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NOTE ON ALMOST M-INJECTIVES
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Recently, in [2], Harada and Tozaki defined ‘almost M-projectives’ which
are generalized from the concept ‘M-projectives’ due to Azumaya. In this
paper we shall define a dual concept ‘almost M-injectives’. In the forthcoming
paper [1], we will show several results dual to Harada and Tozaki’s ones above.
The purpose of this paper is to generalize the following Azumaya’s theorem
concerning to M-injectives: N is M- and M,-injective if and only if N is M,D
M,-injective for modules N, M, and M,, to a case of ‘almost M-injectives’.
An easy example shows that the theorem can not be modified as the same form.

Throughout this paper, R is an associative ring with identity. Every
module is a unitary right R-module. We always use 7, 4, and #* (k=1, 2, -+ or %)
to denote the inclusion maps. For modules M and N with NS M, we denote
by NcM and by N{@®M to mean that M is an essential extension of N and

that N is a direct summand of M, respectively. For modules M, N and a
homomorphism f: M—N, M(f) denotes {m-f(m)|meM}. For a module M,
unif. dim (M) and ||M]| denote its uinform dimension and composition length,
respectively. If for each simple submodule S of M there is a direct summand
M’ of M such that SCM’, we say that M is extending for simple modules.

For a sst T, | T'| denotes its cardinal number.
Our main result is the following.

Theorem. Let U, be a uniform module of finite composition length for k=
0,1,2,.-,n. Then the following two conditions are equivalent,

(1) U, is almost i‘@ U,-injective.
k=1

(2) U, is almost U,-injective for every k=1,2, .-, n and if Soc (Uy)=~
Soc(U,)~Soc(U)) (any k, 1€ {1, 2, -+, n}, k*k]) then (i) U, is Us-and U,-injective
or (it) U,D U, is extending for simple modules.

DrerFINITION. Let M and N be R-modules. We say that N is almost M-
injective if at least one of the following conditions holds for each submodule L
of M and each homomorphism f: L—N:

(1) There exists a homomorphism f: M—N such that f-i=f,
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(2) There exists a non-zero direct summand M, of M and a homomorphism

f: N—M, such that f-f=n-i, where z: M—M, is a projection of M onto M,.
In this definition, for a given diagram:

0 - L
(%) f l
N

we call that the first (respectively, second) case occurs in the diagram(x) if the
condition (1) (respectively, (2)) holds in the diagram.

Lemma A. Let U be a uniform module and X an indecomposable module.
If U is almost X-injective and ||U||=>||X||, U is X-injective.

Proof. Consider a diagram:

Assume that the second case occurs in this diagram. Let f: U—X be a homo-
morphism such that i=f-f. (Note that X is indecomposable.) Then f is a
monomorphism since U is a uniform module, and so ||U||<||X]||. We have
[|Ul|=||X]|| from the assumption ||U||=]||X||. Therefore f is an isomorphism.
Then f=f"1-i.

Lemma B. Let M and N be R-modules. Consider a diagram:

Z

- L - M
2
N

and put K:=Xer(f). Then if the second case occurs in this diagram, there is a
proper direct summand M' of M which contains K.
In particular, if KC M, then the first case occurs.

Proof. Since the second case happens, we have a direct decomposition M=
M'@M” and f: N—M’ for which the diagram:
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- M=M,®M”

P

is commutative. Then #'(K)=z"+i(K)=f-f(K)=0, and K S Ker(z')=M"{D
M. Since M'+0, M” is a proper direct summand.

Now we prepare for Lemma C below. Let N, M, and M, be modules, and
put M:=M,PM,. Consider a diagram:

- L
f l L =’ : projection
N

0 > L = M

M 2
N
From this diagram we induce the following for k=1, 2:
i :

0 > L, > M,

(z-k) f I Ly l
N

where L,:=LN M, Moreover when the first case occurs in both diagrams
(2-1) and (2-2) (let fi: My—>N be homomorphisms such that f|,,=f,-i for
k=1, 2), we shall consider the following for k=1, 2:

l‘le

0 > L* - M,
(3-%) l
fi

where, letting =,: M(=M,PM,)—M, be the projection, L*:=m,(L) and the
homomorphisms f% is defined as follows: Put f;: =f—-(§2‘_. FfemelL): L—N. Since
(LB L,)=0 (from the definition of f,), the canonical map f;: L/(L,GBLZ)»N is

induced. We let fi: L*>N be the composite map: L‘—Mt—uml—ip—l'—»L"/L,

= J2
~pataral o /(L& L)—"*—N.

Lemma C. Assume that N be almost M,- and M,-injective. Consider a



690 Y. BaBa

diagram (1) and induce the above diagrams. If the first case occurs in both dia-
grams (2-1) and (2-2) and does in either (3-1) or (3-2), then so does in the diagram
(D).

Proof. We say that the first case occurs in the diagram (3-1). Let fi:
M,—N be a homomorphism such that f{=f{-i*. The diagram (3-1) induces
the following commutative diagram:

0 > L - M,
p
L LI/ L,
\ (7,12)

L(L®Ly)
|7

where p is the canonical epimorphism.
Then, note that 7z, | ==,

f=f0+(gfk'”le)
=f{'il'(7’1|z.)+( gﬂ‘ﬂkh)
= (f{'il+ﬁ)'(”llL)+ﬂ'(”2l L)
= {(.f{'il+f:)'”1+f2‘7’2}'i-

Put f:=(fi+f) =+ fr-7, f is a2 homomorphism from M to N satisfying f=
F+i. So the first case occurs in the diagram (1).

Corollary 1. [Azumaya] Let N, M, and M, be modules. If N is M,- and
M,-injective, then N is M, M,-injective.

Corollary 2. Let N, M, and M, be modules, and let N be almost M,- and
M,-injective. Consider a diagram:

0 > > M:=M1®M2

L
() )
N
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and put K:=XKer(f). Then if K cM, the first case occurs in the diagram (*).

Proof. Induce the diagrams (2-k) (k=1, 2) from the diagram (*). Since
KgM and KQLQM, L?M. And Kel'(f | L,,)=Kn L],CMn Lk=Lk=Mh n L

CM,NM=M,. Therefore Lemma B shows that the first case occurs in the

diagrams (2-k). So the diagrams (3-&) for k=1, 1 are induced. Since L,SKer
(f#) and L,cM,, Ker(fi)CM,. Therefore the first case also occurs in these

diagrams. Thus a desired homomorphism exists in the diagram (*) from Lemma
C.

Proof of Theorem. (1)=>(2): The first condition of (1) holds by [1], Lemma
9. We shall show the remainder condition. To show this, assume that Soc
(Uy)=~=Soc(U,))~Soc(U,) and let U, be not U,-injective. Let us find a direct
decomposition U, U,=V, PV, such that (Soc(U),)) (g) SV, and V,=+0 for each
isomorphism g: Soc(U,)—Soc(U,). Since V| is a uniform module, this means
that U, U, is extending for simple modules.

Take an isomorphism g’: Soc(U,)—>Soc(U,) and consider the following di-
agram:

0 ————  Soc (U)®Soc (U,) — U,@U,
(3%) fy
U,

where f(s;+s,)=g'(s,—g(sy)) for any s, in Soc(U,) (k=1,2). Then note that
Ker(f)=(Soc(10)) (8)-

The assumption that U, is almost >} U,-injective induces that U, is almost
k=1

U,P U,-injective by [1], Lemma 9. If the first case occurs in this diagram, let
f: U;®U,~ U, be a homomorphism such that f=f-7, then f|y,: Ui—U, is not a
monomorphism since ||U,||>||U,|| by Lemma A and the assumption that U, is
not U,-injective. Therefore f(Soc(U,))=F(Soc(U,))=0. But, by the definition
of f, we see f(Soc(U,))=#+0. This is a contradiction. So the second case occurs
in the diagram (3¥). Hence, by Lemma B, we have a direct decomposition
U@ U,=V,V, such that (Soc(U,)) (g)SV, and V,=*0.

(2)=(1): We shall show this implication by induction on n. Take a dia-
gram:
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0 >

> U:=é@Ut

|
(%) l
1)

U

We may assume that LC U, since, otherwise, there is a submodule L’ of U such

that LL'CU. Then consider the following diagram:
0

l

KoL

l

00— LpL’ ’ - U
7l

Us

where the homomorphism f: LL'—U, is defined as f.(x-{—x’)~=f(x) for any
x¥€L and x'€L’. If the first case occurs in this diagram, let f: U=U, be a
homomorphism such that f=f-i', then f-i=f- ('] )=f|.=f. The first case also
occurs in the original diagram (3¢). On the other hand, if the second case occurs
in this diagram, let 0 U'<@U, p: U—U’ be a projection and f:~Uo—+ U’ be a
homomorphism such thatp-i’:f-f; then p-i=p-(¢'| L):f-(fh):f-f. The sec-
ond case also occurs in the diagram (3%).

Now assume that the first case does not occurs in this diagram. And we

will show that the second case occurs in it.
If KC U, the first case occurs in the diagram (3¢) by Corollary 2, a contra-

diction. Hence K ¢ U. Then we may assume that KN Soc(U;)=0. Since U

is a finite direct sum of uniform modules, we can take a maximal | {k€ {2, 3, ---,
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n} | Soc(U,)SK} | among | {k€ {2, 3, «--,n} | Soc(Ui)SK}| related to the di-
rect decomposition of U into uniform modules U} such that KN Soc(U{)=0.

Now we denote its direct docomposition by ‘E:_‘I.EB U,.

Since KN Soc(U;)=0, there is a homomorphism g: K*—U, with K=K*
(g) where Uy: =‘Z:;GB Uy, wy: U(=U,@B Uy)— Uy is the projection and K*: =,
(K). Put K;:=KNUs. Then we have the following two cases:

case A: K*C' Uy .
case B: K¢ Uy.

Note that Soc(U,)SK* for any k= 4{2, 3, -+, n}. Because, if Soc(U,)<E
K*, then f(Soc(U,)®Soc(U,)) is a direct sum of two simple submodules of U,,
a contradiction. Therefore, if Soc(U,) <% Ky for some k€ {2, 3, -+, n}, the socle
of K*|Ky, which is isomorphic to Soc(U,) via g, is (Soc(U;) D Ky)/K«(~Soc
(Up)). So Soc(U;)=Soc(U,). On the other hand, f induces Soc(U;)=~Soc(U,)
since K N Soc(U;)=0. Hence Soc(U,)=~Soc(U,)~Soc(U,).

In case B, if Soc(U,)<% K, we have either the following two properties by
assumption:

{2-i> U, is U;- and U,-injecitve.

{2y U,@U, is extending for simple modules.

Assume that {2-ii> occurs. We have a direct decomposition U,Pp U,=V,DV,
such that V,?(SOC(UZ)) (&lsoetwp). Then V=0 and V;NK=0. Because, if

VN K=*0, unif. dim((V,®V,) N K)=2 since (Soc(U,))(gl s.cwp) S K. But UN
K=0 induces unif. dim((U;U,) N K)=<1, a contradiction. On the other hand,
Soc(V,)=(Soc(U,)) (&l seetwp) SK. Therefore, we have a new direct decompo-

sition U=V,® Vzea(gea U,) such that KN Soc(V;)=0. Then, since Soc(U,) <

K and Soc(V,)<S K, the existence of this direct decomposition gives us a con-
tradiction to the maximality of |{k€{2, 3, ---, n} | Soc(U,)<=K}|. Conse-
quently, if Soc(U,) % K, <2-i) only occurs, i.e. U, is U;- and U,-injective.
Taking the same argument for Uj, U,, +++, U, in order, we may assume that
U, is U;-, U,-, -+ and U,,-injective and Soc(U,,+,), Soc(U,y,), +++ and Soc(U,) <
K for some m>2. (Since we are considering the case B, m>2.) Put M,:=U,P
U,b-®U, and M,:=U, U, P DU, and consider the diagrams (2-1),
(2-2) and (3-1) with respect to the direct decomposition U=M;PM,. Then,
using Corollary 1 inductively, the first case occurs in both diagrams (2-1) and
(3-1). On the other hand, in the diagram (2-2), Ker(f|zna,)=KNM,CM,

since Soc(M,)= >} Soc(U,)S K. So the second case does not occur in the
k=m+1
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diagram (2-2) by Lemma B. The first case occurs in it since U, is almost
M,-injective by the inductive assumption. Then the first case occurs in the di-
agram (%) by Lemma C, a contradiction.

In case A. Let =,: U(=§€B U,;)— U, be the projection and put K':=m=,
(K). For each direct decomposition of U into uniform modules U} in which
the caes A occurs and U{N K=0, we obtain such K’*. Since ||K"Y|| is finite, we
can take a minimal ||K|| among ||K"|| related to the direct decomposition E”I]EB
U} and we denote its direct decomposition by EEB U,

The special case K'=0 may occur. We shall first consider this case. From
K'=0 it follows that KC Uy. There are two monomorphisms: L,P(Ly/K)

induced from f U
maucecirom/, v,

>na’tural LK S
L,#0, and so Ly=K. Put L':=m=(L). since Ker(n,|,)=Li=K=ZKer(f),
there is a homomorphism f’: L' U, such that f=f"+(z,|;). So consider the
following diagram:

and U, is uniform. Since LC U and hence

=)

From the assumption that Uj is almost U,-injective, the first case or the second
occurs in this diagram. Assume that the first case occurs and let f': U,—U,
be a homomorphism such that f'=f"-&*, put f: =f"-z,: U—U,, then f=f"+(m,|.)
=f"i'(m,|)=Ff +m+i=f-1 in the diagram (%), i.e. the first case also occurs
in the diagram (3%), a contradiction. So the second case occurs. Let f': Uy—>
U, be a homomorphism such that i'=f"-f’. Then f'-f=F"f"+(m,| .)=¢" (| 1)
=m,+1 in the diagram (3%), i.e. the second case also occurs in the diagram (3%).

In the case K'+0. Consider the diagrams (2-1), (2-%) and (3-%) from the
diagram (%) with respect to the direct decomposition U= U,P Us.

[Claim. 1] The first case occurs in the diagram (2-%). Otherwise the
second case occurs in it by inductive assumption. So there is a proepr direct
summand of Uy which contains K; by Lemma B, i.e. K*C‘l: Uy, since Ker(f|.,)

=K. Then the case B occurs with respect to the direct decomposition U=U,
@ Uy, a contradiction.

[Claim. 2] The first case occurs in the diagram (3-%). Otherwise the
second case occurs in it by inductive assumption. So there is a proper direct
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summand of U which contains Ly by Lemma B, i.e. Lyd Uy, since Ly Ker
(f%)-So K*q: Uy for Ky S L,. Therefore the case B also occurs, a contradiction.

Thus, we only have either the following two cases:
i) The first case occurs in the diagrams (2-1), (2-%) and (3-%).
ii) The second case occurs in the diagram (2-1) and the first case does in the
diagram (2—).

In case i), the first case occurs in the diagram (3) by Lemma C, a contra-
diction. So we consider the case ii).

Since the second case occurs in the diagram (2-1), there exists a homomo-
rphism p: Uy—U, such that ,=p-(f|.,), i.e. p+(f|.,)=1;,- Since the first case
occurs in the diagram (2-x), there exists a homomorphism ¢: Ug—U, such
that f|;,=q i, i-e. ¢l ,,.=f|... Putg’:=p-q: Uy—U, and X:=g"'(Soc(U))).
Then Uy(—g')2X(glx). Because, since x+g(x)K for any x X, 0=f(x+g
(x)=f(x)+f-g(x), i.e. f(x)=—f-g(x). (Note that Lg U induces Soc(U,)<L,.

Sog(x)€ L, and x& L since x+g(x) €K S L. Hence f-g(x) and f(x) are defined.)

Therefore g'(x) = p-q(x)
=p-f(*) (qle.=1lz)
=p-(—f-&(x))
= —£(%) (2 (flz) = 11)

Hence Uy(—g')2X(glx). Then Uy(—g")2X (gl x)2Kx(glx,)=Kj since X 2
K. (We are considering the case K'+0. So g=0. And we have X 2Ky.)

Now we consider the direct decomposition U= Uﬁ}(g@ U(—¢'lv,)). Put
Ki:=KNUx(—g'). Then K4i2Ky since U*(——g’)QK_*. So K,’kg Ux(—£")
for K*g U,. Hence the case A occurs in this direct decomposition. Let z{:
U(=U,® Ux(—g'))— U, be the projection and put K’ :=={(K). Then ||K"||
<|IK™], since K4=2Ky induces || Kil|>||Kxll and (||K]|=) [|K[|+[|K«l[=[1K" ]|

+[IK%ll. Therefore the direct decomposition U= U, EB(ZGB U(—¢'lv,) give
us a contradiction to the minimality of ||K"||.

Asa consequence, taking an adequate direct decomposition of U, the special
case K'=0 occurs in the case A.

DEerFINITION. Let R be a right artinian ring. We say that R is right Co-
Nakayama if every indecomposable injective right R-module E is uniserial (i.e.
E has a unique composition series.).

Corollary. The following two conditions are equivalent:
(1) R s right Co-Nakayama.



696 Y. Basa

(2) For any uniform modules Ut and U(i=1, -, m; j=1, -+, n) of finite com-
position length, DU is almost DU ~injective if U' is almost U;-injective for all ¢
i=1 j=1

and j. (i.e. The almost injectivity among uniform modules of finite composition
length is closed under finite direct sums.)

Proof. (1)=(2): If Soc(U,)=~Soc(U,), UDU, is extending for simple
modules by (1). Then U’ is almost éU,--injective for any i {1, -+, m} since

the condition in Theorem holds. Give a diagram:

0——> L —1 » éBU

7|

n

@ U’
i=1
Let p;: é Ui— U? be projections (i=1, -+, m). Consider the following diagrams
§i=1

for i=1, +--, m:

”n

@ U,

=1

00— L

(#-i) i f l

Ui
If the first case occurs in all diagrams (#-i), let f;: EB U;— Ut with p;-f=F;i,
f—(@ f:)+1, i.e. the first case occurs in the given dlraagm If the second case

occurs in a diagram (§-r) (r& {1, -+, m}), let U’ be a direct summand of GB U;,

7: GBU—->U’ be a projection and f U'— U’ be a homomorphism such that

ji=1

m+i=f,p,f, the second case occurs in the given diagram. Therefore EBU' is
i=1

almost & Uj-injective.
ji=1

(2)=(1): Claim. For each uniform module U, U/Soc(U) is also uniform.

First we show this claim. Let M, and M, be submodules of U with ||M]|
=2 (i=1,2). Then Soc(U) is almost M,- and M,-injective but neither M,-nor
M,-injective. M:=M,PM, is extending for simple modules by (2) and Theo-
rem. Let 1,: Soc(U)—>Soc(U) be the identity map. There is an isomorphism
f: Mi—M, such that f|g =1, by [3], Corollary 8. Let 1: U—U and 7,:
M,— U be the identity map and the inclusion map, respectively. Put g: =1],,
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—gpof: M7= U. Since f|g =1, g(Soc(U))=0. And so g(M,)SSoc(U) for
IMil|=2. M,=1(M,)=(f+8) (M) S i, (M) +g (M) S M+ Soc(U) = M,.
Hence M,=M,, i.e. U[Soc(U) is uniform.

Let E be an injective indecomposable module. Since R is right artinian,
J"=0 for some n. Hence E has the finite socle series:

0= S,cS8,cS,c:--cS,,=E

for some m=<mn, where S; is the left annihilator of J* for each . Then apply
inductively the above claim to this series to see that S;/S;_, is simple for each
ie {1, ---, m}, whence the assertion follows.

ExampLE. There is an example which shows that the Azumaya’s Theorem
is not able to be extended without an additional condition.
Let K be a field and

'K 0 K
R = KK
0 K,

Then, e;R is almost ¢, R- and ep,R-injective, but not almost e;RPe,R-injec-
tive, where ¢, are matrix units.
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