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We have defined a new concept of almost relative projectivity [7], If a
module Mo is M,-ρrojective for a finite set of modules Miy then Mo is 2,-φ
Λff-projective [2]. However this fact is not true for almost relative projectives
[7]. We have filled this gap in [6], when a ring R is a semiperfect ring with
radical nil and Mo is a local i?-module and the M{ are LE jR-modules. As we
investigate further several properties of almost relative projectives, it seems for
us that the gap is one of essential structures of almost relative projectives. Thus
Λ\e shall fill completely that gap in this paper, when R is a perfect ring (Main
theorem). Mo was cyclic in [6] and hence the proof was rather simple. Modify-
ing its proof, we shall give a generalization of [6], Theorem 2.

We shall give several applications of the main theorem in forthcoming
paper [8], and give the properties dual to this paper in [9].

1. Preliminaries

In this paper we always assume that R is a ring with identity and that every
module is a unitary right JR-module and ey e' are primitive idempotents unless
otherwise stated. We recall here the definition of almost relative projectivity
[7]. Let M and N be i?-modules. For any diagram with K a submodule of
M:

n
Θ

M

if either there exists h: N->M with vh=h or there exist a nonzero direct sum-
mand Mι of M and h: MX~-*N with hh=v\M1, then iV is called almost M-
projective [7] (if we obtain only the first case, we say that N is M-projective [2]).

We note the following fact.
(#) When N is almost M-projecίive and M is indecomposable, if the h in the

diagram (I) is not an epimorphism, then there exists always an h: N->M with
vh=h.
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We frequently use this fact without any references.

Lemma 1. Let Rbe a right perfect ring with Jacobson radical J and let Mo

and Mι be R-modules and M0^PjQ for R-modules PnQ with QczPJ. Let g
be an element in HomR(P, MΊ). We assume one of the following:

a) Mo is Mx-projective, and
b) Mo is almost M^projective, M1 is ίndecomopsable and g is not an epimor-

phism.
Theng(Q)=0 (cf. [3], Lemma 6).

Proof. Consider the derived diagram from g

M0=P/Q.

From assumption and (#) there exists h: PjQ-^>Mι with vϊί=g. Let p be the
natural epimorphism: P->P/Q and put h=hρ: P->MV Since vh=g, for any

g(P)+g(Q)=g(P+Q) = vh{p+Q) = vhP(p) = h(p)+g(Q).

Hence

(2) g(P)-h(p)=g(q(p));q(p) is an element in O .

Let ip{} be a set of generators of P, i.e., P=ΣpiR and put

(3) giPd-hfa) = g(9i) for each i from (2),

where q{ is some element in Q.
Now QaPJ=Σ pi J^by assumption, and q—Σp{ #,-; x^Jfor any q in Q. Then

) *,-*(?<)*<) from (3)

**
Accordingly g(Q)Cg(Q)J=g(QJ)dg(Q). Therefore g(Q)J=g(Q) implies

In Lemma 1 we take a projective cover P of Moy i.e., there exists an epi-
morphism v: P->M0 where P is projective and ker v=K is small in P. Then
the following is clear from Lemma 1.

Corollary 1 ([1], p. 22, Exercise 4). Let P and Mo be as above and M1

an R-module. Then Mo is M^projective if and only if h(K)=0 for any h in
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If ΈnάR{M) is a local ring for an .R-module M, then we call M an LE module.
It is clear that an LE module is indecomposable. By ]{M) we denote the
Jacobson radical of M. Let eRIA and eRjB be local modules, i.e., e is primi-
tive. We say that eRjA@eRjB has the lifting property of simple modules modulo
radical (briefly LPSM) if and only if for any isomorphism / of eRjeJ onto itself,
there exists a g in Horn* (eR/A, eRjB) (or in HomR{eRjBy eRjA)) such that g
induces/(or/"1). If eRjA and eRjB are LE, then the concept of LPSM coin-
cides with one in [5], §9. See [10] for the definition of the lifting module.

Proposition 1. Let R be a perfect ring and let Mu M2 be indecomposable
R-modules and Mo an R-module. Assume that Mo is almost M^projective, but
not Mi-projective. Then I): if Mo is M2-projective, Mλ is M2-projective. 2):
If Mo is almost M2-projective, but not M2-projective, then M1 is J (M2)-projective
and further we obtain the following two cases; ϊ) if Mιj]{M^)^M2j]{M2)J Mx is
M2-projective and M2 is Mrprojective, it) if Mιj]{M^)^M2j{]{M2), we have the
following equivalent conditions:

a) M1 is almost M2-projective.
a') M2 is almost M^projective.
b) Mι®M2has LPSM.

Proof. 1) Assume that Mo is Λ^-projective. Since Mo is not M^pro-
jective, M^eR/A by [6], Corollary 1, where e is a primitive idempotent and
AczeR. Further from [6], Corollary 2 there exists a homomorphism /: Mγ=
eR/A-*M0 such that f(e)=mo=moe<£j(Mo)y where e=e+A in eR/A. Since
mo^J(Mo)y there exists a projective cover P=eR(Be2R(B'" of Mo and the natu-
ral epimorphism v\ P-+Mo such that v(e)=m0. Put K=ker v and B=K(~]eR
(eRdP). Since f(eRIA)=m0 R^eR/B, there exists a unit x in eRe with xAczB.
Since eRjA^eR/xA, we may assume A—xAcB. Let h be any element in
HomR(eR, M2). Then we can naturally extend h to an element h' in Hom^
(P, M2), since eR is a direct summand of P. Mo being Mg-projective and P being
a projective cover of Mo, h'(K)—Q by Corollary 1. Hence

h{A)<zh(B)<zh'(K) = 0,

and so eRjA is Mg-projective again by Corollary 1.
2) Assume that Mo is not M2-projective. Then M2^e'R\C for some

primitive idempotent e' by [6], Corollary 1. First assume i): e^e''. Then the
above h is not an epimorphism. Hence we can find a non-epic homomorphism
h' in Hom*(P, M2), which is an extension of h. Then since h\K)=ΰ by
Lemma 1, Mx is M2-ρrojective (and so J(M2)-projective) as the last sentence of
the proof of 1). Similarly M2 is Mi-projective by symmetric assumption.
Finally assume ii): e^er. We may assume e—e'. Take a diagram with row
exact:
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eR\A

Since eR is projective, there exists h': eR-^eJfC CeRjC=M2 with vh'=hp, where
p: eR-+eR/A is the natural epimorphism. Then since h' is not an epimorphism
onto M2, h'(A)=0 by Lemma 1 as before, and so h' induces ϊί: eRjA-^eJjC
with vh—h. Hence eR\A is e//O-ρrojective (similarly eR\C is ζ//^4-ρrojective).
Now suppose that Mλ®M2 has LPSM. Let u be any unit in eRe. Then
(u-{-j)Ac:C or (w+i) C c i for some j in eje by definition, j / , the multipliaction
of 7 from the left side, gives an element in HomR(eR, eRjC) and j t is not an epimor-
phism. Further j t induces an element in Homi?(P, M2) as in the proof of 1).
Since Mo is almost M2-ρrojective, jA c C by Lemma 1 and the last fact of the
proof of 1). Similarly we obtain jC C.A. Therefore uA c C or wC c A Hence
Mx and Λf2 are mutually almost relative projective by [3], Proposition 2. a)
implies b) by definition.

2. Main theorem

Let Mo be an .R-module and {M, }fβi a set of indecomposable i?-modules.
If Mo is almost Σf »i0Mt-projective, clearly Mo is almost Mt-projective for all i.
We assume conversely that Mo is almost MΓprojective for all /. In [6] we have
given a condition under which Mo is almost Σί-iθM.-projective, when R is
semiperfect and M0=eR/A for a primitive idempotent e and a submodule A in
£U. In this section we shall generalize this condition, when R is a perfect ring
and Mo is an 2?-module.

Now we assume that R is a semiperfect ring with radical / . Let Mo be
an i?-module such that M0+M0J. Then MJM0J is semisimple. Put MJM0J
=20*5,., where the S( are simple modules isomorphic to βiRjβiJ for some
primitive idempotent e{. We take titj in Mo such that (tΠj R-\-M0J)IMoJ=Sj\
nij e~mjy and fix one simple component Sx among Sj.

L e m m a 2. Let R, Mo, {w, } Λ«J ̂  be as above and M an R-module. Let
x be an element in M with xex=x. If

i) Mo is M-projective, or
ii) Mo is almost M-projective, M is indtcomposable and x

then there exists a homomorphίsm h: M0->M such that
1) him^x+xj jtΞeJe and
2) h(mi)^xjfor iΦ1, and hence ϊί(M0)=xR.

Proof. Since xeλ=xy xR/xJ'^elR/e1J. Further MjMJ^ΣΘ/w,- R; m{ R
—(nti R+M0J)jM0J. Hence we can take a submodule B in Mo such that JBz)
M0J, M0\B^mι R and m^B for; Φ1. Take a diagram:
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MJB

II 8
xR/xJ

where g(m1)=x-\-xJ. Then from the assumption i) or ii) together with (#) there
exists h: M0->M such that v'h=gv0. Hence h(m1)=x+xj;j^J and h(mt)G:xJ
for i Φ1. Clearly h(M0)=xR.

Corollary 2. We assume in Lemma 2 that J is left T-nilpotent. Then we
can find h: Mo-+M with h(m1)=x and h(mt)^xjfor i=t= 1.

Proof. We obtain hλ\ M0-^xRdM such that h^m^—x—xj^j^J. Being
xjιeι=xjι and XJXR(ZXR^FM (in case ii)), we have h2: M^xj^RcxRcM such
that h2(mι)=xj1—xj1j2;j2^J and h2{mt)^xj for ί Φ l . Hence (hι+h2) (mi)—
x—xjιj2 and (^+^2) (m^^xj for / Φ l . Since/is left T-nilpotent, we can find
{h} such that (Aj+^H h^») (m2)=x for some w and (^+^2—h^ Λ ) {mt)^xj
for iΦl.

Similarly to Lemma 2 we obtain

Lemma 2'. Let R be a semiperfect rnig with J left T-nilpotent. Let M1=
eR/Av M2=eR/A2 be mutually almost relative projective. Then for any element
x{ in Mi—J(Mi) with #,—#t e (i=l, 2) there exists either hx\ M1->M2 (or h2: M2->

with h1(x1)=x2 (or h2(x2)=x1), where e is a primitive idempotent.

Proof. Take a diagram

M2

u
M2/J(M2)

where f(x2+J(M2)) = v1(x1). Then there exists h2: M2->Mι (oτh λ: M1

with h2(x2)=x1—xj\ j^eje (or h1(x1)=x2—x2j). Further from Corollary 2 there
exist h2: M2->Mι and h{: M1-^M2 with h'2(x2)=x1j and h[(x^)=x2j, respectively.
Therefore (h2+h2) (x2)=xλ or (hx-{-hι) (x^)=x2.

The following simple lemma is useful in this paper.

Lemma 3. Let R be a perfect ring and let Mo be an R-module and Mx=
eRjA for a primitive idempotent e. Let x=xe be an element in M1—J(M1) and
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h: M1 ̂ >M0 any homomorphism such that h(x) (=mo=moe)&J(Mo). Under those

assumptions if Mo is almost Mx-projectives then for each element j in eje, there

exists an endomorphism f of Mo such that f(mo)—mo-\-mcj.

Proof. Since xj^J(M1) e, there exists g: M0->M1 such that g(mo)—xj by

Corollary 2. Hence f=lMo-{-hg is the desired endomorphism.

Before stating Main Theorem, we give here a simple remark, which is help-

ful for us to understand the argument in [3], §1.

Let D=Dι@D2@Όz be a direct sum of modules Diy and zr, : D-+D{ the

projection. Take any submodule K of D and put K'^π^K). Then we have

the following commutative diagram:

/ \
(4) D/K

\

Now we assume that R is a perfect ring. Let Mo be an .R-module and

^ Nk} Li,ΐ«i a set of LE JR-modules. Further assume that Mo is almost Σ l - i

ΣLiΘΛ^-projective. Therefore we may suppose that

(*) Mc is Nk-projective for all k and

Mo is almost Mrprojective, but not Mrprojectίve for all i.

Then from [6], Corollary 1, {M{} is divided into the following subsets

(5) {MyM = {Mu = e1RIAiί}fΆ\i{M2i = e2RIA2j}
a^lΌ -

where the ef are primitive idempotents.

We give some remarks related with [6], Proposition 5. We assumed there that

Mo was finitely generated. However we assume here that R is perfect and so

we can find a maximal submodule B given in its proof. Hence [6], Proposition

5 is true for any module Mo, provided R is perfect. Therefore Λίt φMy has

LPSM for any / φ j . Moreover since Mo is almost MΓρrojective, Mks is almost

ikf*s/-projective for all k and ί Φ / by Proposition 1-2).

We are ready to obtain a generalization of [6], Theorem 2, when R is a

perfect ring.

Theorem. Let R be a perfect ring and Mo an R-module and let {Mijy

ΛΓ*}?-i,5-ί,ϊ-i be the above set of LE modules with (*) and (5). Then the following

conditions are equivalent:

1) Mo is almost (Σij(BMiJ®'Σk®Nkyprojective.

2) Mjj is almost M^^-projective for all (*''/) Φ(y) an^ hence Σ ί ; 0 M o is a

lifting module.
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3) For each i and any pair j,jf (jφj') either Mu is almost M^t-projectim
or M{j' is almost M^-projective.

4) MijΦMi'j' has LPSM for each (ij)Φ(i'j')9 and hence Σ l VΘM,7 has
LPSM.

Proof. l)-*2), 2)«-»3)<->4). These are clear from Proposition 1, [6], Corol-
lary 1, Proposition 5 together with above remark and [3], Theorem 1.
2)->l). Take any diagram with row exact:

Mo

(6) v \h
0-*K->M= Σ / ; ΘM,7ΘΣ*ΘΛΓ* -* M\K -* 0

We shall show that

(7) there exists H: Mo-+M with vh=h or there exist a non-zero direct summand
M* of M and h: M*-+Mo with hh=v\M*.

Now we shall prove (7) by induction on the number Σ a(ι) of direct summands
Mij. Since the argument is very long, we shall divide it into several steps.
Step 1 Σ a(i)=0. We are done from Azumaya's theorem [2].

Hence we assume Σtf(/')φθ. Let π{j\ M->Mi} be the projection and put

:

Step 2 KiJ—Mij for some (ij). We can reduce, by the proof of [3], Lemma
1, a new diagram from (6), which is essentially same as (6) and in which M{j

disappears, i.e.

M -> M/K ->0

U 8
M' -> M'\K' -> 0

where M^Σc^oφc^ΘM^./eΣjfeθiV* and Kf=KΠMf. Hence we obtain (7)
by induction hypothesis (cf. the proof of [3], Lemma 1). Thus we may assume
always

(8) Kij = πiS(M) ΦM{j for all / and j .

Following the argument in [3], §1, we can derive the new diagram from (6):

Mo

where v'u: M/^->M, ;./^^0(lM-^o.) (M)/(lM-^ t, ) (κf-H MJK" (cf. (4)).
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Step 3 Existence ̂ ,7: Mβ-»Λfo for all i and j . We shall show under the as-
sumption (8)

(10) if there exists ΐιtj\ M0-+Mu with v'a vhij=v'ij h in (9) for all i and j , then
we can find %: M0-*M such that v%=h, i.e. (7).

We shall prove (10) again by induction on the mumber Έ,a(i) of direct summands
Mjj. If Σα(ί)=0, we obtain (10) from Azumaya's theorem [2]. Put Σ(, y)φ<Π)Θ
Mij®Ί,k@Nk=M—Mn. Then since iW=M u φ(M—M n ), we obtain from (3)
and (3') in [3] (see (9))

Mo

v'nv\Mn * " *

and

Mo

(M-Mu) - ^ ^ (M-Mn)l(ίM-πn) (K) -> 0

where yft:
We want to apply the induction hypothesis on (12). Now for each (y)Φ(ll)
we derive a diagram (9') similar to (9) from (12)

Mti — ί MUIK>> - 0 (cf. [3]).

We remark that the diagram (9') satisfies the assumption in (10). It is clear
that the assumption (8) holds true in the diagram (12). Recalling the diagram
(4), we know that v\j\ M/K-^MtjIK** in the diagram (9) is essentially deter-
mined by 7r, y. Hence the assumption of existence of hu in (10) guarantees an
existence of hu in the diagrams (9'). Accordingly we can apply the induction
hypothesis on (12), and hence there exists hf: M0->(M—Mn) such that z/?i vh'=
vfih. Further from the assumption (10) we obtain also h"\ M0-^Mn which
makes (11) commutative. Therefore from (#), (8) and the argument in [3], §1,
we obtain fί: M0-*M such that vh=h. Thus we have shown (10). As a con-
sequence
Step 4 Existence h^: M^-^MQ for some (ij). We can assume that for some
(ij) there exists A<y: Mi}-^M0 which makes the following diagram commutative:
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We note that the above diagram is actually given from the following one:

M.

v\Mij a \h vjj_

iMMtj) - M\K - MijIK'teiM-MώKlM-πtj) (K)

Hence ker *ίy=i> (X"Θ(M-M,,)). Put MiJ=ei R/Aφ e—e^A^ ((5)) and

It is clear from (8) and the above diagram that m0 $ J(M0). Since h(m0)—v (£,) G

ker v'ij', A(m0)-^(^)=^(Λo +Σ(*V)Φ(ί;) * , ' / + Σ * Λ ) >
 w h e r e kn=ku ei^κiiy xi'j/z=

xiΊ,ei^Mi'j' and yk=yk e^Nk. Further K^dJiMi^SiJ by (8) and hence
kiJ=gi b b&i Je(. Therefore

where

tV.y = ^(^+6) is a generator of MiS

and

Here we consider {Λ?tl, ΛJί2, •••, ΛO., —, xiaU)}. Among those elements we put Z =
iXit$J(Mit)}^Xij. Since M,7 is almost M^-projective for tφt', we can find
an xis in X and

gi'j'i Mn-^Mw with ftyW = ^ / for any (r;v)=l=(»)

by Lemma 2* (use induction) and Corollary 2, and we obtain

gk: Mis -> Nk with gk{xis) = yk for all k.

by Proposition 1 and Corollary 2.

Step 5-1 sΦ . Putting ̂ =Σαo OΦω ftv+^ Λ : M^^M-ilf ί s,

is a generator of Mis(g)=U+g(z)\z<ΞMis}. Hence we obtain M=Mis(g)@
(M—Mis) and x^Mis(g). On the other hand

#,.,.(#,.,.) = hijiβiiei+b)) = mo+mo b{=m'0 = m'o et) .

Since e{+b is a unit in *,-!&,•, we can put (ei+b)"1=ei+br b'^βije^ Then
fnφ=fnίo(ei+br)=fn/

o+mf

0 b'. By Lemma 3 there exists an endomorphism/ of Mo
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such that

f{m'o) = m0 (note m'0^J{M0)).

Further we have an isomorphism p: Mis(g)->Mis with p(x)=xiv Put

h=fhijgijp:Mis(g)^Moi

and h(x)=fhijgij(xit)===ffiij(Xij)=f(fni)=m0. Hence hh(x)=h(mo)=v(x), i.e.

Step 5-2 $==/. Then again by the assumption 2) and Corollary 2, there exist

gl'jr. Mu-> Mftf with g\^[xiS) = *,v for all (i'j')

and

gί:Mij->Nk with £{(#.,.) = Λ for all & .

Putting ^ / = Σ ( t //)φ(ίy)^i/y/+Σjfe^ as above,

Hence we obtain M=Mij(gf)®(M—Mij) and X G M ( V ( ^ ) NOW there exists an
isomorphism p': M ίy(^')->M ίy with p'(x)=Xij. Put

and h(x)=m0. Therefore

Thus we have proved (7), i.e. Mo is almost ikf-projective.

Corollary 3. Let R be perfect. Let Mo be an R-module and let Mx and M2

be finite direct sums of LE R-modules. Assume that Mo is M^projective and
almost M2-projective. Then Mo is almost Ml®M2-projective.

Proof. We take a direct decomposition M2=Ίtj@Tj®Ίtk@Nk into LE
modules Γy, Nk such that Mo is iV^-projective and Mo is almost Ty-projective,
but not Γy-ρrojective. Then Σ ; ΘTj is a lifting module by Theorem. Hence
Mo is almost MiφΛ^-projective by Theorem.

REMARK. We know from the proof of Theorem that 2) implies 1) with-
out assumption "LE modules".
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