Hoshino, M. Osaka J. Math. 26 (1989), 275-280

ON DOMINANT DIMENSION OF NOETHERIAN RINGS

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

MITSUO HOSHINO

(Received April 25, 1988)

Throughout this note, R stands for a ring with identity and all modules are unital modules. In this note, for a given module M, we say that M has *dominant dimension* at least n, written dom dim $M \ge n$, if each of the first n terms of the minimal injective resolution of M is flat. Following Morita [5], we call R left (resp. right) QF-3 if dom dim $_{R}R \ge 1$ (resp. dom dim $R_{R} \ge 1$). He showed that if R is left noetherian and left QF-3 then it is also right QF-3. Thus, if Ris left and right noetherian, R is left QF-3 if and only if it is right QF-3. Generalizing this, we will prove the following

Theorem. Let R be left and right noetherian. For any $n \ge 1$, dom dim ${}_{R}R \ge n$ if and only if dom dim $R_{R} \ge n$.

In case R is artinian, our dominant dimension coincides with Tachikawa's one [8], and the above theorem has been established (see Tachikawa [9] for details).

In what follows, for a given left or right *R*-module *M*, we denote by M^* the *R*-dual of *M*, by $\mathcal{E}_M: M \to M^{**}$ the usual evaluation map and by E(M) the injective hull of *M*. We denote by mod *R* (resp. mod R^{op}) the category of all finitely generated left (resp. right) *R*-modules, where R^{op} stands for the opposite ring of *R* and right *R*-modules are considered as left R^{op} -modules.

1. Preliminaries. In this section, we recall several known facts which we need in later sections.

Lemma 1.1. Let R be right noetherian. For any $N \in \text{mod } R^{op}$ and for any injective left R-module E, Hom_R (Extⁱ_R (N, R), E)=Tor^R_i(N, E) for $i \ge 1$.

Proof. See Cartan and Eilenberg [1, Chap. VI, Proposition 5.3].

Lemma 1.2. Every finitely presented submodule of a flat module is torsionless.

Proof. See Lazard [4, Théorème 1.2].

Lemma 1.3. Let R be right noetherian. Let E be an injective left R-module

and suppose that every finitely generated submodule of E is torsionless. Then E is flat.

Proof. See Sato [6, Lemma 1.4]. His argument remains valid in our setting.

Lemma 1.4. Let R be left and right noetherian. Suppose that R is left QF-3. An injective left R-module E is flat if and only if it is cogenerated by $E(_{R}R)$.

Proof. Immediate by Lemmas 1.2 and 1.3.

Lemma 1.5. Let R be left noetherian. Suppose that inj dim $R_R = n < \infty$. For a minimal injective resolution $O \rightarrow_R R \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots$, $E = \bigoplus_{i=0}^n E_i$ is an injective cogenerator.

Proof. See Iwanaga [3, Theorem 2]. His argument remains valid in our setting.

2. Proof of Theorem. In order to prove the theorem, we need two more lemmas.

Lemma 2.1. Let R be left noetherian and $n \ge 1$. For any $M \in \mod R$ with $\operatorname{Ext}_{R}^{i}(M, R) = 0$ for $1 \le i \le n$ and for any $L \in \mod R$ with $\operatorname{proj} \dim L = m < n$, $\operatorname{Ext}_{R}^{i}(M, L) = 0$ for $1 \le i \le n - m$.

Proof. By induction on $m \ge 0$. The case m=0 is clear. Let $m \ge 1$ and let $0 \rightarrow K \rightarrow P \rightarrow L \rightarrow 0$ be an exact sequence in mod R with P projective. Since proj dim K=m-1, by induction hypothesis $\operatorname{Ext}_{R}^{i}(M, K)=0$ for $1 \le i \le n-m+1$. Applying the functor $\operatorname{Hom}_{R}(M, -)$ to the above exact sequence, we get $\operatorname{Ext}_{R}^{i}(M, L) \simeq \operatorname{Ext}_{R}^{i+1}(M, K)=0$ for $1 \le i \le n-m$.

Lemma 2.2. Let R be left and right noetherian. Suppose that R is left QF-3. For any $n \ge 2$, dom dim $_{\mathbb{R}} R \ge n$ if and only if for an $M \in \mod R$, $M^*=0$ implies $\operatorname{Ext}_{k}^{i}(M, R) = 0$ for $1 \le i \le n-1$.

Proof. Let $0 \rightarrow_R R \xrightarrow{f_0} E_0 \xrightarrow{f_1} E_1 \rightarrow \cdots$ be a minimal injective resolution. For any $i \ge 1$ we have an exact sequence of functors

 $\operatorname{Hom}_{\mathbb{R}}(-, E_{i-1}) \to \operatorname{Hom}_{\mathbb{R}}(-, \operatorname{Im} f_i) \to \operatorname{Ext}^{i}_{\mathbb{R}}(-, \mathbb{R}) \to 0$.

"Only if" part. For a given $M \in \mod R$ with $M^*=0$, by Lemma 1.2 $\operatorname{Hom}_{\mathbb{R}}(M, E_i)=0$ for $1 \leq i \leq n-1$. Thus $\operatorname{Hom}_{\mathbb{R}}(M, \operatorname{Im} f_i)=0$, and by the above exact sequence $\operatorname{Ext}_{\mathbb{R}}^*(M, \mathbb{R})=0$ for $1 \leq i \leq n-1$.

"If" part. By induction on $i \ge 0$, we show that E_i is flat for $0 \le i \le n-1$. By assumption, E_0 is flat. Let $1 \le i \le n-1$ and suppose that E_{i-1} is flat. For a given $M \in \mod R$ with $M^*=0$, we claim $\operatorname{Hom}_R(M, \operatorname{Im} f_i)=0$. We have

276

 $\operatorname{Ext}_{R}^{i}(M, R) = 0$. Also, by Lemma 1.2 $\operatorname{Hom}_{R}(M, E_{i-1}) = 0$. Thus by the above exact sequence $\operatorname{Hom}_{R}(M, \operatorname{Im} f_{i}) = 0$. Hence $\operatorname{Im} f_{i}$ is cogenerated by $E(_{R}R)$, and by Lemma 1.4 E_{i} is flat.

We are now in a position to prove the theorem. It suffices to prove the "only if" part.

"Only if" part of Theorem. The case n=1 is due to Morita [5, Theorem 1]. Let $n \ge 2$. Note that R is left and right QF-3. Replacing R with R^{op} in Lemma 2.2, it suffices to show that for any $N \in \text{mod } R^{op}$ with $N^*=0$ we have $\text{Ext}_{R}^{i}(N, R)=0$ for $1 \le i \le n-1$. For a given $N \in \text{mod } R^{op}$ with $N^*=0$, we claim first that $\text{Ext}_{R}^{i}(N, R)^*=0$ for $i\ge 1$. For any $i\ge 1$, by Lemma 1.1 $\text{Hom}_{R}(\text{Ext}_{R}^{i}(N, R), E(R)) \simeq \text{Tor}_{i}^{R}(N, E(R))=0$, thus $\text{Ext}_{R}^{i}(N, R)^{*}=0$. Hence by Lemma 2.2 $\text{Ext}_{R}^{i}(\text{Ext}_{R}^{i}(N, R), R)=0$ for $i\ge 1$ and $1\le j\le n-1$. Now, by induction on $i\ge 1$, we show that $\text{Ext}_{R}^{i}(N, R)=0$ for $1\le i\le n-1$. Let $\dots \rightarrow P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} N \rightarrow 0$ be an exact sequence in mod R^{op} with the P_{i} projective and put $N_{i}=\text{Im } f_{i}$. Since $N^{*}=0$, we have an exact sequence

$$0 \to P_0^* \xrightarrow{\beta_1} N_1^* \xrightarrow{\alpha_1} \operatorname{Ext}^1_R(N, R) \to 0 .$$

Since $\operatorname{Ext}_{R}^{1}(\operatorname{Ext}_{R}^{1}(N, R), R) = 0$, α_{1} splits. On the other hand, since $\operatorname{Ext}_{R}^{1}(N, R)^{*} = 0$, $\operatorname{Hom}_{R}(\operatorname{Ext}_{R}^{1}(N, R), N_{1}^{*}) = 0$. Thus $\operatorname{Ext}_{R}^{1}(N, R) = 0$. Next, let $1 < i \le n-1$ and suppose that $\operatorname{Ext}_{R}^{1}(N, R) = 0$ for $1 \le j \le i-1$. We have an exact swquence

$$0 \to P_0^* \to \cdots \to P_{i-1}^* \xrightarrow{\beta_i} N_i^* \xrightarrow{\alpha_i} \operatorname{Ext}^i_R(N, R) \to 0 \; .$$

Since $\operatorname{Ext}_{R}^{i}(\operatorname{Ext}_{R}^{i}(N, R), R) = 0$ for $1 \leq j \leq n-1$, and since proj dim $\operatorname{Im} \beta_{i} \leq i-1$ < n-1, by Lemma 2.1 $\operatorname{Ext}_{R}^{i}(\operatorname{Ext}_{R}^{i}(N, R), \operatorname{Im} \beta_{i}) = 0$. Thus α_{i} splits. On the other hand, $\operatorname{Ext}_{R}^{i}(N, R)^{*} = 0$ implies $\operatorname{Hom}_{R}(\operatorname{Ext}_{R}^{i}(N, R), N_{i}^{*}) = 0$. Hence $\operatorname{Ext}_{R}^{i}(N, R) = 0$.

3. Left exactness of the double dual. In this section, we establish the relation between the dominant dimension of a left and right noetherian ring R and the behavior of the functor ()**: mod $R \rightarrow \text{mod } R$. Compare our results with Colby and Fuller [2, Theorems 1 and 2].

Proposition 3.1. Let R be left and right noetherian. Then R is left QF-3 if and only if the functor $()^{**}$: mod $R \rightarrow \text{mod } R$ preserves monomorphisms.

This is an immediate consequence of Morita [5, Theorem 1] and the following lemmas.

Lemma 3.2. Let R be left noetherian and right QF-3. For any monomorphism $\alpha: M \rightarrow L$ with $M, L \in \text{mod } R, \alpha^{**}$ is monic.

M. Hoshino

Proof. For a given exact sequence $0 \rightarrow M \xrightarrow{\alpha} L \rightarrow K \rightarrow 0$ in mod R, we claim $(\operatorname{Cok} \alpha^*)^*=0$. By Lemma 1.1 $\operatorname{Hom}_R(\operatorname{Ext}^1_R(K, R), E(R_R)) \simeq \operatorname{Tor}^1_1(E(R_R), K)=0$. Since $\operatorname{Cok} \alpha^*$ is imbedded into $\operatorname{Ext}^1_R(K, R)$, we get $\operatorname{Hom}_R(\operatorname{Cok} \alpha^*, E(R_R))=0$. Thus $(\operatorname{Cok} \alpha^*)^*=0$, and α^{**} is monic.

Lemma 3.3. Let R be right noetherian. Suppose that for any monomorphism $\alpha: M \rightarrow L$ with $M, L \in \mod R \alpha^{**}$ is monic. Then R is left QF-3.

Proof. For a given $M \in \text{mod } R$ with $M \subset E({}_{R}R)$, we claim that M is torsionless. Replacing M with M+R if necessary, we may assume $R \subset M$. Denote by ι the inclusion $R \hookrightarrow M$. Since ι^{**} is monic, so is $\iota^{**} \circ \mathcal{E}_{R} = \mathcal{E}_{M} \circ \iota$. Thus $R \cap \text{Ker } \mathcal{E}_{M} = 0$, which implies $\text{Ker } \mathcal{E}_{M} = 0$. Hence by Lemma 1.3 $E({}_{R}R)$ is flat.

Now we can prove the following

Proposition 3.4. Let R be left and right noetherian. Then dom dim $_{R}R \ge 2$ if and only if the functor ()**: mod $R \rightarrow \text{mod } R$ is left exact.

Proof. "Only if" part. For a given exact sequence $0 \rightarrow M \stackrel{\alpha}{\rightarrow} L \stackrel{\beta}{\rightarrow} K \rightarrow 0$ in mod R, we claim $(\operatorname{Cok} \alpha^*)^* = 0 = \operatorname{Ext}^1_R(\operatorname{Cok} \alpha^*, R)$. Note that dom dim $R_R \ge 2$. By Lemma 3.2, α^{**} is monic. Thus $(\operatorname{Cok} \alpha^*)^* = 0$, and by Lemma 2.2 $\operatorname{Ext}^1_R(\operatorname{Cok} \alpha^*, R) = 0$. Hence the following sequence is exact:

$$0 \to M^{**} \xrightarrow{\alpha^{**}} L^{**} \xrightarrow{\beta^{**}} K^{**}.$$

"If" part. By Lemma 3.3, $E(_{R}R)$ is flat. For a given $M \in \mod R$ with $M \subset E(_{R}R)/R$, we claim that M is torsionless. There is some $L \in \mod R$ such that $L \subset E(_{R}R)$ and M = L/R. By Lemma 1.2, L is torsionless. We have the following commutative diagram with exact rows:

$$\begin{array}{ccc} 0 \to R \longrightarrow L \longrightarrow M \longrightarrow 0 \\ & \downarrow \wr & \downarrow \varepsilon_L & \downarrow \varepsilon_M \\ 0 \to R^{**} \to L^{**} \to M^{**} \end{array}$$

Since \mathcal{E}_L is monic, so is \mathcal{E}_M . Thus by Lemma 1.4 $E(E(_RR)/R)$ is flat.

4. **Remarks.** In this final section, we make some remarks on noetherian rings of finite self-injective dimension.

The following proposition is essentially due to Iwanaga [3].

Proposition 4.1. Let R be left noetherian. Suppose that inj dim $_{R}R < \infty$ and that the last non-zero term of the minimal injective resolution of $_{R}R$ is flat. Then R is quasi-Frobenius.

Proof. Suppose to the contrary that _RR is not injective. Put $n=inj \dim_{R}R$

and let $0 \rightarrow_R R \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_n \rightarrow 0$ be a minimal injective resolution. There is a torsion theory $(\mathcal{I}, \mathcal{F})$ in mod R such that \mathcal{F} consists of the modules $M \in \mod R$ with $\operatorname{Ext}_R^n(M, R) = 0$. Note that \mathcal{I} contains a simple module L. Since E_n is flat, and since $\operatorname{Hom}_R(L, E_n) \simeq \operatorname{Ext}_R^n(L, R) \neq 0$, by Lemma 1.2 L is torsionless, which implies $L \in \mathcal{F}$, a contradiction.

Proposition 4.2. Let R be left noetherian. Suppose that inj dim $R_R <$ dom dim R_R . Then E(R) is an injective cogenerator.

Proof. Let $0 \to_R R \to E_0 \to E_1 \to \cdots$ be a minimal injective resolution and put $E = \bigoplus_{i=0}^{n} E_i$, where $n = \text{inj} \dim R_R$. By Lemma 1.5 E is an injective cogenerator. Thus, since E is flat, by Lemma 1.2 every $M \in \text{mod } R$ is torsionless, namely $E(_RR)$ is an injective cogenerator.

The next proposition generalizes Sumioka [7, Theorem 5].

Proposition 4.3. Let R be left and right noetherian and $n \ge 1$. Suppose that inj dim $_{R}R \le n \le \text{dom dim }_{R}R$. For a minimal injective resolution $0 \rightarrow_{R}R \rightarrow E_{0} \rightarrow E_{1}$ $\rightarrow \cdots, E = \bigoplus_{i=0}^{n} E_{i}$ is an injective cogenerator if and only if inj dim $R_{R} \le n$.

Proof. "Only if" part. Since E_i is flat for $0 \le i \le n-1$, and since $E_i=0$ for i > n, E_n and thus E have weak dimension at most n. Thus by Lemma 1.1 $\operatorname{Hom}_R(\operatorname{Ext}_R^{n+1}(N, R), E) \simeq \operatorname{Tor}_{n+1}^R(N, E) = 0$ for all $N \in \operatorname{mod} R^{op}$. Hence, since E is an injective cogenerator, inj dim $R_R \le n$.

"If" part. By Lemma 1.5.

References

- [1] H. Cartan and S. Eilenberg: Homological algebra, Princeton Univ. Press, Princeton, 1956.
- [2] R.R. Colby and K.R. Fuller: Exactness of the double dual, Proc. Amer. Math. Soc. 82 (1981), 521-526.
- [3] Y. Iwanaga: On rings with finite self-injective dimension, Comm. Algebra 7 (1979), 393-414.
- [4] D. Lazard: Autour de la platitude, Bull. Soc. Math. France 97 (1969).
- [5] K. Morita: Noethrian QF-3 rings and two-sided quasi-Frobenius maximal quotient rings, Proc. Japan Acad. 46 (1970), 837–840.
- [6] H. Sato: On localization of a 1-Gorenstein rings, Sci. Rep. Tokyo Kyoiku Daigaku A 13 (1977), 188-197.
- [7] T. Sumioka: On QF-3 and 1-Gorenstein rings, Osaka J. Math. 16 (1979), 395-403.
- [8] H. Tachikawa: On dominant dimension of QF-3 algebras, Trans. Amer. Math. Soc. 112 (1964), 249–266.

M. Hoshino

[9] H. Tachikawa: Quasi-Frobenius rings and generalizations, Springer Lecture Notes 351 (1973).

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan

280