NOTE ON ALMOST M-INJECTIVES

Yоsнitомо BABA

(Received April 30, 1988)

Recently, in [2], Harada and Tozaki defined 'almost M-projectives' which are generalized from the concept ' M-projectives' due to Azumaya. In this paper we shall define a dual concept 'almost M-injectives'. In the forthcoming paper [1], we will show several results dual to Harada and Tozaki's ones above. The purpose of this paper is to generalize the following Azumaya's theorem concerning to M-injectives: N is M_{1} - and M_{2}-injective if and only if N is $M_{1} \oplus$ M_{2}-injective for modules N, M_{1} and M_{2}, to a case of 'almost M-injectives'. An easy example shows that the theorem can not be modified as the same form.

Throughout this paper, R is an associative ring with identity. Every module is a unitary right R-module. We always use i, i_{k} and $i^{k}(k=1,2, \cdots$ or $*)$ to denote the inclusion maps. For modules M and N with $N \subseteq M$, we denote by $N \subset M$ and by $N\langle\oplus M$ to mean that M is an essential extension of N and that N is a direct summand of M, respectively. For modules M, N and a homomorphism $f: M \rightarrow N, M(f)$ denotes $\{m+f(m) \mid m \in M\}$. For a module M, unif. $\operatorname{dim}(M)$ and $\|M\|$ denote its uinform dimension and composition length, respectively. If for each simple submodule S of M there is a direct summand M^{\prime} of M such that $S \subset M^{\prime}$, we say that M is extending for simple modules. For a sst $T,|T|$ denotes its cardinal number.

Our main result is the following.
Theorem. Let U_{k} be a uniform module of finite composition length for $k=$ $0,1,2, \cdots, n$. Then the following two conditions are equivalent;
(1) U_{0} is almost $\sum_{k=1}^{n} \oplus U_{k}$-injective.
(2) U_{0} is almost U_{k}-injective for every $k=1,2, \cdots, n$ and if Soc $\left(U_{0}\right) \approx$ $\operatorname{Soc}\left(U_{k}\right) \approx \operatorname{Soc}\left(U_{l}\right)$ (any $k, l \in\{1,2, \cdots, n\}, k \neq l$) then (i) U_{0} is U_{k}-and U_{l}-injective or (ii) $U_{k} \oplus U_{l}$ is extending for simple modules.

Definition. Let M and N be R-modules. We say that N is almost M injective if at least one of the following conditions holds for each submodule L of M and each homomorphism $f: L \rightarrow N$:
(1) There exists a homomorphism $f: M \rightarrow N$ such that $\tilde{f} \cdot i=f$,
(2) There exists a non-zero direct summand M_{1} of M and a homomorphism $f: N \rightarrow M_{1}$ such that $\tilde{f} \cdot f=\pi \cdot i$, where $\pi: M \rightarrow M_{1}$ is a projection of M onto M_{1}.

In this definition, for a given diagram:

is commutative. Then $\pi^{\prime}(K)=\pi^{\prime} \cdot i(K)=\hat{f} \cdot f(K)=0$, and $K \subseteq \operatorname{Ker}\left(\pi^{\prime}\right)=M^{\prime \prime}\langle\oplus$ M. Since $M^{\prime} \neq 0, M^{\prime \prime}$ is a proper direct summand.

Now we prepare for Lemma C below. Let N, M_{1} and M_{2} be modules, and put $M:=M_{1} \oplus M_{2}$. Consider a diagram:

From this diagram we induce the following for $k=1,2$:

$$
0 \longrightarrow L_{k} \longrightarrow M_{k}
$$

where $L_{k}:=L \cap M_{k}$. Moreover when the first case occurs in both diagrams (2-1) and (2-2) (let $\tilde{f}_{k}: M_{k} \rightarrow N$ be homomorphisms such that $\left.f\right|_{L_{k}}=\hat{f}_{k} \cdot i_{k}$ for $k=1,2$), we shall consider the following for $k=1,2$:

where, letting $\pi_{k}: M\left(=M_{1} \oplus M_{2}\right) \rightarrow M_{k}$ be the projection, $L^{k}:=\pi_{k}(L)$ and the homomorphisms f_{k}^{\prime} is defined as follows: Put $f_{0}:=f-\left(\left.\sum_{k=1}^{2} f_{k} \cdot \pi_{k}\right|_{L}\right): L \rightarrow N$. Since $f_{0}\left(L_{1} \oplus L_{2}\right)=0$ (from the definition of $\left.\tilde{f}_{k}\right)$, the canonical map $\bar{f}_{0}: L /\left(L_{1} \oplus L_{2}\right) \rightarrow N$ is induced. We let $f_{k}^{\prime}: L^{k} \rightarrow N$ be the composite map: $L^{k} \xrightarrow{\text { natural epi. }} L^{k} / L_{k}$ $\underset{\text { natural iso. }}{\approx} L /\left(L_{1} \oplus L_{2}\right) \xrightarrow{f_{0}} N$.

Lemma C. Assume that N be almost M_{1} - and M_{2}-injective. Consider a
diagram (1) and induce the above diagrams. If the first case occurs in both diagrams (2-1) and (2-2) and does in either (3-1) or (3-2), then so does in the diagram (1).

Proof. We say that the first case occurs in the diagram (3-1). Let \tilde{f}_{1}^{\prime} : $M_{1} \rightarrow N$ be a homomorphism such that $f_{1}^{\prime}=\tilde{f}_{1}^{\prime} \cdot i^{1}$. The diagram (3-1) induces the following commutative diagram:

where ρ is the canonical epimorphism.
Then, note that $\left.\pi_{k}\right|_{L}=\pi_{k} \cdot i$,

$$
\begin{aligned}
f & =f_{0}+\left(\left.\sum_{k=1}^{2} f_{k} \cdot \pi_{k}\right|_{L}\right) \\
& =\tilde{f}_{1}^{\prime} \cdot i^{1} \cdot\left(\left.\pi_{1}\right|_{L}\right)+\left(\left.\sum_{k=1}^{2} \tilde{f}_{k} \cdot \pi_{k}\right|_{L}\right) \\
& =\left(\tilde{f}_{1}^{\prime} \cdot i^{1}+\tilde{f}_{1}\right) \cdot\left(\left.\pi_{1}\right|_{L}\right)+\widehat{f}_{2} \cdot\left(\left.\pi_{2}\right|_{L}\right) \\
& =\left\{\left(\tilde{f}_{1}^{\prime} \cdot i^{1}+\tilde{f}_{1}\right) \cdot \pi_{1}+\hat{f}_{2} \cdot \pi_{2}\right\} \cdot i .
\end{aligned}
$$

Put $\tilde{f}:=\left(\tilde{f}_{1}^{\prime}+\tilde{f}_{1}\right) \cdot \pi_{1}+\tilde{f}_{2} \cdot \pi_{2} . \tilde{f}$ is a homomorphism from M to N satisfying $f=$ $f \cdot i$. So the first case occurs in the diagram (1).

Corollary 1. [Azumaya] Let N, M_{1} and M_{2} be modules. If N is M_{1} - and M_{2}-injective, then N is $M_{1} \oplus M_{2}$-injective.

Corollary 2. Let N, M_{1} and M_{2} be modules, and let N be almost M_{1} - and M_{2}-injective. Consider a diagram:
(*)

${ }^{f} \downarrow$
N
and put $K:=\operatorname{Ker}(f)$. Then if $K \subset M$, the first case occurs in the diagram (*).
Proof. Induce the diagrams $(2-k)(k=1,2)$ from the diagram $(*)$. Since $K \subset M$ and $K \subseteq L \subseteq M, L \subset M$. And $\operatorname{Ker}\left(\left.f\right|_{L_{k}}\right)=K \cap L_{k} \subset M \cap L_{k}=L_{k}=M_{k} \cap L$ $\subset_{\cdot} M_{k} \cap M=M_{k}$. Therefore Lemma B shows that the first case occurs in the diagrams (2-k). So the diagrams (3-k) for $k=1,1$ are induced. Since $L_{k} \subseteq$ Ker $\left(f_{k}^{\prime}\right)$ and $L_{k} \subset M_{k}, \operatorname{Ker}\left(f_{k}^{\prime}\right) \subset M_{k}$. Therefore the first case also occurs in these diagrams. Thus a desired homomorphism exists in the diagram (*) from Lemma C.

Proof of Theorem. (1) $\Rightarrow(2)$: The first condition of (1) holds by [1], Lemma 9. We shall show the remainder condition. To show this, assume that Soc $\left(U_{0}\right) \approx \operatorname{Soc}\left(U_{1}\right) \approx \operatorname{Soc}\left(U_{2}\right)$ and let U_{0} be not U_{1}-injective. Let us find a direct decomposition $U_{1} \oplus U_{2}=V_{1} \oplus V_{2}$ such that $\left(\operatorname{Soc}\left(U_{1}\right)\right)(g) \subseteq V_{1}$ and $V_{2} \neq 0$ for each isomorphism $g: \operatorname{Soc}\left(U_{1}\right) \rightarrow \operatorname{Soc}\left(U_{2}\right)$. Since V_{1} is a uniform module, this means that $U_{1} \oplus U_{2}$ is extending for simple modules.

Take an isomorphism $g^{\prime}: \operatorname{Soc}\left(U_{2}\right) \rightarrow \operatorname{Soc}\left(U_{0}\right)$ and consider the following diagram:

where $f\left(s_{1}+s_{2}\right)=g^{\prime}\left(s_{2}-g\left(s_{1}\right)\right)$ for any s_{k} in $\operatorname{Soc}\left(U_{k}\right)(k=1,2)$. Then note that $\operatorname{Ker}(f)=\left(\operatorname{Soc}\left(U_{1}\right)\right)(g)$.

The assumption that U_{0} is almost $\sum_{k=1}^{n} \oplus U_{k}$-injective induces that U_{0} is almost $U_{1} \oplus U_{2}$-injective by [1], Lemma 9. If the first case occurs in this diagram, let $\tilde{f}: U_{1} \oplus U_{2} \rightarrow U_{0}$ be a homomorphism such that $f=\tilde{f} \cdot i$, then $\left.\bar{f}\right|_{U_{1}}: U_{1} \rightarrow U_{0}$ is not a monomorphism since $\left\|U_{1}\right\|>\left\|U_{0}\right\|$ by Lemma A and the assumption that U_{0} is not U_{1}-injective. Therefore $f\left(\operatorname{Soc}\left(U_{1}\right)\right)=f\left(\operatorname{Soc}\left(U_{1}\right)\right)=0$. But, by the definition of f, we see $f\left(\operatorname{Soc}\left(U_{1}\right)\right) \neq 0$. This is a contradiction. So the second case occurs in the diagram ($※$). Hence, by Lemma B , we have a direct decomposition $U_{1} \oplus U_{2}=V_{1} \oplus V_{2}$ such that $\left(\operatorname{Soc}\left(U_{1}\right)\right)(g) \subseteq V_{1}$ and $V_{2} \neq 0$.
$(2) \Rightarrow(1)$: We shall show this implication by induction on n. Take a diagram:
(\%)

$$
\begin{aligned}
& U_{0}
\end{aligned}
$$

We may assume that $L \subset U$, since, otherwise, there is a submodule L^{\prime} of U such that $L \oplus L^{\prime} \subseteq U$. Then consider the following diagram:

where the homomorphism $\dot{f:} L \oplus L^{\prime} \rightarrow U_{0}$ is defined as $\dot{f\left(x+x^{\prime}\right)}=f(x)$ for any $x \in L$ and $x^{\prime} \in L^{\prime}$. If the first case occurs in this diagram, let $\dot{f}: U \rightarrow U_{0}$ be a homomorphism such that $\dot{f}=\tilde{f} \cdot i^{\prime}$, then $\tilde{f} \cdot i=\tilde{f} \cdot\left(\left.i^{\prime}\right|_{L}\right)=\left.\dot{f}\right|_{L}=f$. The first case also occurs in the original diagram (\because). On the other hand, if the second case occurs in this diagram, let $0 \neq U^{\prime}\left\langle\oplus U, p: U \rightarrow U^{\prime}\right.$ be a projection and $\tilde{\tilde{f}}: U_{0} \rightarrow U^{\prime}$ be a homomorphism such that $p \cdot i^{\prime}=\tilde{\dot{f}} \cdot \dot{f}$, then $p \cdot i=p \cdot\left(\left.i^{\prime}\right|_{L}\right)=\tilde{\tilde{f}} \cdot\left(\left.\dot{f}\right|_{L}\right)=\tilde{f} \cdot f$. The second case also occurs in the diagram (※).

Now assume that the first case does not occurs in this diagram. And we will show that the second case occurs in it.

If $K \subset U$, the first case occurs in the diagram ($(\%)$ by Corollary 2 , a contradiction. Hence $K \nsubseteq U$. Then we may assume that $K \cap \operatorname{Soc}\left(U_{1}\right)=0$. Since U is a finite direct sum of uniform modules, we can take a maximal $\mid\{k \in\{2,3, \cdots$,
$\left.n\} \mid \operatorname{Soc}\left(U_{k}\right) \subseteq K\right\} \mid$ among $\left|\left\{k \in\{2,3, \cdots, n\} \mid \operatorname{Soc}\left(U_{k}^{\prime}\right) \subseteq K\right\}\right|$ related to the direct decomposition of U into uniform modules U_{k}^{\prime} such that $K \cap \operatorname{Soc}\left(U_{1}^{\prime}\right)=0$.
Now we denote its direct docomposition by $\sum_{k=1}^{n} \oplus U_{k}$.
Since $K \cap \operatorname{Soc}\left(U_{1}\right)=0$, there is a homomorphism $g: K^{*} \rightarrow U_{1}$ with $K=K^{*}$ (g) where $U_{*}:=\sum_{k=2}^{n} \oplus U_{k}, \pi_{*}: U\left(=U_{1} \oplus U_{*}\right) \rightarrow U_{*}$ is the projection and $K^{*}:=\pi_{*}$ (K). Put $K_{*}:=K \cap U_{*}$. Then we have the following two cases:

case A: $K_{*} \subset U_{*}$.
case B: $K_{*} \nsubseteq U_{*}$.

Note that $\operatorname{Soc}\left(U_{k}\right) \subseteq K^{*}$ for any $k \in\{2,3, \cdots, n\}$. Because, if $\operatorname{Soc}\left(U_{k}\right) \nsubseteq$ K^{*}, then $f\left(\operatorname{Soc}\left(U_{1}\right) \oplus \operatorname{Soc}\left(U_{k}\right)\right)$ is a direct sum of two simple submodules of U_{0}, a contradiction. Therefore, if $\operatorname{Soc}\left(U_{k}\right) \subseteq K_{*}$ for some $k \in\{2,3, \cdots, n\}$, the socle of K^{*} / K_{*}, which is isomorphic to $\operatorname{Soc}\left(U_{1}\right)$ via g, is $\left(\operatorname{Soc}\left(U_{k}\right) \oplus K_{*}\right) / K_{*}(\approx \operatorname{Soc}$ $\left(U_{k}\right)$). $\operatorname{SoSoc}\left(U_{1}\right) \approx \operatorname{Soc}\left(U_{k}\right)$. On the other hand, f induces $\operatorname{Soc}\left(U_{1}\right) \approx \operatorname{Soc}\left(U_{0}\right)$ since $K \cap \operatorname{Soc}\left(U_{1}\right)=0$. Hence $\operatorname{Soc}\left(U_{0}\right) \approx \operatorname{Soc}\left(U_{1}\right) \approx \operatorname{Soc}\left(U_{k}\right)$.

In case B , if $\operatorname{Soc}\left(U_{2}\right) \leftrightarrows K$, we have either the following two properties by assumption:
$\langle 2-\mathrm{i}\rangle \quad U_{0}$ is U_{1} - and U_{2}-injecitve.
$\left\langle 2\right.$-ii〉 $\quad U_{1} \oplus U_{2}$ is extending for simple modules.
Assume that $\left\langle 2\right.$-ii〉 occurs. We have a direct decomposition $U_{1} \oplus U_{2}=V_{1} \oplus V_{2}$ such that $V_{2} ?\left(\operatorname{Soc}\left(U_{2}\right)\right)\left(\left.g\right|_{\operatorname{Soc}\left(U_{2}\right)}\right)$. Then $V_{1} \neq 0$ and $V_{1} \cap K=0$. Because, if $V_{1} \cap K \neq 0$, unif. $\operatorname{dim}\left(\left(V_{1} \oplus V_{2}\right) \cap K\right)=2$ since $\left(\operatorname{Soc}\left(U_{2}\right)\right)\left(\left.g\right|_{\text {Soc }\left(U_{2}\right)}\right) \subseteq K$. But $U_{1} \cap$ $K=0$ induces unif. $\operatorname{dim}\left(\left(U_{1} \oplus U_{2}\right) \cap K\right) \leqq 1$, a contradiction. On the other hand, $\operatorname{Soc}\left(V_{2}\right)=\left(\operatorname{Soc}\left(U_{2}\right)\right)\left(\left.g\right|_{\operatorname{Soc}^{\prime}\left(U_{2}\right)}\right) \subseteq K$. Therefore, we have a new direct decomposition $U=V_{1} \oplus V_{2} \oplus\left(\sum_{k=3}^{n} \oplus U_{k}\right)$ such that $K \cap \operatorname{Soc}\left(V_{1}\right)=0$. Then, since $\operatorname{Soc}\left(U_{2}\right) \nsubseteq$ K and $\operatorname{Soc}\left(V_{2}\right) \subseteq K$, the existence of this direct decomposition gives us a contradiction to the maximality of $\left|\left\{k \in\{2,3, \cdots, n\} \mid \operatorname{Soc}\left(U_{k}\right) \subseteq K\right\}\right|$. Consequently, if $\operatorname{Soc}\left(U_{2}\right) \ddagger K,\langle 2-\mathrm{i}\rangle$ only occurs, i.e. U_{0} is U_{1} - and U_{2}-injective.

Taking the same argument for $U_{3}, U_{4}, \cdots, U_{n}$ in order, we may assume that U_{0} is $U_{1^{-}}, U_{2^{-}}, \cdots$ and U_{m}-injective and $\operatorname{Soc}\left(U_{m+1}\right), \operatorname{Soc}\left(U_{m+2}\right), \cdots$ and $\operatorname{Soc}\left(U_{n}\right) \subseteq$ K for some $m \geq 2$. (Since we are considering the case $\mathrm{B}, m \geq 2$.) Put $M_{1}:=U_{1} \oplus$ $U_{2} \oplus \cdots \oplus U_{m}$ and $M_{2}:=U_{m+1} \oplus U_{m+1} \oplus \cdots \oplus U_{n}$ and consider the diagrams (2-1), (2-2) and (3-1) with respect to the direct decomposition $U=M_{1} \oplus M_{2}$. Then, using Corollary 1 inductively, the first case occurs in both diagrams (2-1) and (3-1). On the other hand, in the diagram (2-2), $\operatorname{Ker}\left(\left.f\right|_{L \cap M_{2}}\right)=K \cap M_{2} \subset M_{2}$ since $\operatorname{Soc}\left(M_{2}\right)=\sum_{k=m+1}^{n} \operatorname{Soc}\left(U_{k}\right) \subseteq K_{*}$. So the second case does not occur in the
diagram (2-2) by Lemma B. The first case occurs in it since U_{0} is almost M_{2}-injective by the inductive assumption. Then the first case occurs in the diagram (\because) by Lemma C, a contradiction.

In case A. Let $\pi_{1}: U\left(=\sum_{k=1}^{n} \oplus U_{k}\right) \rightarrow U_{1}$ be the projection and put $K^{1}:=\pi_{1}$ (K). For each direct decomposition of U into uniform modules U_{k}^{\prime} in which the caes A occurs and $U_{1}^{\prime} \cap K=0$, we obtain such $K^{\prime 1}$. Since $\left\|K^{\prime 1}\right\|$ is finite, we can take a minimal $\left\|K^{1}\right\|$ among $\left\|K^{\prime}\right\|$ related to the direct decomposition $\sum_{k=1}^{n} \oplus$ U_{k}^{\prime} and we denote its direct decomposition by $\sum_{k=1}^{n} \oplus U_{k}$.

The special case $K^{1}=0$ may occur. We shall first consider this case. From $K^{1}=0$ it follows that $K \subseteq U_{*}$. There are two monomorphisms: $L_{1} \oplus\left(L_{*} / K\right)$ $\rangle \xrightarrow{\text { natural }} L / K\rangle \xrightarrow{\text { induced from } f} U_{0}$ and U_{0} is uniform. Since $L \subset U$ and hence $L_{1} \neq 0$, and so $L_{*}=K$. Put $L^{1}:=\pi_{1}(L)$. since $\operatorname{Ker}\left(\left.\pi_{1}\right|_{L}\right)=L_{*}=K=\operatorname{Ker}(f)$, there is a homomorphism $f^{\prime}: L^{1} \rightarrow U_{0}$ such that $f=f^{\prime} \cdot\left(\left.\pi_{1}\right|_{L}\right)$. So consider the following diagram:

From the assumption that U_{0} is almost U_{1}-injective, the first case or the second occurs in this diagram. Assume that the first case occurs and let $\tilde{f}^{\prime}: U_{1} \rightarrow U_{0}$ be a homomorphism such that $f^{\prime}=\tilde{f}^{\prime} \cdot i^{1}$, put $\tilde{f}:=\tilde{f}^{\prime} \cdot \pi_{1}: U \rightarrow U_{0}$, then $f=f^{\prime} \cdot\left(\left.\pi_{1}\right|_{L}\right)$ $=\tilde{f}^{\prime} \cdot i^{1} \cdot\left(\left.\pi_{1}\right|_{L}\right)=\tilde{f}^{\prime} \cdot \pi_{1} \cdot i=\tilde{f} \cdot i$ in the diagram ($($), i.e. the first case also occurs in the diagram ($\left(\begin{array}{l}\text {) , a contradiction. So the second case occurs. Let } \tilde{f}^{\prime}: U_{0} \rightarrow\end{array}\right.$ U_{1} be a homomorphism such that $i^{1}=\tilde{f}^{\prime} \cdot f^{\prime}$. Then $\tilde{f}^{\prime} \cdot f=\tilde{f}^{\prime} \cdot f^{\prime} \cdot\left(\left.\pi_{1}\right|_{L}\right)=i^{1} \cdot\left(\left.\pi_{1}\right|_{L}\right)$ $=\pi_{1} \cdot i$ in the diagram (() , i.e. the second case also occurs in the diagram ($(\%)$.

In the case $K^{1} \neq 0$. Consider the diagrams (2-1), (2-*) and (3-*) from the

[Claim. 1] The first case occurs in the diagram (2-*). Otherwise the second case occurs in it by inductive assumption. So there is a proepr direct summand of U_{*} which contains K_{*} by Lemma B, i.e. $K_{*} \not \overbrace{e} U_{*}$, since $\operatorname{Ker}\left(\left.f\right|_{L_{*}}\right)$ $=K_{*}$. Then the case B occurs with respect to the direct decomposition $U=U_{1}$ $\oplus U_{*}$, a contradiction.
[Claim. 2] The first case occurs in the diagram (3-*). Otherwise the second case occurs in it by inductive assumption. So there is a proper direct
summand of U which contains L_{*} by Lemma B, i.e. $L_{*} \not \oplus_{e} U_{*}$, since $L_{*} \subseteq \operatorname{Ker}$ $\left(f^{\prime}\right)$.So $K_{*} \nsubseteq U_{*}$ for $K_{*} \subseteq L_{*}$. Therefore the case B also occurs, a contradiction.

Thus, we only have either the following two cases:
i) The first case occurs in the diagrams (2-1), (2-*) and (3-*).
ii) The second case occurs in the diagram (2-1) and the first case does in the diagram (2-*).

In case i), the first case occurs in the diagram ($(\%)$ by Lemma C, a contradiction. So we consider the case ii).

Since the second case occurs in the diagram (2-1), there exists a homomorphism $p: U_{0} \rightarrow U_{1}$ such that $i_{1}=p \cdot\left(\left.f\right|_{L_{1}}\right)$, i.e. $p \cdot\left(\left.f\right|_{L_{1}}\right)=1_{L_{1}}$. Since the first case occurs in the diagram (2-*), there exists a homomorphism $q: U_{*} \rightarrow U_{0}$ such that $\left.f\right|_{L_{*}}=q \cdot i_{*}$, i.e. $\left.q\right|_{L_{*}}=\left.f\right|_{L_{*}} . \quad$ Put $g^{\prime}:=p \cdot q: U_{*} \rightarrow U_{1}$ and $X:=g^{-1}\left(\operatorname{Soc}\left(U_{1}\right)\right)$. Then $U_{*}\left(-g^{\prime}\right) \supseteq X\left(\left.g\right|_{X}\right)$. Because, since $x+g(x) \in K$ for any $x \in X, 0=f(x+g$ $(x))=f(x)+f \cdot g(x)$, i.e. $f(x)=-f \cdot g(x)$. (Note that $L \subset U$ induces $\operatorname{Soc}\left(U_{1}\right) \subseteq L_{1}$. So $g(x) \in L$, and $x \in L$ since $x+g(x) \in K \subseteq L$. Hence $f \cdot g(x)$ and $f(x)$ are defined.)

Therefore $g^{\prime}(x)=p \cdot q(x)$

$$
\begin{array}{ll}
=p \cdot f(x) & \left(\left.q\right|_{L_{*}}=\left.f\right|_{L_{*}}\right) \\
=p \cdot(-f \cdot g(x)) \\
=-g(x) & \left(p \cdot\left(\left.f\right|_{L_{1}}\right)=1_{L_{1}}\right)
\end{array}
$$

Hence $U_{*}\left(-g^{\prime}\right) \supseteq X\left(\left.g\right|_{x}\right)$. Then $U_{*}\left(-g^{\prime}\right) \supseteq X\left(\left.g\right|_{X}\right) \supseteqq K_{*}\left(\left.g\right|_{K_{*}}\right)=K_{*}$ since X ₹ K_{*}. (We are considering the case $K^{1} \neq 0$. So $g \neq 0$. And we have $X \supseteq K_{*}$.)

Now we consider the direct decomposition $U=U_{1} \oplus\left(\sum_{k=2}^{n} \oplus U_{k}\left(-\left.g^{\prime}\right|_{U_{k}}\right)\right)$. Put $K_{*}^{\prime}:=K \cap U_{*}\left(-g^{\prime}\right) . \quad$ Then $K_{*}^{\prime} \supseteqq K_{*}$ since $U_{*}\left(-g^{\prime}\right) \supseteqq K_{*} . \quad$ So $K_{*}^{\prime} \subset U_{*}\left(-g^{\prime}\right)$ for $K_{*} \subset U_{*}$. Hence the case A occurs in this direct decomposition. Let π_{1}^{\prime} : $U\left(=U_{1} \oplus U_{*}\left(-g^{\prime}\right)\right) \rightarrow U_{1}$ be the projection and put $K^{1 \prime}:=\pi_{1}^{\prime}(K)$. Then $\left\|K^{1}\right\|$ $<\left\|K^{1}\right\|$, since $K_{*}^{\prime} \supsetneq K_{*}$ induces $\left\|K_{*}^{\prime}\right\|>\left\|K_{*}\right\|$ and $(\|K\|=)\left\|K^{1}\right\|+\left\|K_{*}\right\|=\left\|K^{1}\right\|$ $+\left\|K_{*}^{\prime}\right\|$. Therefore the direct decomposition $U=U_{1} \oplus\left(\sum_{k=2}^{n} \oplus U_{k}\left(-\left.g^{\prime}\right|_{U_{k}}\right)\right)$ give us a contradiction to the minimality of $\left\|K^{1}\right\|$.

As a consequence, taking an adequate direct decomposition of U, the special case $K^{1}=0$ occurs in the case A.

Definition. Let R be a right artinian ring. We say that R is right CoNakayama if every indecomposable injective right R-module E is uniserial (i.e. E has a unique composition series.).

Corollary. The following two conditions are equivalent:
(1) R is right Co-Nakayama.
(2) For any uniform modules U^{i} and $U_{j}(i=1, \cdots, m ; j=1, \cdots, n)$ of finite composition length, $\oplus_{i=1}^{m} U^{i}$ is almost $\oplus_{j=1}^{n} U_{j}$-injective if U^{i} is almost U_{j}-injective for all i and j. (i.e. The almost injectivity among uniform modules of finite composition length is closed under finite direct sums.)

Proof. (1) $\Rightarrow(2)$: If $\operatorname{Soc}\left(U_{k}\right) \approx \operatorname{Soc}\left(U_{l}\right), U_{k} \oplus U_{l}$ is extending for simple modules by (1). Then U^{i} is almost $\underset{j=1}{\oplus} U_{j}$-injective for any $i \in\{1, \cdots, m\}$ since the condition in Theorem holds. Give a diagram:

 for $i=1, \cdots, m$:

$$
\begin{gather*}
0 \longrightarrow \\
p_{i} \cdot f \mid \\
U^{i}
\end{gather*}
$$

If the first case occurs in all diagrams $(\#-\mathrm{i})$, let $\tilde{f}_{i}:{\underset{j}{j=1}}_{n}^{{ }_{j}} U_{j} \rightarrow U^{i}$ with $p_{i} \cdot f=\tilde{f}_{i} \cdot i$, $f=\left(\oplus_{i=1}^{m} \hat{f}_{i}\right) \cdot i$, i.e. the first case occurs in the given diraagm. If the second case occurs in a diagram (\#-r) $(r \in\{1, \cdots, m\})$, let U^{\prime} be a direct summand of ${\underset{j}{j=1}}_{n}^{n} U_{j}$, $\pi: \oplus_{j=1}^{n} U_{j} \rightarrow U^{\prime}$ be a projection and $\tilde{f}_{r}: U^{r} \rightarrow U^{\prime}$ be a homomorphism such that $\pi \cdot i=\tilde{f}_{r} \cdot p_{r} \cdot f$, the second case occurs in the given diagram. Therefore $\underset{i=1}{\oplus} U^{i}$ is

$(2) \Rightarrow(1)$: Claim. For each uniform module $U, U / \operatorname{Soc}(U)$ is also uniform.
First we show this claim. Let M_{1} and M_{2} be submodules of U with $\left\|M_{i}\right\|$ $=2(i=1,2)$. Then $\operatorname{Soc}(U)$ is almost M_{1} - and M_{2}-injective but neither M_{1}-nor M_{2}-injective. $\quad M:=M_{1} \oplus M_{2}$ is extending for simple modules by (2) and Theorem. Let $1_{s}: \operatorname{Soc}(U) \rightarrow \operatorname{Soc}(U)$ be the identity map. There is an isomorphism $f: M_{1} \rightarrow M_{2}$ such that $\left.f\right|_{\text {Soc }(U)}=1$, by [3], Corollary 8. Let $1: U \rightarrow U$ and i_{2} : $M_{2} \rightarrow U$ be the identity map and the inclusion map, respectively. Put $g:=\left.1\right|_{M_{1}}$
$-i_{2} \cdot f: M_{1} \rightarrow U$. Since $\left.f\right|_{\text {Soc }(U)}=1_{s}, g(\operatorname{Soc}(U))=0$. And so $g\left(M_{1}\right) \subseteq \operatorname{Soc}(U)$ for $\left\|M_{1}\right\|=2 . \quad M_{1}=1\left(M_{1}\right)=\left(i_{2} \cdot f+g\right)\left(M_{1}\right) \subseteq i_{2} \cdot f\left(M_{1}\right)+g\left(M_{1}\right) \subseteq M_{2}+\operatorname{Soc}(U)=M_{2}$. Hence $M_{1}=M_{2}$, i.e. $U / \operatorname{Soc}(U)$ is uniform.

Let E be an injective indecomposable module. Since R is right artinian, $J^{n}=0$ for some n. Hence E has the finite socle series:

$$
0=S_{0} \subset S_{1} \subset S_{2} \subset \cdots \subset S_{m}=E
$$

for some $m \leqq n$, where S_{i} is the left annihilator of J^{i} for each i. Then apply inductively the above claim to this series to see that S_{i} / S_{i-1} is simple for each $i \in\{1, \cdots, m\}$, whence the assertion follows.

Example. There is an example which shows that the Azumaya's Theorem is not able to be extended without an additional condition.

Let K be a field and

$$
R=\left(\begin{array}{lll}
K & 0 & K \\
& K & K \\
0 & & K
\end{array}\right)
$$

Then, $e_{33} R$ is almost $e_{11} R$ - and $e_{22} R$-injective, but not almost $e_{11} R \oplus e_{22} R$-injective, where $e_{k k}$ are matrix units.

Acknowledgement. The auther would like to thank Prof. M. Harada for his useful advice.

References

[1] Y. Baba and M. Harada: On almost M-projectives and almost M-injectives, to appear.
[2] M. Harada and A. Tozaki: Almost M-projectives and Nakayama rings, to appear.
[3] M. Harada and K. Oshiro: On extending property on direct sums of uniform modules, Osaka J. Math. 18 (1981), 767-785.
[4] M. Harada: Uniserial rings and lifting properties, Osaka J. Math. 19 (1982), 217229.
[5] M. Harada: Factor categories with applications to direct decomposition of modules, Lecture note on pure and appl. math. 88 (1983), Marcel Dekker, inc, New York and Basel.
[6] B.J. Müller and M.A. Kamal: The structure of extending modules, to appear.
[7] B.J. Müller and S.T. Rizvi: Direct sum of indecomposable modules, Osaka J. Math. 21 (1984), 365-374.
[8] K. Oshiro: Semiperfect modules and quaisi-semiperfect modules, Osaka J. Math. 20 (1983), 337-372.

Department of Mathematics
Yamaguchi University Yoshida, Yamaguchi 753, Japan

