Baba, Y. Osaka J. Math. 26 (1989), 687-698

## NOTE ON ALMOST M-INJECTIVES

YOSHITOMO BABA

(Received April 30, 1988)

Recently, in [2], Harada and Tozaki defined 'almost *M*-projectives' which are generalized from the concept '*M*-projectives' due to Azumaya. In this paper we shall define a dual concept 'almost *M*-injectives'. In the forthcoming paper [1], we will show several results dual to Harada and Tozaki's ones above. The purpose of this paper is to generalize the following Azumaya's theorem concerning to *M*-injectives: N is  $M_1$ - and  $M_2$ -injective if and only if N is  $M_1 \oplus$  $M_2$ -injective for modules N,  $M_1$  and  $M_2$ , to a case of 'almost *M*-injectives'. An easy example shows that the theorem can not be modified as the same form.

Throughout this paper, R is an associative ring with identity. Every module is a unitary right R-module. We always use  $i, i_k$  and  $i^*$   $(k=1, 2, \dots \text{ or } *)$  to denote the inclusion maps. For modules M and N with  $N \subseteq M$ , we denote by  $N \subset M$  and by  $N \triangleleft \oplus M$  to mean that M is an essential extension of N and that N is a direct summand of M, respectively. For modules M, N and a homomorphism  $f: M \to N, M(f)$  denotes  $\{m+f(m) | m \in M\}$ . For a module M, unif. dim (M) and ||M|| denote its uniform dimension and composition length, respectively. If for each simple submodule S of M there is a direct summand M' of M such that  $S \subset M'$ , we say that M is extending for simple modules.

For a set T, |T| denotes its cardinal number.

Our main result is the following.

**Theorem.** Let  $U_k$  be a uniform module of finite composition length for  $k = 0, 1, 2, \dots, n$ . Then the following two conditions are equivalent;

(1)  $U_0$  is almost  $\sum_{k=1}^{n} \bigoplus U_k$ -injective.

(2)  $U_0$  is almost  $U_k$ -injective for every k=1, 2, ..., n and if Soc  $(U_0) \approx$ Soc $(U_k) \approx$  Soc $(U_l)$  (any  $k, l \in \{1, 2, ..., n\}, k \neq l$ ) then (i)  $U_0$  is  $U_k$ -and  $U_l$ -injective or (ii)  $U_k \oplus U_l$  is extending for simple modules.

DEFINITION. Let M and N be R-modules. We say that N is almost M-injective if at least one of the following conditions holds for each submodule L of M and each homomorphism  $f: L \rightarrow N$ :

(1) There exists a homomorphism  $\hat{f}: M \rightarrow N$  such that  $\hat{f} \cdot i = f$ ,

(2) There exists a non-zero direct summand  $M_1$  of M and a homomorphism  $\hat{f}: N \rightarrow M_1$  such that  $\hat{f} \cdot f = \pi \cdot i$ , where  $\pi: M \rightarrow M_1$  is a projection of M onto  $M_1$ . In this definition, for a given diagram:



we call that the first (respectively, second) case occurs in the diagram(\*) if the condition (1) (respectively, (2)) holds in the diagram.

**Lemma A.** Let U be a uniform module and X an indecomposable module. If U is almost X-injective and  $||U|| \ge ||X||$ , U is X-injective.

Proof. Consider a diagram:



Assume that the second case occurs in this diagram. Let  $\tilde{f}: U \to X$  be a homomorphism such that  $i=\tilde{f}\cdot f$ . (Note that X is indecomposable.) Then  $\tilde{f}$  is a monomorphism since U is a uniform module, and so  $||U|| \leq ||X||$ . We have ||U|| = ||X|| from the assumption  $||U|| \geq ||X||$ . Therefore  $\tilde{f}$  is an isomorphism. Then  $f = \tilde{f}^{-1} \cdot i$ .

**Lemma B.** Let M and N be R-modules. Consider a diagram:



and put K:=Ker(f). Then if the second case occurs in this diagram, there is a proper direct summand M' of M which contains K.

In particular, if  $K \subset M$ , then the first case occurs.

Proof. Since the second case happens, we have a direct decomposition  $M = M' \oplus M''$  and  $\hat{f} \colon N \to M'$  for which the diagram:

688

$$0 \xrightarrow{\qquad l \qquad i \qquad M = M' \oplus M''} f \xrightarrow{\downarrow} f \xrightarrow{f} M'$$

$$N \xrightarrow{\qquad f \qquad M'} M'$$

is commutative. Then  $\pi'(K) = \pi' \cdot i(K) = \hat{f} \cdot f(K) = 0$ , and  $K \subseteq \operatorname{Ker}(\pi') = M'' \langle \bigoplus M \rangle$ . Since  $M' \neq 0$ , M'' is a proper direct summand.

Now we prepare for Lemma C below. Let N,  $M_1$  and  $M_2$  be modules, and put  $M := M_1 \oplus M_2$ . Consider a diagram:

(1) 
$$0 \xrightarrow{\qquad l \qquad i \qquad M}_{f \checkmark N} M$$

From this diagram we induce the following for k=1, 2:

$$(2-k) \qquad 0 \xrightarrow{\qquad \qquad } L_k \xrightarrow{\qquad i_k \qquad } M_k$$
$$f|_{L_k} \xrightarrow{\qquad N}$$

where  $L_k := L \cap M_k$ . Moreover when the first case occurs in both diagrams (2-1) and (2-2) (let  $\hat{f}_k : M_k \to N$  be homomorphisms such that  $f|_{L_k} = \hat{f}_k \cdot i_k$  for k=1, 2), we shall consider the following for k=1, 2:

$$(3-k) \qquad 0 \xrightarrow{\qquad \qquad l^k \xrightarrow{\qquad i^k \qquad \qquad M_k}} M_k$$

$$f'_k \downarrow \qquad \qquad N$$

where, letting  $\pi_k: M(=M_1 \oplus M_2) \to M_k$  be the projection,  $L^k:=\pi_k(L)$  and the homomorphisms  $f'_k$  is defined as follows: Put  $f_0:=f-(\sum_{k=1}^2 \hat{f}_k \cdot \pi_k|_L): L \to N$ . Since  $f_0(L_1 \oplus L_2)=0$  (from the definition of  $\hat{f}_k$ ), the canonical map  $\bar{f}_0: L/(L_1 \oplus L_2) \to N$  is induced. We let  $f'_k: L^k \to N$  be the composite map:  $L^k$  natural epi.  $\approx L/(L_1 \oplus L_2) = \frac{f_0}{1 \oplus 1} \to N$ .

natural iso.

**Lemma** C. Assume that N be almost  $M_1$ - and  $M_2$ -injective. Consider a

diagram (1) and induce the above diagrams. If the first case occurs in both diagrams (2-1) and (2-2) and does in either (3-1) or (3-2), then so does in the diagram (1).

Proof. We say that the first case occurs in the diagram (3-1). Let  $\hat{f}'_1: M_1 \rightarrow N$  be a homomorphism such that  $f'_1 = \hat{f}'_1 \cdot i^1$ . The diagram (3-1) induces the following commutative diagram:



where  $\rho$  is the canonical epimorphism. Then, note that  $\pi_k|_L = \pi_k \cdot i$ ,

$$\begin{split} f &= f_0 + (\sum_{k=1}^{2} \hat{f}_k \cdot \pi_k |_L) \\ &= \hat{f}'_1 \cdot i^1 \cdot (\pi_1 |_L) + (\sum_{k=1}^{2} \hat{f}_k \cdot \pi_k |_L) \\ &= (\hat{f}'_1 \cdot i^1 + \hat{f}_1) \cdot (\pi_1 |_L) + \hat{f}_2 \cdot (\pi_2 |_L) \\ &= \{ (\hat{f}'_1 \cdot i^1 + \hat{f}_1) \cdot \pi_1 + \hat{f}_2 \cdot \pi_2 \} \cdot i \,. \end{split}$$

Put  $\hat{f}:=(\tilde{f}'_1+\tilde{f}_1)\cdot\pi_1+\tilde{f}_2\cdot\pi_2$ .  $\tilde{f}$  is a homomorphism from M to N satisfying  $f=\hat{f}\cdot i$ . So the first case occurs in the diagram (1).

**Corollary 1.** [Azumaya] Let N,  $M_1$  and  $M_2$  be modules. If N is  $M_1$ - and  $M_2$ -injective, then N is  $M_1 \oplus M_2$ -injective.

**Corollary 2.** Let N,  $M_1$  and  $M_2$  be modules, and let N be almost  $M_1$ - and  $M_2$ -injective. Consider a diagram:

$$(*) \qquad \begin{array}{c} 0 \longrightarrow L & \stackrel{i}{\longrightarrow} & M := M_1 \oplus M_2 \\ f \downarrow \\ N \end{array}$$

690

and put K := Ker(f). Then if  $K \subseteq M$ , the first case occurs in the diagram (\*).

Proof. Induce the diagrams (2-k) (k=1, 2) from the diagram (\*). Since  $K \subset M$  and  $K \subseteq L \subseteq M$ ,  $L \subset M$ . And  $\operatorname{Ker}(f|_{L_k}) = K \cap L_k \subset M \cap L_k = L_k = M_k \cap L \subset M_k \cap M = M_k$ . Therefore Lemma B shows that the first case occurs in the diagrams (2-k). So the diagrams (3-k) for k=1, 1 are induced. Since  $L_k \subseteq \operatorname{Ker}(f'_k)$  and  $L_k \subset M_k$ ,  $\operatorname{Ker}(f'_k) \subset M_k$ . Therefore the first case also occurs in these diagrams. Thus a desired homomorphism exists in the diagram (\*) from Lemma C.

Proof of Theorem.  $(1) \Rightarrow (2)$ : The first condition of (1) holds by [1], Lemma 9. We shall show the remainder condition. To show this, assume that Soc  $(U_0) \approx \operatorname{Soc}(U_1) \approx \operatorname{Soc}(U_2)$  and let  $U_0$  be not  $U_1$ -injective. Let us find a direct decomposition  $U_1 \oplus U_2 = V_1 \oplus V_2$  such that  $(\operatorname{Soc}(U_1))(g) \subseteq V_1$  and  $V_2 \neq 0$  for each isomorphism  $g: \operatorname{Soc}(U_1) \rightarrow \operatorname{Soc}(U_2)$ . Since  $V_1$  is a uniform module, this means that  $U_1 \oplus U_2$  is extending for simple modules.

Take an isomorphism  $g': \operatorname{Soc}(U_2) \rightarrow \operatorname{Soc}(U_0)$  and consider the following diagram:

where  $f(s_1+s_2)=g'(s_2-g(s_1))$  for any  $s_k$  in Soc $(U_k)$  (k=1, 2). Then note that Ker $(f)=(Soc(U_1))(g)$ .

The assumption that  $U_0$  is almost  $\sum_{k=1}^{n} \oplus U_k$ -injective induces that  $U_0$  is almost  $U_1 \oplus U_2$ -injective by [1], Lemma 9. If the first case occurs in this diagram, let  $\tilde{f}: U_1 \oplus U_2 \rightarrow U_0$  be a homomorphism such that  $f = \tilde{f} \cdot i$ , then  $\tilde{f}|_{U_1}: U_1 \rightarrow U_0$  is not a monomorphism since  $||U_1|| > ||U_0||$  by Lemma A and the assumption that  $U_0$  is not  $U_1$ -injective. Therefore  $f(\operatorname{Soc}(U_1)) = \tilde{f}(\operatorname{Soc}(U_1)) = 0$ . But, by the definition of f, we see  $f(\operatorname{Soc}(U_1)) \neq 0$ . This is a contradiction. So the second case occurs in the diagram ( $\aleph$ ). Hence, by Lemma B, we have a direct decomposition  $U_1 \oplus U_2 = V_1 \oplus V_2$  such that  $(\operatorname{Soc}(U_1))(g) \subseteq V_1$  and  $V_2 \neq 0$ .

 $(2) \Rightarrow (1)$ : We shall show this implication by induction on *n*. Take a diagram:



We may assume that  $L \subset U$ , since, otherwise, there is a submodule L' of U such that  $L \oplus L' \subset U$ . Then consider the following diagram:



where the homomorphism  $\dot{f}: L \oplus L' \to U_0$  is defined as  $\dot{f}(x+x') = f(x)$  for any  $x \in L$  and  $x' \in L'$ . If the first case occurs in this diagram, let  $\tilde{f}: U \to U_0$  be a homomorphism such that  $\dot{f} = \tilde{f} \cdot i'$ , then  $\tilde{f} \cdot i = \tilde{f} \cdot (i'|_L) = \dot{f}|_L = f$ . The first case also occurs in the original diagram ( $\bigotimes$ ). On the other hand, if the second case occurs in this diagram, let  $0 \neq U' \langle \oplus U, p: U \to U'$  be a projection and  $\tilde{f}: U_0 \to U'$  be a homomorphism such that  $p \cdot i' = \tilde{f} \cdot f$ , then  $p \cdot i = p \cdot (i'|_L) = \tilde{f} \cdot (f|_L) = \tilde{f} \cdot f$ . The second case also occurs in the diagram ( $\bigotimes$ ).

Now assume that the first case does not occurs in this diagram. And we will show that the second case occurs in it.

If  $K \subset U$ , the first case occurs in the diagram ( $\gg$ ) by Corollary 2, a contradiction. Hence  $K \subset U$ . Then we may assume that  $K \cap \text{Soc}(U_1) = 0$ . Since U is a finite direct sum of uniform modules, we can take a maximal  $|\{k \in \{2, 3, \dots, k\}\}$  n | Soc $(U_k) \subseteq K$  | among | { $k \in \{2, 3, \dots, n\}$  | Soc $(U'_k) \subseteq K$  | related to the direct decomposition of U into uniform modules  $U'_k$  such that  $K \cap \text{Soc}(U'_1) = 0$ . Now we denote its direct docomposition by  $\sum_{i=1}^{n} \bigoplus U_k$ .

Since  $K \cap \text{Soc}(U_1) = 0$ , there is a homomorphism  $g: K^* \to U_1$  with  $K = K^*$ (g) where  $U_*: = \sum_{k=2}^{n} \bigoplus U_k, \pi_*: U(=U_1 \oplus U_*) \to U_*$  is the projection and  $K^*: = \pi_*$ (K). Put  $K_*: = K \cap U_*$ . Then we have the following two cases:

case A: 
$$K_* \subset U_*$$
.  
case B:  $K_* \subset U_*$ .

Note that  $\operatorname{Soc}(U_k) \subseteq K^*$  for any  $k \in \{2, 3, \dots, n\}$ . Because, if  $\operatorname{Soc}(U_k) \not\subseteq K^*$ , then  $f(\operatorname{Soc}(U_1) \oplus \operatorname{Soc}(U_k))$  is a direct sum of two simple submodules of  $U_0$ , a contradiction. Therefore, if  $\operatorname{Soc}(U_k) \not\subseteq K_*$  for some  $k \in \{2, 3, \dots, n\}$ , the socle of  $K^*/K_*$ , which is isomorphic to  $\operatorname{Soc}(U_1)$  via g, is  $(\operatorname{Soc}(U_k) \oplus K_*)/K_* (\approx \operatorname{Soc}(U_k))$ . So  $\operatorname{Soc}(U_1) \approx \operatorname{Soc}(U_k)$ . On the other hand, f induces  $\operatorname{Soc}(U_1) \approx \operatorname{Soc}(U_0)$  since  $K \cap \operatorname{Soc}(U_1) = 0$ . Hence  $\operatorname{Soc}(U_0) \approx \operatorname{Soc}(U_k)$ .

In case B, if  $Soc(U_2) \not\equiv K$ , we have either the following two properties by assumption:

 $\langle 2-i \rangle$   $U_0$  is  $U_1$ - and  $U_2$ -injective.

 $\langle 2-ii \rangle \quad U_1 \oplus U_2$  is extending for simple modules.

Assume that  $\langle 2-ii \rangle$  occurs. We have a direct decomposition  $U_1 \oplus U_2 = V_1 \oplus V_2$ such that  $V_2 \supseteq (\operatorname{Soc}(U_2)) (g|_{\operatorname{Soc}(U_2)})$ . Then  $V_1 \neq 0$  and  $V_1 \cap K = 0$ . Because, if  $V_1 \cap K \neq 0$ , unif. dim $((V_1 \oplus V_2) \cap K) = 2$  since  $(\operatorname{Soc}(U_2))(g|_{\operatorname{Soc}(U_2)}) \subseteq K$ . But  $U_1 \cap K = 0$  induces unif. dim $((U_1 \oplus U_2) \cap K) \leq 1$ , a contradiction. On the other hand,  $\operatorname{Soc}(V_2) = (\operatorname{Soc}(U_2)) (g|_{\operatorname{Soc}(U_2)}) \subseteq K$ . Therefore, we have a new direct decomposition  $U = V_1 \oplus V_2 \oplus (\sum_{k=3}^n \oplus U_k)$  such that  $K \cap \operatorname{Soc}(V_1) = 0$ . Then, since  $\operatorname{Soc}(U_2) \not\equiv K$ and  $\operatorname{Soc}(V_2) \subseteq K$ , the existence of this direct decomposition gives us a contradiction to the maximality of  $|\{k \in \{2, 3, \dots, n\}| \operatorname{Soc}(U_k) \subseteq K\}|$ . Consequently, if  $\operatorname{Soc}(U_2) \not\equiv K$ ,  $\langle 2-i \rangle$  only occurs, i.e.  $U_0$  is  $U_1$ - and  $U_2$ -injective.

Taking the same argument for  $U_3$ ,  $U_4$ ,  $\cdots$ ,  $U_n$  in order, we may assume that  $U_0$  is  $U_1^-$ ,  $U_2^-$ ,  $\cdots$  and  $U_m$ -injective and  $\operatorname{Soc}(U_{m+1})$ ,  $\operatorname{Soc}(U_{m+2})$ ,  $\cdots$  and  $\operatorname{Soc}(U_n) \subseteq K$  for some  $m \ge 2$ . (Since we are considering the case B,  $m \ge 2$ .) Put  $M_1 := U_1 \oplus U_2 \oplus \cdots \oplus U_m$  and  $M_2 := U_{m+1} \oplus U_{m+1} \oplus \cdots \oplus U_n$  and consider the diagrams (2-1), (2-2) and (3-1) with respect to the direct decomposition  $U = M_1 \oplus M_2$ . Then, using Corollary 1 inductively, the first case occurs in both diagrams (2-1) and (3-1). On the other hand, in the diagram (2-2),  $\operatorname{Ker}(f|_{L\cap M_2}) = K \cap M_2 \subset M_2$  since  $\operatorname{Soc}(M_2) = \sum_{k=m+1}^n \operatorname{Soc}(U_k) \subseteq K_*$ . So the second case does not occur in the

diagram (2-2) by Lemma B. The first case occurs in it since  $U_0$  is almost  $M_2$ -injective by the inductive assumption. Then the first case occurs in the diagram ( $\otimes$ ) by Lemma C, a contradiction.

In case A. Let  $\pi_1: U(=\sum_{k=1}^n \oplus U_k) \to U_1$  be the projection and put  $K^1:=\pi_1$ (K). For each direct decomposition of U into uniform modules  $U'_k$  in which the case A occurs and  $U'_1 \cap K=0$ , we obtain such  $K'^1$ . Since  $||K'^1||$  is finite, we can take a minimal  $||K^1||$  among  $||K'^1||$  related to the direct decomposition  $\sum_{k=1}^n \oplus U'_k$  and we denote its direct decomposition by  $\sum_{k=1}^n \oplus U_k$ .

The special case  $K^1=0$  may occur. We shall first consider this case. From  $K^1=0$  it follows that  $K\subseteq U_*$ . There are two monomorphisms:  $L_1\oplus(L_*/K)$  $\xrightarrow{\text{natural}} L/K \xrightarrow{\text{induced from } f} U_0$  and  $U_0$  is uniform. Since  $L \subset U$  and hence  $L_1 \neq 0$ , and so  $L_*=K$ . Put  $L^1:=\pi_1(L)$ . since  $\text{Ker}(\pi_1|_L)=L_*=K=\text{Ker}(f)$ , there is a homomorphism  $f': L^1 \to U_0$  such that  $f=f' \cdot (\pi_1|_L)$ . So consider the following diagram:



From the assumption that  $U_0$  is almost  $U_1$ -injective, the first case or the second occurs in this diagram. Assume that the first case occurs and let  $\tilde{f}': U_1 \rightarrow U_0$ be a homomorphism such that  $f' = \tilde{f}' \cdot i^1$ , put  $\tilde{f}: = \tilde{f}' \cdot \pi_1: U \rightarrow U_0$ , then  $f = f' \cdot (\pi_1|_L) = \tilde{f}' \cdot \pi_1 \cdot i = \tilde{f} \cdot i$  in the diagram ( $\aleph$ ), i.e. the first case also occurs in the diagram ( $\aleph$ ), a contradiction. So the second case occurs. Let  $\tilde{f}': U_0 \rightarrow U_1$  be a homomorphism such that  $i^1 = \tilde{f}' \cdot f'$ . Then  $\tilde{f}' \cdot f = \tilde{f}' \cdot f' \cdot (\pi_1|_L) = i^1 \cdot (\pi_1|_L) = \pi_1 \cdot i$  in the diagram ( $\aleph$ ), i.e. the second case also occurs in the diagram ( $\aleph$ ).

In the case  $K^1 \neq 0$ . Consider the diagrams (2-1), (2-\*) and (3-\*) from the diagram ( $\aleph$ ) with respect to the direct decomposition  $U=U_1 \oplus U_*$ .

[Claim. 1] The first case occurs in the diagram (2-\*). Otherwise the second case occurs in it by inductive assumption. So there is a proper direct summand of  $U_*$  which contains  $K_*$  by Lemma B, i.e.  $K_* \oplus U_*$ , since  $\operatorname{Ker}(f|_{L_*}) = K_*$ . Then the case B occurs with respect to the direct decomposition  $U = U_1 \oplus U_*$ , a contradiction.

[Claim. 2] The first case occurs in the diagram (3-\*). Otherwise the second case occurs in it by inductive assumption. So there is a proper direct

694

summand of U which contains  $L_*$  by Lemma B, i.e.  $L_* \subset U_*$ , since  $L_* \subseteq \operatorname{Ker}(f'_*)$ . So  $K_* \subset U_*$  for  $K_* \subseteq L_*$ . Therefore the case B also occurs, a contradiction.

Thus, we only have either the following two cases:

i) The first case occurs in the diagrams (2-1), (2-\*) and (3-\*).

ii) The second case occurs in the diagram (2-1) and the first case does in the diagram (2-\*).

In case i), the first case occurs in the diagram  $(\aleph)$  by Lemma C, a contradiction. So we consider the case ii).

Since the second case occurs in the diagram (2-1), there exists a homomorphism  $p: U_0 \rightarrow U_1$  such that  $i_1 = p \cdot (f \mid_{L_1})$ , i.e.  $p \cdot (f \mid_{L_1}) = 1_{L_1}$ . Since the first case occurs in the diagram (2-\*), there exists a homomorphism  $q: U_* \rightarrow U_0$  such that  $f \mid_{L_*} = q \cdot i_*$ , i.e.  $q \mid_{L_*} = f \mid_{L_*}$ . Put  $g':= p \cdot q: U_* \rightarrow U_1$  and  $X:=g^{-1}(\operatorname{Soc}(U_1))$ . Then  $U_*(-g') \supseteq X(g \mid_X)$ . Because, since  $x+g(x) \in K$  for any  $x \in X$ ,  $0=f(x+g(x))=f(x)+f \cdot g(x)$ , i.e.  $f(x)=-f \cdot g(x)$ . (Note that  $L \subset U$  induces  $\operatorname{Soc}(U_1) \subseteq L_1$ . So  $g(x) \in L$ , and  $x \in L$  since  $x+g(x) \in K \subseteq L$ . Hence  $f \cdot g(x)$  and f(x) are defined.)

Therefore  $g'(x) = p \cdot q(x)$ 

$$= p \cdot f(x) \qquad (q \mid_{L_*} = f \mid_{L_*}) = p \cdot (-f \cdot g(x)) = -g(x) \qquad (p \cdot (f \mid_{L_1}) = 1_{L_1})$$

Hence  $U_*(-g') \supseteq X(g|_X)$ . Then  $U_*(-g') \supseteq X(g|_X) \supseteq K_*(g|_{K*}) = K_*$  since  $X \supseteq K_*$ . (We are considering the case  $K^1 \neq 0$ . So  $g \neq 0$ . And we have  $X \supseteq K_*$ .)

Now we consider the direct decomposition  $U = U_1 \oplus (\sum_{k=2}^n \oplus U_k(-g'|_{U_k}))$ . Put  $K'_* := K \cap U_*(-g')$ . Then  $K'_* \supseteq K_*$  since  $U_*(-g') \supseteq K_*$ . So  $K'_* \subset U_*(-g')$  for  $K_* \subset U_*$ . Hence the case A occurs in this direct decomposition. Let  $\pi'_1$ :  $U(=U_1 \oplus U_*(-g')) \rightarrow U_1$  be the projection and put  $K^{1'} := \pi'_1(K)$ . Then  $||K^1|| < ||K^1||$ , since  $K'_* \supseteq K_*$  induces  $||K'_*|| > ||K_*||$  and  $(||K||=) ||K^1|| + ||K_*|| = ||K^{1'}|| + ||K'_*||$ . Therefore the direct decomposition  $U = U_1 \oplus (\sum_{k=2}^n \oplus U_k(-g'|_{U_k}))$  give us a contradiction to the minimality of  $||K^1||$ .

As a consequence, taking an adequate direct decomposition of U, the special case  $K^1=0$  occurs in the case A.

DEFINITION. Let R be a right artinian ring. We say that R is right Co-Nakayama if every indecomposable injective right R-module E is uniserial (i.e. E has a unique composition series.).

Corollary. The following two conditions are equivalent: (1) R is right Co-Nakayama.

(2) For any uniform modules  $U^i$  and  $U_j(i=1, \dots, m; j=1, \dots, n)$  of finite composition length,  $\bigoplus_{i=1}^{m} U^i$  is almost  $\bigoplus_{j=1}^{n} U_j$ -injective if  $U^i$  is almost  $U_j$ -injective for all i and j. (i.e. The almost injectivity among uniform modules of finite composition length is closed under finite direct sums.)

Proof. (1) $\Rightarrow$ (2): If Soc $(U_k)\approx$ Soc $(U_l)$ ,  $U_k\oplus U_l$  is extending for simple modules by (1). Then  $U^i$  is almost  $\bigoplus_{j=1}^n U_j$ -injective for any  $i \in \{1, \dots, m\}$  since the condition in Theorem holds. Give a diagram:

Let  $p_i: \bigoplus_{i=1}^n U^i \to U^i$  be projections  $(i=1, \dots, m)$ . Consider the following diagrams for  $i=1, \dots, m$ :

$$(\ddagger-i) \qquad 0 \xrightarrow{i} L \xrightarrow{i} \bigoplus_{j=1}^{n} U_{j}$$
$$p_{i} \cdot f \downarrow \qquad \qquad U^{i}$$

If the first case occurs in all diagrams (#-i), let  $\hat{f}_i: \bigoplus_{j=1}^n U_j \to U^i$  with  $p_i \cdot f = \hat{f}_i \cdot i$ ,  $f = (\bigoplus_{i=1}^m \hat{f}_i) \cdot i$ , i.e. the first case occurs in the given diraagm. If the second case occurs in a diagram (#-r)  $(r \in \{1, \dots, m\})$ , let U' be a direct summand of  $\bigoplus_{j=1}^n U_j$ ,  $\pi: \bigoplus_{j=1}^n U_j \to U'$  be a projection and  $\hat{f}_r: U' \to U'$  be a homomorphism such that  $\pi \cdot i = \hat{f}_r \cdot p_r \cdot f$ , the second case occurs in the given diagram. Therefore  $\bigoplus_{i=1}^m U^i$  is almost  $\bigoplus_{i=1}^n U_j$ -injective.

 $(2) \Rightarrow (1)$ : Claim. For each uniform module U, U/Soc(U) is also uniform. First we show this claim. Let  $M_1$  and  $M_2$  be submodules of U with  $||M_i|| = 2$  (i=1, 2). Then Soc(U) is almost  $M_1$ - and  $M_2$ -injective but neither  $M_1$ -nor  $M_2$ -injective.  $M := M_1 \oplus M_2$  is extending for simple modules by (2) and Theorem. Let  $1_s: \text{Soc}(U) \Rightarrow \text{Soc}(U)$  be the identity map. There is an isomorphism  $f: M_1 \rightarrow M_2$  such that  $f|_{\text{Soc}(U)} = 1_s$  by [3], Corollary 8. Let  $1: U \rightarrow U$  and  $i_2: M_2 \rightarrow U$  be the identity map and the inclusion map, respectively. Put  $g: = 1|_{M_1}$   $-i_2 \cdot f: M_1 \to U.$  Since  $f|_{Soc(U)} = 1_s$ , g(Soc(U)) = 0. And so  $g(M_1) \subseteq Soc(U)$  for  $||M_1|| = 2$ .  $M_1 = 1(M_1) = (i_2 \cdot f + g)(M_1) \subseteq i_2 \cdot f(M_1) + g(M_1) \subseteq M_2 + Soc(U) = M_2$ . Hence  $M_1 = M_2$ , i.e. U/Soc(U) is uniform.

Let E be an injective indecomposable module. Since R is right artinian,  $J^{n}=0$  for some n. Hence E has the finite socle series:

$$0 = S_0 \subset S_1 \subset S_2 \subset \cdots \subset S_m = E$$

for some  $m \leq n$ , where  $S_i$  is the left annihilator of  $J^i$  for each *i*. Then apply inductively the above claim to this series to see that  $S_i/S_{i-1}$  is simple for each  $i \in \{1, \dots, m\}$ , whence the assertion follows.

EXAMPLE. There is an example which shows that the Azumaya's Theorem is not able to be extended without an additional condition.

Let K be a field and

$$R = \begin{pmatrix} K & 0 & K \\ & K & K \\ 0 & K \end{pmatrix}$$

Then,  $e_{33}R$  is almost  $e_{11}R$ - and  $e_{22}R$ -injective, but not almost  $e_{11}R \oplus e_{22}R$ -injective, where  $e_{kk}$  are matrix units.

ACKNOWLEDGEMENT. The auther would like to thank Prof. M. Harada for his useful advice.

## References

- [1] Y. Baba and M. Harada: On almost M-projectives and almost M-injectives, to appear.
- [2] M. Harada and A. Tozaki: Almost M-projectives and Nakayama rings, to appear.
- M. Harada and K. Oshiro: On extending property on direct sums of uniform modules, Osaka J. Math. 18 (1981), 767-785.
- [4] M. Harada: Uniserial rings and lifting properties, Osaka J. Math. 19 (1982), 217– 229.
- [5] M. Harada: Factor categories with applications to direct decomposition of modules, Lecture note on pure and appl. math. 88 (1983), Marcel Dekker, inc, New York and Basel.
- [6] B.J. Müller and M.A. Kamal: The structure of extending modules, to appear.
- B.J. Müller and S.T. Rizvi: Direct sum of indecomposable modules, Osaka J. Math. 21 (1984), 365-374.
- [8] K. Oshiro: Semiperfect modules and quaisi-semiperfect modules, Osaka J. Math. 20 (1983), 337-372.

Department of Mathematics Yamaguchi University Yoshida, Yamaguchi 753, Japan