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We have introduced a concept of almost relative projectives (resp. injec-
tives) in [7] (resp. [2]) which is deeply related with lifting modules [9] (resp.
extending modules [10]). When we study further those modules, we have
understood that it is necessary to generalize [2], Theorem to a case of artinian
modules. Namely, we shall give the following theorem (Theorem 2): let U
and {U;, I} 7., %1 be LE and artinian modules such that U is I ;-injective for
all j and U is almost Uj-injective but not Uj-injective for all 2. Then U is almost
LB UD3;DI;-injective if and only if 33, U; is an extending module.

1. Preliminaries

Let R be a ring with identity. Every module M is a unitary right R-module.
In this paper we mainly study modules with non-zero socles. We shall denote
an injective hull and the socle of M by E(M) and Soc(M), respectively. Let N
be a submodule of M. If NNN'=%0 for any non-zero submodule N’ of M,
then NV is called an essential submodule of M. If every proper submodule is
essential in M, then we call M a uniform module.

We start with definition of almost injective modules following [2]. We
take two R-modules U and U,. Let V' be a submodule of U and 7 the inclusion.
Consider the following diagram and two conditions 1) and 2):

(0) ,,

1) There exists &: U—U, such that hi=h or
2) There exist a non-zero direct summand U’ of U and %: Uy~ U’ such
that Zh==rri, where : U~>U" is the projection of U onto U".
U, is called almost U-injective if the above 1) or 2) holds true for the diagram
(0) with any ¥ and any & [2] (U, is called U-injective if we have only 1) [1]).
We frequently use the following property:
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(8) Assume that U is indecomposable and U, is almost U-injective. If the &
given in (0) is not a monomorphism, the case 2) does not occur, and hence
there exists #: U—>U, with Zi=h.

We use sometimes this property without any references.

We shall exhibit some properties dual to ones on almost relative projectives,
whose proofs are categorical. Hence we shall skip their proofs,
The following is useful in this paper.

Theorem 1 (dual to [6], Theorem 1). Let U be an indecomposable and
non-uniform module and U, an R-module. If U, is almost U-injective, then U, is
U-injective.

We always assume every module contains non-zero socle unless otherwise
stated. We shall study almost relative injectivity among uniform modules with
non-zero socle.

Let U; and U, be uniform modules with isomorphic socles S; and .S, re-
spectively. If for any isomorphism f: S;—S,, f or f~! is extensilbe to an ele-
ment in Homg(U,, U,) or in Homg(U,, U,), then we say that U, U, has the
extending property of simple modules (briefly EPSM). If Endg(U;) is a local ring
for i=1, 2 i.e., the U; are LE modules, then this concept coincides with usual
one in [5], §9.6.

Proposition 1 (dual to [6], Proposition 2). Let E be an indecomposable
injective module and U,, U, submodules of E. Assume that either U, or U, is
artinian. Then U, is almost U,-injective if and only if i): J(T)U,C U, and ii):
U,BU, has EPSM, where T=Endy(E). In this case if U, is not U,-injective,
then U, is U,-injective.

RemaRK 1. In Proposition 1, if we assume U,C U,, we know that the as-
sumption of “artinian” is superfluous for the first half. If U, does not contain
a simple socle for i=1, 2, U,@U, trivially have EPSM. Let Z be the ring of
integers. Then U,=U,=Z trivially satisfy i) and ii) in Proposition 1. How-
ever Z is not almost Z-injective as Z-modules.

Proposition 2 (dual to [8], Proposition 1). Let U, U, and U, be R-
modules and U,, U, indecomposable. Assume that U, is almost U,-injective, but
not Uy-injective. Then 1): if U, is Uy-injective, U, is U,-injective. 2): If U, is
almost U,-injective, but not U,-injective, then we obtain the following fact: i); if
Soc(U,)A&Soc(U), U, is U,-injective and ii); if 0==Soc(U,)~Soc(U,), then U,
is almost U,-injective (and U, is almost U,-injective) if and only if U,@U, has
EPSM.

2. Main theorem

In this section we shall give the main theorem which is a generalization
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of [2], Theorem.

Lemma 1 (dual to [6], Proposition 5). Let U,, U, and U, be R-modules
with non-zero socle. ~Assume that i): U, and U, are LE modules, ii): U, is almost
U,-injective but not U, -injective and ii): U, is almost U,@® U,-injective. Fur-
ther assume that there exists an isomorphism f of a simple sub-factor module V,/V'}
of U, onto a simple submodule of U,. Ther. f is extensible to an element f: U,~U,
(or f* is extensible to an element f': U,—U,, in this case V}=0).

Corollary. Let Uy; U, and U, be as in Lemma 1 and satisfy 1), ii) and ii)
in Lemma 1.  Then U, is almost U,-injective.

Proof. If U, is U,-injective, U, is U,-injective by Proposition 2. Hence
we may assume that U, is almost U,-injective, but not U,-injective. Further
we may assume from Proposition 2 and Theorem 1 that Soc(U,)~Soc(U,) is
simple. It is clear from Lemma 1 that U,@U, has EPSM. Hence U, is al-
most U,-injective by Proposition 2.

Lemma 2. Let U, and U, be artinian and uniform modules with isomorphic
socles. Assume that U, is almost U,-injective. If an isomorphism f of S;=Soc
(U,) onto S,=Soc(U,) is extensible to an element F: U,—U,, then U, is U,-
injective.

Proof. Letg: S;—S, be any isomorphism. Since U, is almost U,-injective,
g is extensible to G: U,—U, or g7! is extensible to G': U,—»U,. We assume
the latter case. Then G’F is an endomorphism of U, and G'F|S,=g'f|S, is
an isomorphism. Hence G'F is a monomorphism, and so an isomorphism,
since U, is artinian. Therefore G’ is an isomorphism, and hence G'™! is an
extension of g. We shall show that U, is U,-injective. Take any diagram with
V, a submodule of U,:

Assume that 4 is a monomorphism. Then #£|.S, is extensible to H: U;— U, from
the initial part. Since ker (h-Hi)DS,, there exists &: U,—> U, with hi=h—Hi,
and hence h=(k+H)i. If h is not a monomorphism, then we obtain /4’
U,— U, with %'i=h by definition.

Let {U;}!., be a set of artinian and uniform modules with Soc(U,)=S; as
in Lemma 2. Assume that U; is almost Uj-injective for any pair (7,7). If an
isomorphism of S, onto S, is extensible to F: U,—U,, we denote it by U, Us,.
Then if U, U, and U, U,, U= U, from the above proof. Hence the relation
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< defines a total order on the isomorphism classes of {U;}, and U, > U; is equiv-
alent to U, being U,-injective. We give one more remark. Let {4;} be a set
of uniform modules with isomorphic socles. Then we may assume that the 4;
are submodules of E=E(4,). If 4, is A,-injective, 4;S 4, (cf. [3], Lemma 9).
Hence if we assume that for every pair (z, j) either 4; is A;-injective or 4; is A;-
injective, then {4;} is linearly ordered with respect to inclusion. Further if
A;24;, A; is Aj-injective by assumption.

We remember here the definition of extending modules [10]. Let X be
an R-module. If for any submodule Y of X, there exists a direct decompo-
sition of X such that X=X X, and X, is an essential extension of Y, then X
is called an extending module [10].

Let {D;}?%.. be a set of indecomposable R-modules and U, an R-module.
Assume that U, is almost ;@ D;-injective. Then U, is almost D;-injective for
all 7 (cf. [2]). We shall divide {D;} into two disjoint parts {D;} ={U;} U {[;}
as follows:

(*¥) 1) U, is I-injective for all .

2) U, is almost Uj-injective but not Uj-injective for all j.

We note that all U; are uniform Theorem 1. The following theorem is a
generalization of [2], Theorem.

Theorem 2. Let U, be an R-module, {U,; I,}}.1, ¥-1 a set of R-modules
satisfying (%). Assume that the U; are LE R-modules for all j. If U, is almost
(11D U)B (i1 B L)-injective, then 33;1PU; is an extending module. We
assume further that the U; are artinian. Then the converse is true.

Proof. The first part is clear from Corollary to Lemma 1 and [3], Theorem
4. Conversely, we assume that 3);.;@U; is an extending module. If Soc
(Uy)=0, n=0 for the U, are artinian, and Theorem 2 is clear by [1]. Hence
we may assume Soc(U,)#=0. Now U, is almost Uj-injective by [3], Theorem
4 (ij). Put I=30..81, U=X3}.1@U,; and W=U@I. Take any diagram
with row exact:

We=U@I< V<0
I
U,

We shall show

(1) either a): there exists &: W—> U, with #i=h or b): there exist an non-zero
indecomposable direct summand Uj] of W and n': U,— U{ with z]i=
'h, where zf: W—> U{ is the projection.

Since our proof is very long, we shall divide it into several steps.

Step 1 Reduction. Taking a complement of V' in W, we may assume from

the proof of Theorem in [2] that
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(#) V is essential in W.

Step 2 Refinement of diagrams. Put U—U,=U,®--®U;,®U,,®--BU,
and V;=U;NV. Consider three diagrams:

_ i
(2) U, < V<0
VRIV;
U,
(2-%) U—U, < (U-U)nV <0
VRI(U=-U)NV
U,
and
(2-%%) [<INV <0
VRIINTY
U, (cf. [2], (2—F) in p. 689)

Since U, is Ij-injective, there exists always %;: I—>U, with %;i|(I NV)=h|
I Nn7V)by [1].

Step 3 Existence of k;: U;—U, for all j. First we shall show under (#) that

(3) if there exists z;: U;—U, in (2-j) such that &,(i| V;)=h|V; for each j, then
there exists /i, U— U, such that Ry(G1(UNTV)=h|(UN V) Hence there
exists &1: W—U, with ki=h, i.e. (1)-a)).

Using [2], Lemma C, we can prove (3) in a similar manner to step 3 in [8] by

induction on #n, the number of direct summands Uj.

Step 4 Existence of k;: Uy—>U; for some j. From Step 3 the following case
remains: for some j there exist no homomorphisms %}: U,—U, with &j(i| V)=
k|V;, and hence

there exists &;: Uy—U; with &,(k|V;)=i|V}, i.e.

(4) U, <V, <0

NV,
hl Uo

is commutative.
Under the assumption (4) we shall show that we obtain the second half b) in
(1). We pick one Uy in the set U consisting of all the U; satisfying (4), and
take the subset T'={U, | Soc{U,)~Soc(U;)} of U. Now we finally choose a
largest one in T with respect to the relation < given after Lemma 2, say U..
Then U, is Uj-injective for any U, (3 U,) in T by Lemma 2.
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Here we fix U, and %, i.e.

) U< V;<0

is commutative.

Step 5-1) m=0. We assume W=U. Then we shall show the following (5)
by induction on p under the assumption (§) and (4).
There exists a new direct decomposition of W,=U,U,P--PU,=U,D
(U,0--@U,) such that & k| (W, V)==\(p)i|(W,N V), ie.

W, < VAW, < 0

VRV NW,
U
”I(P)\ lﬁl

U,

Q)

is commutative,

where #z(p): W,—U, is the projection with respect to the second decompo-
sition of W,.
Here we assume temporatily that Step 5-1) is completed.

Step 5-2) m=+0. We shall show the following (5') again by induction on p
under the assumption (), (4') and Step 5-1).

59 There exists a new direct decomposition of W, = U,®---®U,D],
&8I, = U,dU,®--dU,0I,®-@I,)) such that
iil R{(W,N V) = =(p)il|(W,NT).
If we take W,=W in (5) or (5’), then we obtain b) of (1). Now if p=1 in Step
5-1), then (4’) is nothing but (5). Further Step 5-1) is similar to Step 5-2),

and hence we may show them in the cases p=n and p==m. By X we denote U,
if m=0 (resp. I, if m=:0). Put

(6) g=hhV—>U, We=W—-X.

Step 6 New decompositions by induction. We may show (5) and (5') on W,=W
under the assumption that W, satisfies (5) and (5'). Namely we obtain a new
direct decomposition of Wy by induction hypothesis

() Wy =UUid--®U,. ) if m=0 or
= U,eU;P--U;BI D DI, ) if m=*0,
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and a commutative diagram:

:
(7) Wy« VNWsx<0

VRV N W,
n{\U°~

Vh

U,

where z{: Wy—>U, is the projection with respect to the direct decompotition
above, i.e.,

7" glVNWy) ==ii|(VNWy)

We fix the direct decomposition of Wy (7). Using (7) we have a decom-
position W=W,@®X. We consider the diagram:

(8) X<XAV<«0
VA
U, gl(XnV)
\hy
U,

Step 7 Existence k,: X—>U,. We divide the argument into two cases in (8).
Step 7-1) X=U, (m=0).

i) X&T. Since U, is almost X-injective, we have the following two cases.
i-1) There exists %;: X— U, which makes the following diagram commutative:

X<XAV <0
RN VRIEXNTY)
U,
Putting %,=%, ., we obtain
B X — U, with 2, i|(XNV)=g|(XNV).

i-2) There exists &}: Uy—X satisfying (4). Since X & 7T, Soc(X)a&Soc(U,)
from the definition of 7. Hence U, is X-injective by Proposition 2, and so there
exists

k. X— U, in (8) with Z,i|(XNV)=g|(XNV).

ii) X&T. From the choice of U; and Lemma 2 U, is X-injective. Hence
we are in the same situation as in -2).

Step 7-2) X=1I,. Then U, is X-injective by Proposition 2. Thus in any
cases we obtain
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9) h,: X— U, with &, i|[(XNV)=g|(XNV).

Step 8 Final decomposition We shall apply [2], the proof of Lemma C to (7')
and (9) (use the assumption (§) and note the definition of fj in [2], p.689).
Taking z{@h,: W=W,®X—U,, we can get a homomorphism %;: X—U, such
that '

(10) g =i D4RV

from [2], the proof of Lemma C (cf. ]i in p. 690). Put ~X(—ii,,——ﬁ,’,):{—Z,,
(»)—kYy)+y |yeX} and W=U,®U,D-)DX(—h,—h}). Let =, be the
projection of W onto U, with respect to the above decomposition. We shall
show

(5) and (5) mi|lV=g=FJh.

Let 6* and 6, be the projections of W onto Wy and X with respect to W=W,®D
X, respectively. Put V*=0,(V) and V*=0,(V). Then for any element v in
V we have v=v*4o°, where v*€V* and v*€V*. Further v=0v*|(k,(v")+
RU0"))+(— R (v7)—hi(v")+v"), where v*+-h,(v°)+h(v")E Wy and —h (v*)—k,
(v)+v* € X(—h,—hl). Hence m\(v)=m(v*)+k,(v")+ki(v"). Since z,| Wy=
71| Wi, m,(0) =nl(0*)+h,(v")+ Fi(v)=g(v) from (10).

Corollary 1. Let Uy, {U;, I,} be modules satisfying (x) as in Theorem 2.
We assume further that Soc(U,;)=0 for all j and that for every pair (2, ) either U,
is Uj-injective or U; is Uy-injective (e.g. Soc(U;)A&Soc(U;)). Then U, is almost
2B U, DD I-injective if and only if 33;DU; is an extending module

Proof. We note that in the above proof we used only once the assumption,
artinian, in Step 4. However it is available to use the same argument in Step

4 from the remark before Theorem 2. Hence the proof is clear from the proof
of Theorem 2.

Corollary 2 ([2], Theorem). Let {U,, U,}}.. be LE, artinian and uniform
modules. Then U, is almost 33, U,-injective if and only if

1) U, is almost U;-injective for all .

2) For any pair U, U; (i) either U, is simultaneously U; and U ;-injec-
tive or U;@U; has EPSM.

Proof. From Proposition 2 and the assumptions 1) and 2) we know that
if U, is not Uj-injective for k=, j, then U; and U; are almost relative injective
each other, i.e., U;@ U, is an extending module. Hence Uj is almost 33, U;-
injective by Theorem 2and [3], Theorem 4. Conversely if U, is almost 3},®
U,-injective, we have trivially 1). If U, is not U;-injective, then U, is almost
Uj-injective by Corollary to Lemma 1, Hence U, U; has EPSM.
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RemARK. The second part of the proof of Theorem 2 is categrical. Hence
available to get a dual version for almost relative projectives.
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