;@A";R is almost
projective, where the 4’; are the 4; in (8). Put

0 i)

(We may assume, from the proof below, that T} is indecomposable.)

Then C is a two-sided ideal. Set R=R/ C=3).1Dh ".R®D,, where D,=f,Rf,
(~fuR/fu]). Then 4 is an R-module. Since X is semisimple, R is hereditary
by (8) and (9). Hence ANEKrGBZ'jf\’EBE,-_ @ fiR|f, ], where fi=f,,. Those
modules being R-modules via the natural map R— R and 4’ ;R=h",R, Aisan
almost projective R-module from Theorem 1. Let A be any submodule of pro-
jective module XD 2" ;ROZ ;D f;, RO, Dg; ;R (the same notations given in §1).
Put P=3,®h"R, P,=3,;®fR, P;=32,®¢R, where L'={f,;, g;;} —fu. Set
A,=A4,NP, Apy=AN(P,DP;). Then taking a suitable decomposition of
P,® P;, we may assume that P,=3,.® f'|R, Py=3,.@e’;R and Ay=3;/P AP
3D A, where f'1~f,, ¢’ ;~e;, Ay C f'\R and A,;Ce’,R (note that T, is serial,
cf. [7], Lemma 2). We remark that the common simple sub-factor module be-
tween P, and P,@DP;is fiR]f,]. Since A'A,~A%|Ay, (AYA,)f;=AYA4, from
the structure of R, where A (resp. A%) is the projection of 4 to P, (resp. P, P;).
Further P,fiRCSoc(P,). Hence A'/A, is a semisimple module whose simple
component is isomorphic to fiR/f,J. As a consequence A'=X'PA,, where
Soc(P)=X'@X". Put 7: A®|Ap~AYA,=X'. Let P=(P,®P,)|Ap=3,P
S 1R[Au®DZ De' ;R[Ay.  Since (A'[A;~)A%|A,; is a semisimple module as

C=R—(
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above, ARCZ®, f\R|f"1]J. Since fiR is uniserial, after taking a suitable de-
composition Z;/D f1R=3,@ fi’R (f’ ~f,), we may assume that there exists a
subset J” of J' such that A,,=f", ] for p€ J” and A®=Z;»@f"\R|f",].
Using the natural epimorphism 8: =@~ f”/; R—=2® f",R[f"1 R, we obtain P=
PGP (v0)PP", PP, and A=A,PPi(0)PZ;-;PA, P21 Pe’ Ay, which
is almost hereditary by the initial remark, where P',=3;~@® ;R and P”,=
237D f"\ R.

Summarizing the above, we have

Theorem 3. Let R be an artinian ring. Then R is a right almost heredi-
tary ring with (15) if and only if R is a direct sum of the following rings :

1) Hereditary rings.

2) Serial rings in the first category with the structure (16).

3) Serial rings in the second category with J?=0.

4)  Rings given in (9), where T, is a direct sum of serial rings in 2) and A;=

enJ in (8).

Next we study the second stronger condition than that of almost heredi-
tary rings.

(17) J(Q) is almost projective for any finitely generated almost projective
module Q.

(18) Every submodule of Q is again almost projective.

Lemma 12. Let R be a ring in (9) and X +0. If R is two-sided inde-
composable and not serial, then h;R is never injective for any h; in (8).

Proof. R is right almost hereditary by Theorem 1. First assume that
T,=T(D,, D,, -+, D,) and T, are two-sided indecomposable. Further we may
assume T,=T(m: D) (see the proof below). Let 4, =f,T,f i1 P+ BfiTofn=
0, +++, 0, D, -+, D), where the f are the idempotents in the diagonal of 7.
Put E,=15 and C=R(fis1+*+fm)- Then C is a two-sided ideal. Set
R=R|C (cf. the proof of Theorem 2), and R is hereditary by (8). Assume
that #;R is injective for some 7. Then 4R is also injective as an R-module.
Hence R=R®R, by the proof of Corollary 3, where R, = T(ny: D¥) is
given from the Kupisch series {%, «::}. Now T,=E, RE,=E, R E,®E, K,E,,
and hence T=E,R,E, for ElE,+0. As a consequence Ty RCT (ny: Dy)=
S ko RDZ. fuy R, where {how} C{h;} and {fuw} C{f;}. Therefore i,R=mR
and {hy, hy, -+, by, fy, -+, fu} is a Kupisch series in R from the structure (9).
Accordingly R=T(n+k, m—k: D) is serial, a contradiction. Hence any #; is
never injective. In general case we can use the same agrument given in the
proof of Theorem 2.

Theorem 4. Let R be a basic artinian ring. Then R satisfies (17) if and
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only if R is a direct sum of the following rings :
1) Hereditary rings which ane not serial.
2) Serial rings with J*=0.
3) The ring in (9) with J(T,)*=0.
In this case R satisfies (18).

Proof. We may assume that R is two-sided indecomposable. The ring
with (17) is almost hereditary.

i) R is hereditary. If some ¢;R is injective, then R is a simple ring or
R=T(n: D) by Corollary 3. Suppose R=T(n: D) (n=2). Then e,R/Soc(e,R)
is almost projective by [6], Theorem 1, where the ¢;; are matrix units in R, and
ey J/Soc(eyR) ~ex,R[Soc(exR) by the structure of T'(n: D), provided n>2.
Then eyR is injective by [6], Theorem 1, a contradiction. Therefore R=
T(2: D). Next if any ¢,R is not injective, then R is not serial.

i) R is a serial ring in the first category. Then we can see J?=0 in the
above manner.

iii) R is a serial ring in the second category. Then J?=0 from Theorem 3.

iv) R is the ring in (9), Then J(7,)’=0 as above. Conversely if R is non-
serial and hereditary, then every almost projective module is projeative by
Corollary 3 and [6], Theorem 1. Hence (17) holds true. Next if R is a serial
ring with J?=0, then J(Q)=0 for every non-projective, almost projective
module O, and so (17) holds true from Theorem 3. Finally let R be of the form
(3) and R=R/C as in the proof of Theorem 2. Then R is hereditary and any
h;R=h,R is not injective by Lemma 12. Then there are no almost projective
modules isomorphic to #;R/A; (4; % 0). Accordinagly non-projective almost
projective modules are given from T,. Therefore Q'=3,;BhRDZ;D f;RD
2xD f;R[f;] for a finitely generated and almost projective module Q’, where
the f; are primitive idempotents in T, and hence J(Q) is almost projective from
the above. Thus we have obtained the equivalence in the theorem from
Theorem 1. Noting that if AR is injective in the ring (3), then R is serial from
the above, we can show (18) in the similar manner to the proof of Theorem 3.

We remain the last case:

Every submodule of Q is projective.
We can easily see that R has the above property if and only if R is hereditary and
not serial. If we assume (15), (17) and (18) for left R-modules as well as right
R-modules, then we obtain a characterization of hereditary rings and serial
rings satisfying the conditions in Theorems 3 and 4, respectively.

ReMARK. In the above proof we used (17) and (18) only for indecompo-
sable projective modules and indecomposable almost projective modules, res-
peatively. Hence if every submodule of indecomposable and projective (resp.
almost projective) module is almost projective, then (17) (resp. (18)) holds ture.
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