ON ALMOST M-PROJECTIVES

Dedicated to Professor Teruo Kanzaki on his 60th birthday

Manabu HARADA and Tuguo MABUCHI

(Received February 15, 1989)

We have defined a new concept of almost M-projectives [7] and given several properties of them [4]. This paper is a continuous work of [4] and [7]. If a module M_{0} is M_{i}-projective for a finite set of modules M_{i}, then M_{0} is $\sum \oplus M_{i}$-projective [2]. However this fact is not ture for almost relative projectives [7]. As far as we know this is one of great differences between relative projectives and almost relative projectives. The main purpose of this paper is to fill this gap. Let R be a semiperfect ring whose Jacobson radical is nil. When M_{0} is a local R-module and the M_{i} are R-modules whose endomorphism rings are local, we shall give a necessary and sufficient condition for M_{0} to be almost $\Sigma \oplus M_{i}$-projective (Theorem 2), which is dual to [3], Theorem. We shall study this problem in [6] when R is right artinian.

First we take any ring R. Let M_{0} be an R-module and M_{1} an indecomposable and non-hollow R-module. Then we shall show, in $\S 1$, that M_{0} is $M_{1^{-}}$ projective if M_{0} is almost M_{1}-projective (Theorem 1). Next we shall assume that R is semiperfect. In $\S 2$ we study almost relative projectivity among local modules. From the results in this section we can understand differences between relative projectives and almost relative projectivces. Using those results, we shall give the main theorem above in $\S 3$.

1. Non cyclic modules

Throughout this paper we always assume that a ring R is a semiperfect ring with identity except in Theorem 1 and every module M is a unitary right R-module. We denote the Jacobson radical, the length of M by $\mathrm{J}(M)$ and $|M|$, respectively. $\quad e_{i}$ means always a primitive idempotent in R. We shall use the same terminologies in [4].

Let M and N be R-modules. For any exact sequence with K a submodule of M :

$$
\begin{gather*}
M \xrightarrow{\nu} \underset{\substack{\text { } \\
N}}{M / K} \rightarrow 0 \tag{1}\\
\\
N
\end{gather*}
$$

if either there exists $\tilde{h}: N \rightarrow M$ with $\nu \tilde{h}=h$ or there exist a non-zero direct summand M_{1} of M and $\tilde{h}: M_{1} \rightarrow N$ with $h \tilde{h}=\nu \mid M_{1}, N$ is called almost M-projective [7]. (If we obtain only the first case, we call $N M$-projective [2].)

We note the following fact: when N is almost M-projective and M is indecomposable,
if h in the diegrem (1) is not an epimorphism, there exists an $\tilde{h}: N \rightarrow M$
with $\nu \widetilde{h}=h$.
The concept of almost relative projectives was introduced in [4] and [7] to study the structure of lifting module [8] and extending module [9]. We refer [4] and [7] for the details.

If every proper submodule of an R-module T is small in T, T is called a hollow module. In particular if T is a cyclic hollow, we call T a local module.

First we shall give the following theorem for any ring R.
Theorem 1. Let R be any ring. Let M be a non-hollow and indecomposable R-module and M_{0} an R-module. If M_{0} is almost M-projective, then M_{0} is M-projective.

Proof. Take any diagram with row exact:

$$
\begin{equation*}
0 \rightarrow K \rightarrow M \xrightarrow{\nu} M / K \rightarrow 0 \tag{2}
\end{equation*}
$$

First assume that K is not small in M. Then there exists a submodule K_{1} in M such that $K_{1} \neq M$ and $M=K_{1}+K$. Now we obtain a derived diagram from the above:

$$
\begin{aligned}
& 0 \rightarrow K_{1} \cap K \rightarrow M \xrightarrow{\nu^{\prime}} M /\left(K_{1} \cap K\right) \approx M / K \oplus M / K_{1} \rightarrow 0 \\
& \uparrow h+0 \\
& M_{0}
\end{aligned}
$$

Since $M / K_{1} \neq 0$, by assumption there exists $\tilde{h}: M_{0} \rightarrow M$ such that $h=\pi \nu^{\prime} \tilde{h}=\nu \tilde{h}^{\prime}$, where $\pi: M /\left(K_{1} \cap K\right) \rightarrow M / K$ is the projection, and hence $\pi \nu^{\prime}=\nu$ from the construction. Therefore we may assume that K is small in M. Since M is not hollow, there exists two proper submodules K_{1}, K_{2} of M with $M=K_{1}+K_{2}$. We may assume $K_{1} \supset K$ for $i=1,2$, since K is small in M. Then we obtain as above a derived diagram:

$$
\begin{gathered}
M \xrightarrow{\nu} M / K \xrightarrow{\nu^{\prime}} M /\left(K_{1} \cap K_{2}\right) \approx M / K_{1} \oplus M / K_{2} \rightarrow 0 \\
\uparrow \nu^{\prime} h \\
M_{0}
\end{gathered}
$$

Let π_{1} be the projection of $M /\left(K_{1} \cap K_{2}\right)$ onto M / K_{1} and i_{1} the inclusion of M / K_{1}
into $M /\left(K_{1} \cap K_{2}\right)$. Then $i_{1} \pi_{1} \nu^{\prime} h: M_{0} \rightarrow M /\left(K_{1} \cap K_{2}\right)$ is not an epimorphism. Hence there exists $\widetilde{h}: M_{0} \rightarrow M$ with $\nu^{\prime} \nu \widetilde{h}=i_{1} \pi_{1} \nu^{\prime} h$, and so $(h-\nu \widetilde{h})\left(M_{0}\right) \subset$ ker $\left(\nu^{\prime}-i_{1} \pi_{1} \nu^{\prime}\right)=K_{1} / K$. Accordingly we have a diagram

$$
\begin{gathered}
M \xrightarrow{\nu} M \mid K \rightarrow 0 \\
\uparrow h-\nu \widetilde{h} \\
M_{0}
\end{gathered}
$$

and $(h-\nu \widetilde{h})\left(M_{0}\right) \subset K_{1} / K \subsetneq M / K$. Hence there exists again $\widetilde{h}_{1}: M_{0} \rightarrow M$ with $\nu \tilde{h}_{1}=h-\nu \tilde{h}$, and so $h=\nu\left(\tilde{h}+\tilde{h}_{1}\right)$. Therefore M_{0} is M-projective.

Corollary 1. Let R be semiperfect, and let M be an indecomposable module not isomorphic to any local modules $e R / A$ and M_{0} an R-module such that $M_{0} J$ is small in M_{0}. Then M_{0} is M-projective if M_{0} is almost M-projective, where e is a primitive idempotent in R and J is the Jacobson radical of R.

Proof. If M is not hollow, M_{0} is M-projective by Theorem 1. Hence we assume that M is hollow. If the h in the proof of Theorem 1 is an epimorphism, $M / K \neq(M / K) J$ by assumption. Hence since M is hollow, M / K is local and so M is also local, which is a contradiction. Accordingly h is always not an epimorpism, and hence M_{0} is M-projective.

Let Z be the ring of integers and p a prime. Then $\mathrm{E}(Z / p)$, the injective hull of $Z \mid p$, is a uniserial Z_{p}-module and hence $\mathrm{E}(Z / p)$ is almost $\mathrm{E}(Z / p)$-projective. However $\mathrm{E}(Z / p)$ is not $\mathrm{E}(Z / p)$-projective. Hence we need the assumption on M_{0} in Corollary 1.

From Corollary 1 if M_{0} is almost M-projective, but not M-projective for an indecomposable module M, M must be a local module $e R / B$ whenever M_{0} is finitely generated, where e is a primitive idempotent.

Proposition 1. Let M_{0} be as in Corollary 1 and M_{1} an indecomposable module. Assume that M_{0} is almost M_{1}-projective. Then M_{0} is M_{1}-projective if and only if either M_{1} is not of a form $e R / A$ or $M_{1} \approx e R / A$ and any homomorphism: $M_{0} \mid J\left(M_{0}\right) \rightarrow M_{1} / J\left(M_{1}\right)$ is liftable to an element $f: M_{0} \rightarrow M_{1}$.

Proof. We assume "if" part. If $M_{1} \not \approx e R / A, M_{0}$ is M_{1}-projective by Corollary 1. Hence suppose $M_{1}=e R / A$ and put $\bar{M}_{0}=M_{0} / M_{0} J=\sum \oplus \overline{e_{i} R}$. If $e \not \approx e_{i}$ for all i, there are no epimorphisms $h^{\prime}: M_{0} \rightarrow M_{1} / K_{1}$, where $K_{1} \subsetneq M_{1}$. Hence M_{0} is M_{1}-projective. Assume that $e \approx e_{1}$. Take a diagram:

$$
\begin{gathered}
M_{1} \xrightarrow{\nu} M_{1} / K_{1} \rightarrow 0 \\
\uparrow h \\
M_{0}
\end{gathered}
$$

If h is an epimorphism, then h induces an epimorphism $\bar{h}: M_{0} \mid J\left(M_{0}\right) \rightarrow M_{1} / J\left(M_{1}\right)$. By assumption there exists $h_{1}: M_{0} \rightarrow M_{1}$ such that $\bar{h}=\bar{h}$, i.e., $\left(\nu h_{1}-h\right)\left(M_{0}\right) \subset$
$\left(M_{1} \mid K_{1}\right) J$. Hence there exists $\tilde{h}: M_{0} \rightarrow M_{1}$ with $\nu \tilde{h}=h$ from (\#). If h is not an epimorphism, by (\#) we obtain always \tilde{h}^{\prime} similar to the above \tilde{h}. Hence M_{0} is M_{1}-projective. "only if" part is clear.

Corollary 2. Let M_{0} and M_{1} be as in Proposition 1. If M_{0} is almost $M_{1}-$ projective but not M_{1}-projective, there exists a homomorphism $\tilde{h}: M_{1} \rightarrow M_{0}$ which induces a monomorphism of $M_{1} / \mathrm{J}\left(M_{1}\right)$ into $M_{0} / \mathrm{J}\left(M_{0}\right)$.

Proof. Since M_{0} is not M_{1}-projective, we have an epimorphism h : $M_{0} / \mathrm{J}\left(M_{0}\right) \rightarrow M_{1} / \mathrm{J}\left(M_{1}\right)$, which is not liftable, by Proposition 1. Hence there exists the desired homomorphism $\tilde{h}: M_{1} \rightarrow M_{0}$.

2. Local modules

We shall study almost relative projectives among local modules. We recall here the definion of the lifting property of simple modules modulo radical (briefly 1.p.s.m) [5]. Let T_{1} and T_{2} be local modules. If for any simple submodule U in $T_{1} / \mathrm{J}\left(T_{1}\right) \oplus T_{2} / \mathrm{J}\left(T_{2}\right)$ there exists a direct summand T^{\prime} of $T=T_{1} \oplus T_{2}$ such that $T^{\prime}+\left(\mathrm{J}\left(T_{1}\right) \oplus \mathrm{J}\left(T_{2}\right)\right) /\left(\mathrm{J}\left(T_{1}\right) \oplus \mathrm{J}\left(T_{2}\right)\right)=U$, then we say that T has the 1.p.s.m.. This is equivalent to the following: for every element f in $\operatorname{Hom}_{R}\left(T_{1} / J\left(T_{1}\right)\right.$, $T_{2} / \mathrm{J}\left(T_{2}\right)$) is liftable to an element in $\operatorname{Hom}_{R}\left(T_{1}, T_{2}\right)$ or so is f^{-1} to an element in $\operatorname{Hom}_{R}\left(T_{2}, T_{1}\right)$, provided $\left|T_{1}\right|$ and $\left|T_{2}\right|$ are finite. Now in this paper we call the latter equivalent property the 1.p.s.m. even if $\left|T_{i}\right|$ is infinite.

Let A, B be right ideals in $e R$. If $e R / B$ is epimorphic to $e R / A$, there exists a unit v in $e R e$ such that $v B \subset A$ and $e R / B \approx e R / v B$. We denote this situation by $B \leq A$.

Proposition 2. Let R be a semi-perfect ring and A, B right ideals in eR such that either $e R / A$ or $e R / B$ is noetherian. Then $e R / A$ is almost $e R / B$-projective if and ony if eJe $A \subset B$ and $e R / A \oplus e R / B$ has the 1.p.s.m.. In this case if $e R / A$ is not $e R / B$-projective, then $e R / B$ is $e R / A$-projective.

Proof. If $e R / A$ is almost $e R / B$-projective, $e J e A \subset B$ by [4], Proposition 2 and $e R / A \oplus e R / B$ has the 1.p.s.m. by definition. Conversely if $e R / A \oplus e R / B$ has the 1.p.s.m., then 1) $e R / B$ is epimorphic to $e R / A$ or 2) $e R / A$ is epimorphic to $e R / B$ by definition. In either case we may asume 1) $A \supset B$ or 2) $A \subset B$ by the remark above (note that veJe=eJe=eJev).

Case 1) Assume $e J e A \subset B \subset A$. Take the diagram (2), where $M_{0}=e R / A$ and $M=e R_{i} B$. If h is not an epimorphism, h is given by an element j in $e J e$. Since $j A \subset B, h$ is liftable to an $\tilde{h}=j_{l}: e R / A \rightarrow e R / B$, where j_{l} is the left-sided multiplication of j. Next we assume that h is an epimorphism. Then h is given by a unit u in $e R e$. Since $e R / A \oplus e R / B$ has the 1.p.s.m. and either $e R / A$ or $e R / B$ is noetherian, there exists a unit u^{\prime} in $e R e$ such that $u^{-1} \equiv u^{\prime}(\bmod e J e)$ and $u^{\prime} B \subset$ A. Put $u^{\prime}=u^{-1}+j^{\prime} ; j^{\prime} \in e J e$. Then $A \supset u^{\prime} B=\left(u^{-1}+j^{\prime}\right) B$ and $j^{\prime} B \subset j^{\prime} A \subset B \subset A$.

Hence $u^{-1} B \subset A$. Putting $\tilde{h}=\left(u^{-1}\right)_{l}, h \tilde{h}=\nu$. Hence $e R / A$ is almost $e R / B$-projective.

Case 2) We can show in the same manner that $e R / A$ is $e R / B$-projective. Finally assume that $e R / A$ is not $e R / B$-projetive. Then we may assume $B \subset A$ by Corollary 2. Further $e J e B(\subset e J e A \subset B) \subset A$. Hence $e R / B$ is almost $e R / A$ projective by the first statement. While $B \subset A$ implies that $e R / B$ is $e R / A$ projective by Corollary 2.

We shall apply the above proposition to a partucular case, e.g. an algebra over an algebraically closed field.

Lemma 1. Let $M_{0}=e R / A$ and $M_{1}=e R / B$. Then M_{0} is M_{1}-projective if and only if for any generator $a_{0}=a_{0} e$ of M_{0} (resp. $a_{1}=a_{1} e$ of $\left.M_{1}\right)$, a mapping $a_{0} \rightarrow a_{1}$ gives us an epimorphism of M_{0} onto M_{1}.

Proof. Since $a_{i} e=a_{i}(i=0,1), a_{i}$ is a unit in $e R e$. The last statement of the lemma is equivalent to $\left\{x \in e R \mid a_{0} x \in A\right.$, i.e. $\left.x \in a_{0}^{-1} A\right\} \subset\left\{x \in e R \mid a_{1} x \in B\right.$, i.e. $x \in$ $\left.a_{1}^{-1} B\right\}$. Hence $A \subset B$ by taking $a_{0}=a_{1}=e$ and $u A \subset B$ for any unit u in $e R e$ by taking $a_{0}=u^{-1}$ and $a_{1}=e$. Let j be any element in eJe. Then $(e+j) A \subset B$ and $e A \subset B$ from the above. Hence $j A \subset B$. Therefore $e \operatorname{Re} A \subset B$, and so M_{0} is $M_{1^{-}}$ projective by [1], p. 22, Exercise 4. The converse is clear from the above and [1].

Proposition 3. Let M be an R-module and $M_{0}=e R / A$. Then M_{0} is M projective if and only if for any $m=m e$ in M and any generator $a_{0}=a_{0}$ e of M_{0}, a mapping $a_{0} \rightarrow m$ gives us an epimorphism of M_{0} onto $m R$.

Proof. If M_{0} is M-projective, then M_{0} is N-projective for any submodule N of M by defintion. Hence we obtain "only if" part from Lemma 1, since $m R \approx e R / B$ for some B. Conversely take $m=m e$ in M with $h(e+A)=\nu(m)$ in the diagram (2). Since there exists $\tilde{h}: M_{0} \rightarrow m R(\subset M)$ with $\widetilde{h}(e+A)=m$ by assumption, $\nu \widetilde{h}=h$.

From the above result we shall define a new concept. Let $M_{0}=e R / A$ be a local module. An R-module N is called locally generated by M_{0} if every cyclic submodule $n R$ of N with $n e=n$ is a homomorphic image of M_{0}.

Now we assume that $e J / B$ is locally generated by $e R!A$. For any element x in $e J e$ we obtain an epimorphism $f: e R / A \rightarrow(x R+B) / B \subset e R / B$. Then $f(e+A)=$ $x r+B$ and r is a unit in $e R e$ and there exists y in $e R e$ such that $y A \subset B$ and $y \equiv x r$ $(\bmod B)$. Put $y=x r+b ; b \in B$. Then $B \supset y A=(x r+b) A$. Hence since $b A \subset$ $B, \operatorname{xr} A \subset B$. Therefore $e J / B$ is locally generated by $e R / A$ if and only if
(3) for any element x in $e J e$, there exists a unit u_{x} in $e R e$ such that $x u_{x} A \subset B$.

If $e J e A \subset B$, (3) is trivially satisfied.
Lemma 2. Let R be a right artinian ring and assume that eR/A円eR/A has the 1.p.s.m.. Then 1): for $B \subset e R e R / A$ is almost eR/B-projective if and only
if i) $e J / B$ is locally generated by $e R / A$ and ii) $A \leqq B$ or $A \gtrsim B$. 2): For an R-module $M e R / A$ is M-projective if and only if M is locally generated by $e R / A$.

Proof. 1) We assume that $e R / A$ is almost $e R / B$-projective. Then i) and ii) are clear from Proposition 2 and the remark after (3). Conversely we assume i) and ii). We shall show $e J^{i} e A \subset B$ for each i by induction on i. Assume $e J^{i+1} e A \subset B$ and take an element x in $e J^{i} e-e J^{i+1} e$. Then from (3) there exists a unit r in $e R e$ such that $x r A \subset B$. By assumption; 1.p.s.m.
(4) $\quad r=u+j ; u$ is a unit in $e R e$ with $u A=A$ and $j \in e J e$.

Then $B \subset x r A=(x u+x j) A$ and $x j \in e J^{i+1} e$. Hence $x A=x u A \subset B$ by induction hypothesis, and so $e J e A \subset B$ by taking $i=1$. From ii) we may assume $A \subset B$ or $A \supset B$. Hence it is clear that $e R / A \oplus e R / B$ has the 1.p.s.m. for $e R / A \oplus e R / A$ does. Therefore $e R / A$ is almost $e R / B$-projective by Proposition 2.
2) Assume that M is locally generated by $e R / A$. Let m be an element in M with $m e=m$. Then $m R \approx e R / B$ for some B. Now we shall show that $e R / A$ is $e R / B$-projective. Since $e R / B$ is locally generated by $e R / A$, (3) holds for any element in $e R e$ from the argument given before (3). Hence the observation after (4) shows $e R e A \subset B$ and hence $e R / A$ is $e R / B$-projective by [1]. Accordingly $e R / A$ is M-projective by Lemma 1 and Proposition 3. The converse is clear from Proposition 3.

Proposition 4. Let R be a right artinian ring and M an R-module. We assume that $e R / A \oplus e R / A$ has the 1.p.s.m.. Then $e R / A$ is almost M-projective if and only if for any element $m=m e$ in M, we obtain one of the following:

1) If $m R$ is not a direct summand of M, then $m R$ is a homomorphic image of $e R / A$.
2) If $m R$ is a direct summand of M, then either $m R$ is a homomorphic image of $e R / A$ or $e R / A$ is that of $m R$.

Proof. Assume that $e R / A$ is almost M-projective. Let $m=m e$ be in M and $m R$ not a direct summand of M. We shall show that $e R / A$ is $m R$-projective. Consider a diagram with K a submoduie of $m R$:

$$
\begin{gathered}
m R \xrightarrow{\nu} m R \mid K \rightarrow 0 \\
\uparrow h \\
e R / A
\end{gathered}
$$

Then we obtain a derived diagram

$$
\begin{aligned}
& M \underset{U}{M} \underset{\cup}{\boldsymbol{\nu}_{M}} M / K \rightarrow 0 \\
& m R \xrightarrow{\boldsymbol{\nu}} m R / K \rightarrow 0 \\
& \uparrow h \\
& e R / A \text {. }
\end{aligned}
$$

Since $e R / A$ is almost M-projective, a) there exists $\tilde{h}: e R / A \rightarrow M$ with $\nu_{M} \tilde{h}=h$ or b) there exist a direct summand M_{1} of M and $\widetilde{h}: M_{1} \rightarrow e R / A$ with $h \widetilde{h}=\nu_{M} \mid M_{1}$. Assume b). Since $\nu_{M}\left(M_{1}\right) \subset h(e R / A) \subset \nu(m R)$ and $K \subset m R, M_{1} \subset m R$. Hence $M_{1}=m R$ for $m R$ is hollow, which contradicts the initial assumption. Therefore, if $m R$ is not a direct summand of M, we always obtain the case a). Then since $\nu_{M}(\tilde{h}(e R / A)) \subset h(e R / A) \subset \nu(m R), \widetilde{h}(e R / A) \subset m R$. Hence $e R / A$ is $m R$-projective, whence $m R$ is a homomorphic image of $e R / A$ by Proposition 3. Next we assume that $m R$ is a direct summand of M. Then $e R / A$ is almost $m R$-projective by definition. Then we obtain 2) from Lemma 2-1)-ii). Conversely assume 1) and 2). Take any diagram with $K \subset M$:

and put $h(\tilde{e})=\nu(m)$ for some $m=m e \in M$, where $\tilde{e}=e+A$ in $e R / A$. Assume that $m R$ is not a direct summand of M. Then since $m R$ is hollow, $m^{\prime} R$ is not a direct summand of M for any $m^{\prime}\left(=m^{\prime} e\right)$ in $m R$. Accordingly $m R$ is locally generated by $e R / A$ from 1) and so $e R / A$ is $m R$-projective by Lemma 2-2). Hence there exists a homomorphism $\tilde{h}: e R / A \rightarrow m R \subset M$ with $\tilde{h}(\tilde{e})=m$ by Lemma 1. Therefore $\nu \tilde{h}=h$. Assume the case 2). Since $m R$ is a local module, any proper submodule of $m R$ is not a direct summand of M. Hence $e R / A$ is almost $m R$-projective by 1) and Lemma $2-1$). Take the derived diagram from the above one

$$
\begin{gathered}
m R \xrightarrow{\nu} m R /(K \cap m R) \rightarrow 0 \\
\uparrow h \\
e R / A
\end{gathered}
$$

Since $e R / A$ is almost $m R$-projective, we obtain an $\tilde{h}: e R / A \rightarrow m R$ (or $m R \rightarrow e R / A$) which makes the above diagram commutative. Noting that $m R$ is a direct summand of M, we know that $e R / A$ is almost M-projective.

Remark. We don not need Lemma 2 in the first half of the proof of Proposition 4, and hence it shows the following fact: Let R be semiperfect and $e R / A$ almost M-projective. Then for $m=m e$ in M such that $m R$ is not a direct summand of $M, e R / A$ is $m R$-projective.

We note that if R is an algebra over an algebraically closed field of finite dimension, $e R / A \oplus e R / A$ has always the l.p.s.m.. Further Lemma 2 and Proposition 4 are not true without the assumption: l.p.s.m. of $e R / A \oplus e R / A$ (see the next examples).

Exampie 1. Let $L \supset K$ be fields with $L=a K \oplus b K$. Put $R_{1}=L \oplus u L$, a trivial extension with $\mathrm{J}\left(R_{1}\right)=0 \oplus u L$ and $V=x L \oplus y L$, a vector space over L.

Set

$$
R=\left(\begin{array}{ll}
R_{1} & V \\
0 & R
\end{array}\right)
$$

with $(u d) x=y d$ and $u y=0 ; d \in L$. Put $A=(0 x(a K) \oplus y L)$ and $B=(0 y(a K))$. Then for $e=e_{11} e J e=J\left(R_{1}\right), e J e A \nsubseteq B$ and for any $c^{\prime}=c u(\neq 0)$ in eJe $c^{\prime} c^{-1} A \subset B$ ((3)), and hence $e J / B$ is locally generated by $e R / A$. Further $e R / A \oplus e R / B$ has the 1.p.s.m.. However $e R / A$ is not almost $e R / B$-projective for $e J e A \nsubseteq B$.
2. Put $A^{\prime}=(0 x(a K) \oplus y(a K))$. Since $e J e B=0$ and $A^{\prime} \supset B, e R / A^{\prime}$ is locally generated by $e R / B$. However $e R / B$ is not $e R / A^{\prime}$-projectiev.

3. Direct sums

Let M_{0}, M_{1} and M_{2} be indecomposable modules and let M_{0} be almost M_{i}-projective for $i=1,2$. In this section we shall study a condition under which M_{0} is almost $M_{1} \oplus M_{2}$-projective, when M_{0} is cyclic. This is dual to [3], Theorem. We note that if M_{0} is almost $M_{1} \oplus M_{2}$-projective, then M_{0} is almost M_{i}-projective for $i=1,2$ by definition. If $\operatorname{End}_{R}(M)$ is a local ring, we say M is an l.e. module.

Proposition 5. Let M_{0} be a finitely generated R-module and let M_{1} be a local and 1.e. module $e_{1} R / A_{1}$ and M_{2} an 1.e. module. Assume that i) M_{0} is almost $M_{1} \oplus M_{2}$-projective, but M_{0} is not M_{1}-projective, and ii) for any $m(\neq 0)$ in M_{2} with $m e_{1}=m$ we take any isomorphism $f: M_{1} \mid M_{1} J \approx m R / m J$. Then $f\left(o r f^{-1}\right.$ if $\left.M_{2}=m R\right)$ is liftable to $f^{\prime}: M_{1} \rightarrow M_{2}\left(\right.$ or $\left.f^{\prime}: M_{2} \rightarrow M_{1}\right)$.

Proof. Since M_{0} is almost M_{1}-projective but not M_{1}-projective, there exist a maximal submodule B of M_{0} and an isomorphism $g: M_{0} / B \rightarrow M_{1} / \mathrm{J}\left(M_{1}\right)$ which is not liftable to an element: $M_{0} \rightarrow M_{1}$ (cf. the proof of Proposition 1). Let $f: M_{1} / \mathrm{J}\left(M_{1}\right) \rightarrow m R / m J$ be the given isomorphism and take a diagram:

where $h=g+f g$. Since M_{0} is almost $M_{1} \oplus M_{2}$-projective, either there exists \tilde{h} : $M_{0} \rightarrow M_{1} \oplus M_{2}$ with $\left(\nu_{1}+\nu_{2}\right) \widetilde{h}=h \nu_{0}$ or there exist a non-zero direct summand N of $M_{1} \oplus M_{2}$ and $\tilde{h}: N \rightarrow M_{0}$ with $h \nu_{0} \tilde{h}=\left(\nu_{1}+\nu_{2}\right) \mid N$. If the former occurs, taking the projection of $M_{1} \oplus M_{2}$ onto M_{1}, we have a contradiction to the choice of g. Hence we should obtain the latter. We may assume that N is an indecomposable module. Since N has the exchange property by assumption

$$
M_{1} \oplus M_{2}=N \oplus M_{1} \text { or }=N \oplus M_{2} .
$$

The first case: Let x_{2} be any element in M_{2}. Then

$$
x_{2}=n+x_{1} ; n \in N, x_{1} \in M_{1} \quad \text { and } \quad n=y_{1}+y_{2}, y_{i} \in M_{i} .
$$

Hence $x_{2}=y_{2}$ and $x_{1}=-y_{1}$. Put $z=\nu_{0} \tilde{h}(n)$, and $\nu_{1}\left(y_{1}\right)=g(z), \nu_{2}\left(y_{2}\right)=f g(z)$, i.e., $\nu_{2}\left(x_{2}\right)=f\left(\nu_{1}\left(-x_{1}\right)\right)$. Then $M_{2} / m J=f\left(M_{1} / \mathrm{J}\left(M_{1}\right)\right)=m R / m J$. Accordingly, $M_{2}=m R$ and $-\pi \mid M_{2}: M_{2} \rightarrow M_{1}$ is a lifted element of f^{-1}, where $\pi: N \oplus M_{1} \rightarrow M_{1}$ is the projection. We obtain a similar result for the second case.

Lemma 3. Let $\left\{M_{i}\right\}_{i=1}^{n}$ be a set of indecomposable R-modules and let N and M_{0} be R-modules. Assume that M_{0} is almost M_{i}-projective for all i and N-projective. Take a diagram with row exact:

$$
0 \rightarrow K \rightarrow\left(\Sigma \oplus M_{i}\right) \oplus N \xrightarrow{\nu} \underset{\substack{\uparrow \\ \\ \\ M_{0}}}{H \rightarrow 0}
$$

If there exists a small submodule T in $\sum_{i} \oplus M_{i}$ such that $h\left(M_{0}\right) \subset \nu(T \oplus N)$, then there exists $\tilde{h}: M_{0} \rightarrow\left(\sum_{i} \oplus M_{i}\right) \oplus N$ with $\nu \tilde{h}=h$.

Proof. Put $M^{*}=\Sigma_{i} \oplus M_{i} \oplus N$ and $\pi_{1}: M^{*} \rightarrow \sum_{i} \oplus M_{i}, \pi_{2}: M^{*} \rightarrow N$ the projections. Further put $K^{i}=\pi_{i}\left(M^{*}\right)$ for $i=1,2$. We can derive the following diagram (cf. [4]):

$$
\begin{gathered}
\Sigma_{i} \oplus M_{i} \xrightarrow{\nu^{\prime}}\left(\sum_{i} \oplus M_{i}\right) \mid K^{1} \rightarrow 0 \\
\uparrow \pi_{1}^{\prime} h \\
M_{0}
\end{gathered}
$$

where $\pi_{1}^{\prime}: H \xrightarrow{\nu^{*}} M^{*} /\left(K^{1} \oplus K^{2}\right) \rightarrow\left(\sum_{i} \oplus M_{i}\right) / K^{1}$ is the projection (we note that $K \subset$ ($K^{1} \oplus K^{2}$) and $H=M^{*} / K$, and so we obtain the natural epimorphism ν^{*}). From the assumption $\pi_{1}^{\prime} h\left(M_{0}\right)$ is small in $\left(\sum_{i} \oplus M_{i}\right) / K^{1}$. Hence there exists $\widetilde{h}_{1}: M_{0} \rightarrow$ $\sum_{i} \oplus M_{i}$ with $\nu^{\prime} \widetilde{h}_{1}=\pi_{1}^{\prime} h$ by [4], Lemma 1 . Since M_{0} is N-projective, we obtain the desired homomorphism from the remark before [4], Lemma 1.

The following theorem is dual to [3], Theorem and will be generalized in [6] to a case where M_{0} is a finitely generated module, when R is right artinian.

Theorem 2. Assume that R is a semiperfect ring and J is nil. Let $\left\{M_{i}\right\}_{i=1}^{n}$ be a set of 1.e. modules and M_{0} a local module $e_{0} R / A_{0}$. Then the following are equivalent:

1) M_{0} is almost $\sum_{i=1}^{n} \oplus M_{i}$-projective.
2) The following are fulfiled:
i) $\quad M_{0}$ is almost M_{i}-projective for all $i \geqslant 1$.
ii) If M_{0} is not M_{k}-projective for $k=i$ and j, then $M_{i} \oplus M_{j}$ has the l.p.s.m. (in this case $M_{i} \approx e_{0} R / A_{i}, M_{j} \approx e_{0} R / A_{j}$).

Proof. 2) \rightarrow 1) We may assume that there exists an integer m such that M_{0} is M_{i}-projective for all $i>m$ and M_{0} is not M_{j}-projective for all $j \leqslant m$ and hence all $M_{j}(j \leqslant m)$ are local modules $e_{0} R / A_{j}$ by Corollary 1 . Take a diagram with row exact:

$$
\begin{align*}
0 \rightarrow K \rightarrow M=\Sigma \oplus M_{i} \xrightarrow{\nu} & M / K \rightarrow 0 \tag{5}\\
& \uparrow h \\
& M_{0}=e R / A .
\end{align*}
$$

Let $h\left(\tilde{e}_{0}\right)=\left(\sum a_{i}\right)+K ; a_{i} \in M_{i}$, where $\tilde{e}_{0}=e_{0}+A$ in M_{0}. We may assume $a_{i} e_{0}=$ a_{i}. We show that
there exists $\tilde{h}: M_{0} \rightarrow M$ (or there exist a non-zero direct summand N of M and a homomorphism $\left.\tilde{h} ; N \rightarrow M_{0}\right)$ such that $\nu \tilde{h}=h($ or $h \widetilde{h}=\nu \mid N)$.
If $a_{i} \in J\left(M_{i}\right)$ for all $(m \geqslant) i \geqslant 1$, there exists $\tilde{h}: M_{0} \rightarrow M$ such that $\nu \widetilde{h}=h$ by Lemma 3. Hence we assume that there exists an integer k such that $a_{j} \in \mathrm{~J}\left(M_{j}\right)$ for $(m \geqslant) j>k$ and $a_{j^{\prime}} \notin \mathrm{J}\left(M_{j^{\prime}}\right)$ for $1 \leqslant j^{\prime} \leqslant k$. Then $a_{j^{\prime}}$ is a generator of $M_{j^{\prime}}$, since $M_{j^{\prime}}$ is local. Now M_{0} is not M_{t}-projective for $t=1, s \leqslant k$, and so $M_{1} \oplus M_{s}$ has the l.p.s.m. by assumption. Hence there exists $f: M_{1} \rightarrow M_{s}$ (or $M_{s} \rightarrow M_{1}$) such that $f\left(a_{1}\right)=a_{s}+a_{s} j_{s}\left(\right.$ or $f\left(a_{s}\right)=a_{1}+a_{1} j_{s}$) for some $j_{s} \in J$. We take a new decomposition $M=M_{1}(f) \oplus M_{s} \oplus \Sigma_{i \neq 1, s} \oplus M_{i}\left(\right.$ or $\quad M_{1} \oplus M_{s}(f) \oplus \Sigma_{i \neq 1, s} \oplus M_{i}$), where $M_{1}(f)=\left\{x+f(x) \mid x \in M_{1}\right\} \subset M_{1} \oplus M_{s}$. Then $a_{1}+a_{s}=\left(a_{1}+f\left(a_{1}\right)\right)+\left(a_{s}-f\left(a_{1}\right)\right)=$ $\left(a_{1}+f\left(a_{1}\right)\right)-a_{s} j_{s}$ and $\left(a_{1}+f\left(a_{1}\right)\right) \in M_{1}(f), a_{s} j_{s} \in J\left(M_{s}\right)$ (similar for another case). Hence iterating this argument, we remain ourselves a case $k=1$, i.e., M_{0} is not $M_{1}{ }^{-}$ projective and $a_{t} \in \mathrm{~J}\left(M_{t}\right)$ for all $(m \geqslant) t>1$. Since $a_{t} R \subset \mathrm{~J}\left(M_{t}\right)$ for $1<t \leqslant m$, there exists

$$
\begin{equation*}
\tilde{h}_{t}: M_{0} \rightarrow M_{t} \text { such that } \tilde{h}_{t}\left(\tilde{e}_{0}\right)=a_{t},(n \geqslant t>1) \tag{6}
\end{equation*}
$$

by Lemma 1 and Remark in $\S 2$. On the other hand, consider $f_{1}: M_{0} / \mathrm{J}\left(M_{0}\right) \approx$ $M_{1} / \mathrm{J}\left(M_{1}\right)\left(f_{1}\left(e_{0}+\mathrm{J}\left(M_{0}\right)\right)=a_{1}+\mathrm{J}\left(M_{1}\right)\right)$. Since $M_{0} \oplus M_{1}$ has the l.p.s.m. by assumption i) and Proposition 2, there exists $\widetilde{h}_{1}: M_{1} \rightarrow M_{0}$ (or $M_{0} \rightarrow M_{1}$) such that $\widetilde{h}_{1}\left(a_{1}\right) \equiv \tilde{e}_{0}\left(\bmod \mathrm{~J}\left(M_{0}\right)\right)\left(\right.$ or $\left.\widetilde{h}_{1}\left(\tilde{e}_{0}\right) \equiv a_{1}\left(\bmod \mathrm{~J}\left(M_{1}\right)=a_{1} J\right)\right)$, i.e.,

$$
\begin{align*}
& \tilde{h}_{1}\left(a_{1}\right)=\tilde{e}_{0}+\tilde{e}_{0} j_{0} ; j_{0} \in J, \quad \text { or } \tag{7}\\
& \tilde{h}_{1}\left(\tilde{e}_{0}\right)=a_{1}+a_{1} j_{1} ; j_{1} \in J \tag{7'}
\end{align*}
$$

Case (7^{\prime}): Put $g=\sum_{t=1}^{n} \widetilde{h}_{t}: M_{0} \rightarrow M$ and $h^{\prime}=h-\nu g$. Then $h^{\prime}\left(\tilde{e}_{0}\right)=\nu\left(a_{1} j_{1}\right)$ and $a_{1} j_{1} \in \mathrm{~J}\left(M_{1}\right)$. Hence there exists $h^{*}: M_{0} \rightarrow M$ such that $\nu h^{*}=h^{\prime}$ by Lemma 3 and so $h=\nu\left(g+h^{*}\right)$.
Case (7): Now put $g=\left(\sum_{t>2} \widetilde{h}_{t}\right) \widetilde{h}_{1}: M_{1} \rightarrow \sum_{t>2} \oplus M_{t}$. Then $g\left(a_{1}\right)=\sum_{t>2} \widetilde{h}_{t}\left(\tilde{e}_{0}\right)$ $+\sum_{t>2} \tilde{h}_{t}\left(\tilde{e}_{0}\right) j_{0}=\sum_{t>2} a_{t}+\sum_{t>2} a_{t} j_{0}$. Taking a decomposition $M=M_{1}(g) \oplus \sum_{t>2}$ $\oplus M_{t}, \sum_{t=1}^{n} a_{t}=a_{1}+g\left(a_{1}\right)-\sum_{t>2} a_{t} j_{0}$ and $a_{1}+g\left(a_{1}\right) \in M_{1}(g), a_{t} j_{0} \in M_{t}(t>1)$. Similarly to (6), we obtain by Lemma 1 and Remark in $\S 2$.

$$
\begin{equation*}
\tilde{h}_{t}^{\prime}: M_{0} \rightarrow M_{t} \quad \text { with } \quad \tilde{h}_{t}^{\prime}(\tilde{e})=a_{t} j_{0}(n \geqslant t>1) . \tag{8}
\end{equation*}
$$

While since $M_{1} \approx M_{1}(g)\left(a_{1} \leftrightarrow a_{1}+g\left(a_{1}\right)\right)$, from (7) we obtain $\tilde{h}_{1}^{\prime}: M_{1}(g) \rightarrow M_{0}$ with

$$
\begin{equation*}
\widetilde{h}_{1}^{\prime}\left(a_{1}+g\left(a_{1}\right)\right)=\tilde{e}_{0}+\tilde{e} j_{0} . \tag{9}
\end{equation*}
$$

Put $g^{\prime}=\left(\sum_{t>2} \tilde{h}_{t}^{\prime}\right) \tilde{h}_{1}^{\prime}$, and $\sum_{t=1}^{n} \oplus M_{t}=\left(M_{1}(g)\right)\left(g^{\prime}\right) \oplus \sum_{t>2} \oplus M_{t}, \sum_{s+1}^{n} a_{t}=\left(a_{1}+\right.$ $g\left(a_{1}\right)+g^{\prime}\left(a_{1}+g\left(a_{1}\right)\right)-\sum_{t>2} a_{t} j_{0}^{2}$. Repeating this procedure we obtain the final decomposition $M=M_{1}^{\prime} \oplus M_{2} \oplus \cdots \oplus M_{n}$ and $\sum_{i=1}^{n} a_{i} \in M_{1}^{\prime} \approx M_{1}$, since J is nil. Thus we have derived the following diagram from (5):

$$
\begin{gathered}
M_{1}^{\prime} \xrightarrow{\nu} \nu\left(M_{1}^{\prime}\right) \rightarrow 0 \\
\uparrow h \\
M_{0}
\end{gathered}
$$

Therefore there exists $\tilde{h}: M_{0} \rightarrow M_{1}^{\prime}$ (or $\tilde{h}: M_{1}^{\prime} \rightarrow M_{0}$) such that $\nu \tilde{h}=h$ (or $h \tilde{h}=$ $\left.\nu \mid M_{1}^{\prime}\right)$.

1) $\rightarrow 2$) (cf. [7]). M_{0} is almost M_{t}-projective for all t by definition. Let M_{i} and M_{j} be as in 2)-ii). Since M_{0} is almost $M_{1} \oplus M_{2}$-projective as above, $M_{1} \oplus M_{2}$ has the l.p.s.m. by Proposition 5.

We shall show in [6] that Theorem 2 is useful when we characterize right Nakayama rings in terms of almost relative projectives.

References

[1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Monographs Textbooks Pure and Appl. Math. 84, Marcel Dekker, Inc., New York and Basel
[2] G. Azumaya, F. Mbuntum and K. Varadarajan: On M-projective and M-injective modules, Pacific J. Math. 59 (1975), 9-16.
[3] Y. Baba: Note on almost M-injectives, Osaka J. Math. 26 (1989), 687-698.
[4] - and M. Harada: On almost M-projectives and almost M-injectives, Tukuba J. Math 14, in press.
[5] M. Harada: On modules with lifting properties, Osaka J. Math. 19 (1982), 189221.
[6] -: On almost relative projectives over perfect rings, to appear.
[7] \quad and A. Tozaki: Almost M-projectives and Nakayama rings, J. Algera 122 (1989), 447-474.
[8] K. Oshiro: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337-373.
[9] —: Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983), 681-694.

Osaka City University
Sugimoto-3, Sumiyoshi-ku
558 Osaka, Japan
Tuguo MABUCHI
Ohtemae High School Higashi-ku
541 Osaka, Japan

