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Throughout this note, R stands for a ring with identity and all modules are
unital modules. In this note, for a given module M, we say that M has dominant
dimension at least n, written dom dim M =n, if each of the first # terms of the
minimal injective resolution of M is flat. Following Morita [5], we call R left
(resp. right) QF-3 if dom dim zR=1 (resp. dom dim Rg=1). He showed
that if R is left noetherian and left QF-3 then it is also right QF-3. Thus, if R
is left and right noetherian, R is left QF-3 if and only if it is right QF-3.
Generalizing this, we will prove the following

Theorem. Let R be left and right noetherian. For any n=1, dom dim
rR=n if and only if dom dim Ry=mn.

In case R is artinian, our dominant dimension coincides with Tachikawa’s
one [8], and the above theorem has been established (see Tachikawa [9] for de-
tails).

In what follows, for a given left or right R-module M, we denote by M* the
R-dual of M, by &,,: M—> M** the usual evaluation map and by E(M) the in-
jective hull of M. We denote by mod R (resp. mod R?) the category of all
finitely generated left (resp. right) R-modules, where R* stands for the opposite
ring of R and right R-modules are considered as left R°’-modules.

1. Preliminaries. In this section, we recall several known facts which
we need in later sections.

Lemma 1.1. Let R be right noetherian. For any N &mod R and for any
injective left R-module E, Homy (Extk (N, R), E)=Tor¥(N, E) for i=1.

Proof. See Cartan and Eilenberg [1, Chap. VI, Proposition 5.3].
Lemma 1.2. Every finitely presented submodule of a flat module is torsionless.
Proof. See Lazard [4, Théoréme 1.2].

Lemma 1.3. Let R be right noetherian. Let E be an injective left R-module
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and suppose that every finitely generated submodule of E is torsionless. Then E is

flat.

Proof. See Sato [6, Lemma 1.4]. His argument remains valid in our set-
ting.

Lemma 1.4. Let R be left and right noetherian. Suppose that R is left QF-
3. Aninjective left R-module E is flat if and only if it is cogenerated by E(xR).

Proof. Immediate by Lemmas 1.2 and 1.3.

Lemma 1.5. Let R be left noetherian. Suppose that inj dim Ry=n<oo.

n

For a minimal injective resolution O— yR—E—E,—:--, E= @ E; is an injective
i=0

cogenerator. '

Proof. See Iwanaga [3, Theorem 2]. His argument remains valid in our
setting.

2. Proof of Theorem. In order to prove the theorem, we need two
more lemmas.

Lemma 2.1. Let R be left noetherian and n=1. For any M &mod R with
Exti(M, R)=0 for 1<i<n and for any LEmod R with proj dim L=m<n,
Exta(M, L)=0 for 1<i<n—m.

Proof. By induction on m=0. The case m=0 is clear. Let m=1 and
let 0—K—>P—>L—0 be an exact sequence in mod R with P projective. Since
proj dim K=m—1, by induction hypothesis Extk(M, K)=0 for 1<i<n—m-+1.
Applying the functor Homg(M, —) to the above exact sequence, we get Extk
(M, Ly=Ext% (M, K)=0 for 1<i<n—m.

Lemma 2.2. Let R be left and right noetherian. Suppose that R is left
OF-3. For any n=2, dom dim zR=n if and only if for an M &mod R, M*=0
implies Extix(M, R)=0 for 1<i<n—1.

Proof. Let 0— RRIgEo-éEl»--- be a minimal injective resolution. For
any =1 we have an exact sequence of functors

Homg(—, E;_,) = Homg(—, Im f;) = Extk(—, R)— 0.

”Only if” part. For a given M&mod R with M*=0, by Lemma 1.2
Homg(M, E;)=0 for 1=i<n—1. Thus Homg(M, Im f;)=0, and by the above
exact sequence Ext} (M, R)=0 for 1<i<n—1.

“If” part. By induction on /=0, we show that E; is flat for 0<:=<n—1.
By assumption, E, is flat. Let 1<{=<#n—1 and suppose that E;_, is flat. For
a given Memod R with M*=0, we claim Homg(M, Im f;)=0. We have
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Extk (M, R)=0. Also, by Lemma 1.2 Homg (M, E;_,)=0. Thus by the above
exact sequence Homg (M, Im f;)=0. Hence Im f; is cogenerated by E(rR), and
by Lemma 1.4 E; is flat.

We are now in a position to prove the theorem. It suffices to prove the
“only if”’ part.

“Only if” part of Theorem. The case n=1 is due to Morita [5, Theorem
1]. Let n=2. Note that R is left and right QF-3. Replacing R with R? in
Lemma 2.2, it suffices to show that for any Nemod R with N*=0 we have
Exth (N, R)=0 for 1<i<n—1. For a given N&Emod R* with N*=0, we claim
first that Exty (V, R)*=0 for i=1. For any /=1, by Lemma 1.1 Homg(Ext}
(N, R), E(zR))=Tor¥ (N, E(xR))=0, thus Extk(N, R)*=0. Hence by Lemma
2.2 Ext% (Ext}} (N, R), R)=0 for i=1 and 1<j<n—1. Now, by induction on

i=1, we show that Ext}(V, R)=0 for 1<i/<n—1. Let ---—>P1-]3>P0£)>N—>0 be

an exact sequence in mod R* with the P; projective and put N;=Imf;. Since
N*=0, we have an exact sequence
0 P33 N+ % Bxty(N, R) - 0.

Since Extk(Ext: (/V, R), R)=0, a, splits. On the other hand, since Extk (N, R)*
=0, Homg(Exti(N, R), N¥)=0. Thus Extp(N, R)=0. Next, let 1<i<n—1
and suppose that Ext3(N, R)=0 for 1<j<i—1. We have an exact swquence

0= P§ —>erm> P, 5 N¥ % Bxth(N, R) > 0 .
Since Extk(Extk(N, R), R)=0 for 1=<j<n—1, and since proj dim Im 8;<i—1
<n—1, by Lemma 2.1 Extk(Ext%(NV, R), Im 8;)=0. Thus «; splits. On the
other hand, Ext% (N, R)*=0 implies Homg(Ext% (N, R), N¥)=0. Hence Ext}
(N, R)=0.

3. Left exactness of the double dual. In this section, we establish
the relation between the dominant dimension of a left and right noetherian ring
R and the behavior of the functor ( )**: mod R—>mod R. Compare our results
with Colby and Fuller [2, Theorems 1 and 2].

Proposition 3.1. Let R be left and right noetherian. Then R is left QF-3
if and only if the functor ( )**: mod R—mod R preserves monomorphisms.

This is an immediate consequence of Morita [5, Theorem 1] and the follow-
ing lemmas.

Lemma 3.2. Let R be left noetherian and right QF-3. For any monomor-
phism a.: M—L with M, LEmod R, a** is monic.
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Proof. For a given exact sequence 0—M g»L—>K—>O in mod R, we claim
(Cok a*)*=0. By Lemma 1.1 Homg(Extk(K, R), E(Rg))=Torf(E(Rg), K)=0.
Since Cok a* is imbedded into Extk(K, R), we get Homg(Cok a*, E(Rg))=0.
Thus (Cok a*)*=0, and a** is monic.

Lemma 3.3. Let R be right noetherian. Suppose that for any monomorphi-
sm a: M—L with M, LEmod R a** is monic. Then R is left QF-3.

Proof. For a given Me&mod R with M CE(;R), we claim that M is
torsionless. Replacing M with M+R if necessary, we may assume RC M.
Denote by ¢ the inclusion R<» M. Since ¢** is monic, so is ¢*¥o&p=Ey0c. Thus
RN Ker &,=0, which implies Ker §,,=0. Hence by Lemma 1.3 E(gR) is flat.

Now we can prove the following

Proposition 3.4. Let R be left and right noetherian. Then dom dim pR=2
if and only if the functor ( )**: mod R—mod R is left exact.

Proof. “Only if” part. For a given exact sequence 0—>M§>L—>K—>O in
mod R, we claim (Cok a*)*=0=Ext%(Cok a*, R). Note that dom dim Rg=2.
By Lemma 3.2, a** is monic. Thus (Cok a*)*=0, and by Lemma 2.2 Ext
(Cok a*, R)=0. Hence the following sequence is exact:

*% ok
0 — M** LL**_'@_,K**.

“If” part. By Lemma 3.3, E(zxR) is flat. For a given M &mod R with
M C E(zR)/R, we claim that M is torsionless. There is some L& mod R such that
LCE(3R) and M=L|R. By Lemma 1.2, L is torsionless. We have the fol-
lowing commutative diagram with exact rows:

0OR—>L—M—>0

W VE& &y

0 — R¥* —» [*% 5 ¥
Since &, is monic, so is . Thus by Lemma 1.4 E(E(zR)/R) is flat.

4. Remarks. In this final section, we make some remarks on noetherian
rings of finite self-injective dimension.
The following proposition is essentially due to Iwanaga [3].

Proposition 4.1. Let R be left noetherian. Suppose that inj dim RR<<oo
and that the last non-zero term of the minimal injective resolution of RR is flat.
Then R is quasi-Frobenius.

Proof. Suppose to the contrary that ;R is not injective. Put z=inj dim zR
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and let 0—zR— Ej—E,—---—E,—0 be a minimal injective resolution. There is
a torsion theory (4, &) in mod R such that & consists of the modules M €mod R
with Extk (M, R)=0. Note that & contains a simple module L. Since E, is
flat, and since Homg(L, E,)=Ext%(L, R)=0, by Lemma 1.2 L is torsionless,
which implies LE <, a contradiction.

Proposition 4.2. Let R be left noetherian. Suppose that inj dim Ryp<
dom dim zR. Then E(rR) is an injective cogenerator.

Proof. Let 0—zR—E;—E,—--- be a minimal injective resolution and put
E= €_é° E;, where n=inj dim R,. By Lemma 1.5 E is an injective cogenerator.

Thus, since E is flat, by Lemma 1.2 every M &mod R is torsionless, namely
E(;R) is an injective cogenerator.

The next proposition generalizes Sumioka [7, Theorem 5].

Proposition 4.3. Let R be left and right noetherian and n=1. Suppose that
inj dim pRR=n=<dom dim RR. For a minimal injective resolution 0— R—E,—E,
—>ee, E= ) E; is an injective cogenerator if and only if inj dim Rp=<n.

i=0

Proof. “Only if” part. Since E; is flat for 0=<:/=<n—1, and since E;=0 for
i>n, E, and thus E have weak dimension at most #. Thus by Lemma 1.1
Homg (Ext%" (N, R), E)=Tors, (N, E)=0 for all Nemod R**. Hence, since

E is an injective cogenerator, inj dim Ry=n.
“If” part. By Lemma 1.5.
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