Phan, D. Osaka J. Math. 26 (1989), 265–273

RIGHT PERFECT RINGS WITH THE EXTENDING PROPERTY ON FINITELY GENERATED FREE MODULES

PHAN DAN

(Received April 18, 1988)

In [3], [4] Harada has studied the following conditions:

(*) Every non-small right *R*-module contains a non-zero injective submodule.

 $(*)^*$ Every non-cosmall right *R*-module contains a non-zero projective direct summand.

And he has found two new classes of rings which are characterized by ideal theoretic conditions: one is perfect rings with (*) and the other one is semiperfect rings with $(*)^*$. In [9], Oshiro has studied these rings by using the lifting and extending property of modules, and defined *H*-rings and co-*H*-rings related to (*) and $(*)^*$, respectively.

A ring R is called a right H-ring if R is right artinian and R satisfies (*). Dually, R is called a right co-H-ring if R satisfies $(*)^*$ and the ACC on right annihilator ideals.

A right R-module M is said to be an extending module if for any submodule A of M there is a direct summand A^* of M containing A such that A_R is essential in A_R^* . If this "extending property" holds only for uniform submodules of M, so M is called a module with the extending property for uniform modules.

The following theorem is proved by Oshiro in [9, Theorem 3.18].

Theorem. For a ring R the following conditions are equivalent:

1) R is a right co-H-rings.

2) Every projective right R-module is an extending module.

3) Every right R-module is expressed as a direct sum of a projective module and a singular module.

4) The family of all projective right R-modules is closed under taking essential extensions, i.e. for any exact sequence $O \rightarrow P \xrightarrow{\varphi} M$, where P is projective and im φ is essential in M, M is projective.

In this paper we shall consider the case that R is a right perfect ring with

 $(*)^*$ and give a new characterization of right co-*H*-rings. More precisely we shall prove the following theorems.

Theorem I. Let R be a right perfect ving. Then the following conditions are equivalent:

- 1) R satisfies $(*)^*$.
- 2) $R_R^k := \underbrace{R_R \oplus \cdots \oplus R_R}_{k \text{ summands}}$ is an extending module for each $k \in \mathcal{I}$.
- 3) R_R^2 : is an extending module.

Theorem II. A ring R is a right co-H-ring if and only if

- 1) R is right perfect,
- 2) R satisfies the ACC on right annihilator ideals and
- 3) $R_R^2 := R_R \oplus R_R$ is an extending module.

In the case that R is right non-singular, the condition 2) of Theorem II can be omitted as the following theorem shows.

Theorem III. Let R be a right non-singular, right perfect ring. Then the following conditions are equivalent:

1) R_R^2 is an extending module.

2) R has finite right Goldie dimension and R_R^2 has the extending property for uniform modules.

3) R is a right co-H-ring.

4) R is Morita-equivalent to a finite direct sum of upper triangular matrix rings over division rings.

We note that the equivalence between 3) and 4) is proved by Oshiro in [9, Theorem 4.6].

1. Preliminaries. Throughout this paper we assume that R is an associative ring with identity and all R-modules are unitary right R-modules. For a module M over R we write $M_R(_RM)$ to indicate that M is a right (left) R-module. We use E(M), J(M), Z(M) to denote the injective hull, the Jacobson radical and the singular submodule of M, respectively. For a submodule N of a non-singular module M (i.e. Z(M)=O), $E_M(N)$ denotes the unique maximal essential extension of N in M.

For two *R*-modules *M* and *N*, the symbol $M \subseteq N$ means that *M* is *R*-isomorphic to a submodule of *N*. The symbols $M \subseteq N, M \subseteq M$ mean that *M* is an essential submodule, respectively a direct summand of *N*. The descending Loewy chain $\{J_i(M)\}$ of a module *M* is defined as follows:

$$J_0(M) = M, J_1(M) = J(M), J_2(M) = J(J_1(M)), \cdots$$

An *R*-module *M* is said to be small if *M* is small in E(M), and if *M* is not small, *M* is called non-small. Dually, *M* is called a co-small module if for any projective module *P* and any epimorphism $f: P \rightarrow M$, ker *f* is an essential sub-module of *P*. *M* is called a non-cosmall module if *M* is not cosmall. For basic properties of these modules we refer to [3], [4], [10].

Let R be a ring and e be a primitive idempotent of R. We say that e is a right non-small idempotent if eR is a non-small R-module (cf. [4]), and e is called a right-t-idempotent if for any primitive idempotent f of R, every R-monomorphism of eR in fR is an R-isomorphism. For a ring R we shall use the following symbols:

 $N_r(R) = \{e \in R | e \text{ is a right non-small idempotent of } R\}$ $T_r(R) = \{e \in R | e \text{ is a right-t-idempotent of } R\}$.

Following [11], a ring R is called a right QF-3 ring if $E(R_R)$ is projective.

The following results are useful for our investigation in this paper.

Theorem A ([3, Theorem 3.6]). A semiperfect ring R satisfies (*)* if and only if for a complete set $\{e_i\} \cup \{f_j\}$ of orthogonal primitive idempotents of R with each e_iR is non-small and each f_iR is small.

a) Each $e_i R$ is an injective R-module.

b) For each e_iR , there exists $t_i \ge 0$ such that $J_t(e_iR)$ is projective for all $0 \le t \le t_i$ and $J_{t_i+1}(e_iR)$ is a singular module.

c) For each f_jR , there exists an e_iR such that $f_jR \subseteq e_iR$.

Lemma B ([3], [10]). The following statements hold about non-cosmall modules:

1) An R-module M is non-cosmall if $M \neq Z(M)$.

2) If an R-module M contains a non-zero projective submodule, then M is non-cosmall.

A ring R is called right perfect if each of its right modules has a projective cover (see [2, Theorem P] or [1, Theorem 28.4]).

Lemma C ([7]). If R is a right perfect ring, then R has ACC on principal right ideals.

From the definition of non-cosmall modules and Lemma B we have:

Lemma D. For a ring R and a cardinal α the following conditions are equivalent:

1) Every α -generated right R-module is a direct sum of a projective module and a singular module.

2) $R_R^{(\alpha)} := \bigoplus_I R_R$ is an extending module where card $I = \alpha$.

D. Phan

2. The main results. We start our investigation by proving the following lemma.

Lemma 1. Let R be a semiperfect ring. Then $N_r(R) \subset T_r(R)$.

Proof. Let $e \in N_r(R)$. In order to show that $e \in T_r(R)$ it suffices to prove that for any primitive idempotent f of R, every R-monomorphism of eR to fRis isomorphic. Since R is semiperfect, J(fR) is a unique maximal submodule of fR. Let α be an R-monomorphism of eR to fR and suppose that $\alpha(eR) \neq fR$. Then $\alpha(eR)$ is small in fR. It follows that $\alpha(eR)$ is a small module by [3, Proposition 1.1]. Hence eR is also a small module, a contradiction. Therefore $\alpha(eR)=fR$.

We note that M is an extending module if and only if every closed submodule of M is a direct summand. Hence we have

Lemma 2. Let R be a ring and P be a projective right R-module. If P is an extending module, so is every direct summand of P.

Proposition 3. Let R be a right perfect ring and $e \in I_r(R)$. If $R_R \oplus eR_R$ is an extending module, then eR_R is injective.

Proof. Since R is right perfect.

$$R_{R}=e_{1}R\oplus\cdots\oplus e_{n}R,$$

where $\{e_i\}_{i=1}^{n}$ is a set of mutually orthogonal primitive idempotents of R. Since $R_R \oplus eR_R$ is an extending module by assumption, Lemma 2 shows that R_R is an extending module, furthermore each e_iR is an extending module. It follows that fR_R is uniform for each primitive idempotent f of R.

Now we prove the injectivity of eR_R with e as in Proposition 3. Let U be a right ideal of R and α be any R-homomorphism of U in eR. We show that α is extended to one in $\operatorname{Hom}_R(R_R, eR)$. We can assume that U_R is essential in R_R . Since $M:=R_R \oplus eR$ is an extending module, there is a direct summand U^* of M such that $\{u-\alpha(u) \mid u \in U\} \subset_e U^*$. Then $U^* \cap eR=0$ and $U^* \oplus eR \subset_e M$. Write $M = U^* \oplus M'$. Sinc eR is uniform, M' is indecomposable. On the other hand, since R has the Azumaya's diagram, so does $M (=e_1R \oplus \cdots \oplus e_nR \oplus eR)$. Therefore there is some primitive idempotent e_i such that $M' \cong e_iR$. Let ε be an R-isomorphism of M' onto e_iR . Consider the projection $U^* \oplus M' \xrightarrow{p} M'$ and put $p_1 = p|_{eR}$. Then p_1 is a monomorphism. Hence we have a sequence

$$0 \to eR \xrightarrow{p_1} M' \xrightarrow{\mathcal{E}} e_i R ,$$

therefore $\varphi := \varepsilon p_1$ is an *R*-monomorphism of eR in e_iR . By the definition of e, φ is an isomorphism, From this, $e_iR = \varphi(eR) = (\varepsilon p_1)(eR) = \varepsilon(p_1eR)$. Hence $p_1(eR) = M'$, since ε is an isomorphism. It follows that p(eR) = M', and then $U^* \oplus eR = U^* \oplus M' = M$. Let π be the projection of $U^* \oplus eR$ on eR. Then $\pi|_R$ is an extension of α . The proof of Proposition 3 is complete.

Corollary 3'. Let R be a right perfect ring. If $R_R \oplus R_R$ is an extending module, then R is a right QF-3 ring. (This is equivalent to the fact that eR_R is injective for each $e \in N_r(R)$.)

Proof. Let R be right perfect. In view of [3, remark after Proposition 1.2], $N_r(R) = \phi$. Let $e \in T_r(R)$. By Lemma 1, $e \in T_r(R)$. By Lemma 2, $R_R \oplus eR_R$ is an extending module. Hence eR_R is injective by Proposition 3. Therefore R is right QF-3 by [3, Theorem 1.3].

Theorem 4. Let R be a right perfect ring. Then the following conditions are equivalent:

1) R satisfies $(*)^*$.

2) R_R^k is an extending n odule for each $k \in \mathcal{N}$.

2) bis Every k-generated right R-module is expressed as a direct sum of a projective module and a singular module.

3) R_R^2 is an extending module.

3) bis Every 2-generated right R-module is expressed as a direct sum of a projective module and a singular module.

Proof. It is casy to see that the equivalence of 2) and 2) bis, as well as of 3) and 3) bis follows Lemma D.

1) \Rightarrow 2). Remark: Let R be a right perfect ring. Then $R_R = e_1 R \oplus \cdots \oplus e_n R$ where $\{e_i\}_{i=1}^n$ is a set of mutually orthogonal primitive idempotents of R, furthermore $\operatorname{End}_R(e_iR)$ is local. Consider the module $F:=R_R^h$ and let B be a direct summand of F. Then B is projective, and hence there is a decomposition $B=B_1\oplus\cdots\oplus B_t$ with B_i indecomposable. Since F has the Azumaya's diagram, it follows that $t \leq kn$.

Now suppose that R is right perfect and 1) holds. Let M be a submodule of F. Consider the set

$$\boldsymbol{M} = \{ M' \mid M \subseteq M' \subseteq {}^{\oplus}F \} \; .$$

By the remark above, it follows that M has a minimal element, M^* say. We shall show that $M \subseteq_{e} M^*$. Indeed, if not, then $C := M^*/M$ is a non-cosmall module, since M^* is projective. By 1), C contains a non-zero direct summand which is projective, say $C = M_1/M \oplus M_2/M$ with M_1/M is non-zero projective. Form this $M^*/M_2 \cong (M^*/M)/(M_2/M) \cong M_1/M$. Therefore $M^* = M_2 \oplus D$, where $D \cong M_1/M$ is a non-zero projective module. Thus $M \subseteq M_2 \subseteq^{\oplus} M^*$ with

 $M_2 \neq M^*$, a contradiction to the minimality of M^* in M. Hence we must have $M \subset M^*$. This shows that F is an extending module, i.e. it holds 2).

3) follows from 2) immediately.

 $3) \Rightarrow 1$). Assume 3). In order to show that 1) holds, we shall show that R satisfies a), b) and c) of Theorem A. We check it in three steps.

Step 1. Since R is right perfect, in view of the remark of Harada in [3, after proposition 1.2], there exists a complete set $\{g_i\}$ of mutually orthogonal primitive idempotents such that $1=\sum g_i$. Furthermore we can devide $\{g_i\}$ into two parts $\{g_i\} = \{e_i\}_{i=1}^n \cup \{f_j\}_{j=1}^m$, where each e_iR is non-small and each f_jR is small and we always have $n \ge 1$. Hence by 3) and Corollary 3', it follows that each e_iR is injective. Thus R satisfies the condition a) of Theorem A.

Step 2. Put $e:=e_i$ where e_iR is injective. The following remark will be used in the step. Let $U \subseteq eR$ with U=uR+vR for some u, v in U. Then Lemma D shows that U is either projective or U is singular.

Now let $J_1 = J(eR)$. We shall show that if J_1 is not a singular module, then J_1 is projective. Assume that J_1 is not singular. Then there is an $0 \neq x \in J_1$ such that xR is not a singular module. As noted above, xR is projective. Then the set **P** of non-zero projective submodules of J_1 is non-empty. For any P in **P**, **P** is uniform. Since R is right perfect, $P \simeq fR$ for some primitive idempotent f in R. In particular we see from this that every element of P is a principal right ideal of R. By Lemma C, the ACC holds in P. Let P^* be a maximal element in **P**. We show that $P^*=J_1$. Assume that $P^*=J_1$. Then there exists an $x \in J_1$ but $x \notin P^*$. Put $P^* = pR$ for some $p \in P^*$, and consider the module B := xR + pR. Then by the remark in the step, B is either projective or singular. But clearly B can not be singular, so B is projective. Therefore B is contained in P, a contradiction to the maximality of P^* . Hence we must have $P^*=J_1$, i.e. J_1 is projective. Let $J_2=J(J_1)$. Since J_1 is projective and cyclic, J_2 is the unique maximal submodule of J_1 . Using the same argument as above, we see that J_2 is either projective or singular. If J_2 is projective, J_2 is a cyclic module and $J(J_2)$ is the unique maximal submodule of J_2 . Continuing this way we have a descending chain of cyclic projective right *R*-modules J_i

$$eR = J_0 \supset J_1 \supset \cdots$$

where J_i/J_{i+1} is simple for each $i=0, 1, \cdots$ Now, since J_i is projective and cyclic, for each J_i there is a primitive idempotent f_i of R such that $J_i \cong f_i R$. This and the fact that R is right perfect show that in (1) there are J_i and J_j such that $J_i \cong J_j$. Let φ be this isomorphism. Then φ can be extended to an R-monomorphism of eR to eR. We know also from (1) that the composition length of eR/J_i is i and that of eR/J_j is j. From these and the fact that eR is indecomposable injective, we must have $J_i = J_j$. Thus J_{i+1} is singular. We have shown that R satisfies b) of Theorem A.

Step 3. In this step we shall show that R satisfies the condition c) of Theorem A. Let f be any primitive idempotent of R. Then fR is uniform by Lemma 2. By Corollary 3, R is right QF-3, hence the injective hull E(fR) of fR is projective. Therefore $E(fR) \cong \bigoplus_{i} e_i R$. It follows $E(fR) \cong e_i R$ for some e_i . This shows that $fR \subset e_i R$.

Now using Theorem A we get that R satisfies $(*)^*$. Thus 1) holds. The proof of Theorem 4 is complete.

Let R be a right co-H-ring. Then it is easy to see that R is right perfect and $R_R \oplus R_R$ is an extending module. Moreover, by Theorem 4 we have the following result.

Theorem 5. A ring R is a right co-H-ring if and only if R satisfies the following conditions:

- 1) R is right perfect.
- 2) R has the ACC on right annihilator ideals.
- 3) $R_R \oplus R_R$ is an extending module.

REMARK. In [8], Kato has given an example for a semiprimary ring R which is an injective cogenerator in the category of all right R-modules but R is not a QF-ring. It follows that R is not a right co-H-ring. However by Theorem 4, R satisfies (*)*. This shows that the class of rings considered in Theorem 4 properly contains the class of all right co-H-rings.

We now consider the case where R is right non-singular, i.e. $Z(R_R)=0$. Let M be a module and U be a submodule of M. By Zorn's Lemma, there is a maximal essential extension $E_M(U)$ of U in M. As is well-known, if M is non-singular, $E_M(U)$ is determined uniquely.

Lemma 6. Let M be a non-singular module with finite Goldie dimension. If M has the extending property for uniform modules, then M is an extending module.

Proof. Let M be a module having the properties as in Lemma 6. By [5] we know that every direct summand of M has also the extending property for uniform modules. Let A be a non-zero submodule of M. Then A has also finite Goldie dimension, k say. Clearly, the Goldie dimension of $E_M(A)$ is also k. Let V_1 be a uniform submodule of A. Then $E_M(V_1) \subseteq E_M(A)$, since Z(M)=0. Hence by assumption we have

$$(1) M = \mathbf{E}_{\mathbf{M}}(V_1) \oplus M_1,$$

From this, $E_M(A) = \mathbb{E}_M(V_1) \oplus A_1$ where $A_1 = \mathbb{E}_M(A) \cap M_1$. If $A_1 \neq 0$, A_1 contains a uniform submodule V_2 for which we have $\mathbb{E}_M(V_2) \subset M_1$ and $M_1 = \mathbb{E}_M(V_2) \oplus M_2$. $\mathbb{E}_M(V_2) \subset \mathbb{E}_M(A)$. By (1), $M = \mathbb{E}_M(V_1) \oplus \mathbb{E}_M(V_2) \oplus M_2$. Then $\mathbb{E}_M(A) = \mathbb{E}_M(V_1) \oplus \mathbb{E}_M(V_2) \oplus A_2$ with $A_2 = \mathbb{E}_M(A) \cap M_2$. Since the Goldie dimension of A is k, we get after k steps

$M = \mathcal{E}_{M}(V_{1}) \oplus \cdots \oplus \mathcal{E}_{M}(V_{k}) \oplus M_{k}$

with $E_M(A) = E_M(V_1) \oplus \cdots \oplus E_M(V_k)$, proving the extending property of M.

Theorem 7. For a right non-singular ring R the following conditions are equivalent:

1) R is right perfect and $R_R \oplus R_R$ is an extending module.

2) R is right perefect with finite right Goldie dimension and $R_R \oplus R_R$ has the extending property for uniform modules.

3) R is (right and left) perfect and $R_R \oplus R_R$ has the extending property for uniform modules.

4) R is a right co-H-ring.

5) R is Morita-equivalent to a finite direct sum of upper triangular matrix rings over division rings.

Proof. 4) \Leftrightarrow 5) is proved by Oshiro [9, Theorem 4.6]. 4) \Rightarrow 3) is clear.

 $3) \Rightarrow 2$). Assume 3). R has a decomposition $R_R = e_1 R \oplus \cdots \oplus e_n R$ where $\{e_i\}_{i=1}^n$ is a set of mutually orthogonal primitive idempotents of R. Since R is left perfect, every $e_i R$ contains a minimal submodule. Moreover by [5, Proposition 1], each $e_i R$ has also the extending property for uniform modules. Then it is easy to see that the Goldie dimension of R_R is finite. Hence we have 2).

 $2) \Rightarrow 1$) holds by Lemma 6.

 $1) \Rightarrow 4$). Assume 1). R has the above decomposition related to $e_i R$'s. By Theorem 4, R satisfies (*)*. Hence Theorem A shows that $e_i R$ has finite composition length if $e_i R$ is injective, since $Z(R_R)=0$. Now if $e_i R$ is not injective, we consider $E(e_i R)$. Clearly $E(e_i R)$ is non-co-small. Since $e_i R$ is uniform, $E(e_i R)$ must be projective by (*)*. Hence there is a primitive idempotent f with $E(e_i R) \simeq f R$, therefore $E(e_i R)$ has finite length. These facts show that R is right artinian. Therefore R is a right co-H-ring. The proof of Theorem is complete.

ACKNOWLEDGMENT. I would like to thank Professor Dinh van Huynh very much for calling my attention to the study of *H*-rings and co-*H*-rings and for many useful discussions. Further I wish to express my sincere thank to Professor M. Harada who has read the first version of my paper carefully and gave me many helpful suggestions.

References

[1] F.W. Anderson and K.R. Fuller: Rings and categories of modules, Springer-Verlag 1974.

RIGHT PERFECT RINGS

- H. Bass: Finitistic dimension and homological genralization of semiprimary rings. Trans. Amer. Math. Soc. 95 (1960), 465–488.
- [3] M. Harada: Non-small modules and non-cosmall modules, Proc. of the 1978. Antw. Conf. Mercel. Dekker, 669–689.
- [4] M. Harada: On one-sided QF-2 rings I, II, Osaka J. Math. 17 (1980), 421-431, 433-438.
- [5] M. Harada: On modules with extending property, Osaka J. Math. 19 (1982), 203-215.
- [6] M. Harada and K. Oshiro: On extending property on direct sums of uniform modules, Osaka J. Math. 18 (1981), 762-785.
- [7] D. Jonah: Rings with minimum condition for principal right ideals have the maximum condition for principal left ideals, Math. Z. 113 (1970), 106-112.
- [8] T. Kato: Torsionless modules. Tokohu Math. J. 20 (1968), 234-243.
- [9] K. Oshiro: Lifting modules, extending modules and their application to QF-rings, Hokkaido Math. J. 13 (1984), 310-338.
- [10] M. Rayar: Small modules and cosmall modules, Ph. D. Dissertation, Indiana Univ. 1971.
- [11] R.M. Thrall: Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173-183.

Institute of Mathematics P.O. Box 631 Bo ho-Hanoi Hanoi, Vietnam