ON MAXIMAL SUBMODULES OF A FINITE DIRECT SUM OF HOLLOW MODULES I

Dedicated to Professor Hirosi Nagao on his 60th birthday

Manabu HARADA

(Received February 9, 1983)

Introduction

We have given, in [5], a characterization of a right (upper) serial ring in terms of submodules of finite direct sums of serial modules. In this paper we shall replace the serial module by hollow modules in the above. Then it is clear that we shall be able to obtain a new class of rings R generalized from the right serial rings.

However, it is difficult for the author to give a complete characterization of those rings. We shall restrict ourselves to a particular case where the Jacobson radical J of R is square zero. It is not still easy to find the characterization of such rings. If R is either a commutative artinian ring or an algebra of finite dimension over an algebraically closed field, then we can show the structure of R as follows: $|e R|$, the composition length of $e R$, is equal to or less than three and if two simple right ideals A_{1} and A_{2} in $e J$ are isomorphic to each other, then there exists a unit element x in $e R e$ such that $A_{2}=x A_{1}$ and [eRe/eJe: $\left.\Delta\left(A_{1}\right)\right]_{r}=2$, where e is a primitive idempotent of R and $\Delta\left(A_{1}\right)=\{\bar{x} \in e R e / e J e \mid$ $\left.\bar{x} A_{1} \subseteq A_{1}\right\}$. We shall give the similar structure for any right artinian ring R under an assumption that $|e R| \leqslant 5$. We do not know any examples of rings which have the property mentioned above (see Condition I in §3) and $|e R| \geqslant 4$ for some primitive idempotent e. We shall study the similar problem without the assumption $e J^{2}=0$ in the forthcomming paper.

1 Right serial rings

Let R be a ring with identity. Every module in this paper is a unitary right R-module. For an R-module $M,|M|$ means the length of the composition series of M. We shall denote the Jacobson radical and the socle of M by $J(M)$ and $S(M)$, respectively. Put $J^{n}(M)=J\left(J^{n-1}(M)\right)$ and $S_{n}(M) / S_{n-1}(M)$ $=S\left(M / S_{n-1}(M)\right.$) inductively. Then $M \supseteq J(M) \supseteq J^{2}(M) \supseteq \cdots$ and $0 \subseteq S_{1}(M) \subseteq$ $S_{2}(M) \subseteq \cdots$ are called the upper Loewy series and the lower Loewy series of M, respectively. If each factor module $J^{n}(M) / J^{n+1}(M)\left(S_{n+1}(M) / S_{n}(M)\right)$ is simple
or zero, the upper (lower) Loewy series is a unique composition series such that $|M| J^{n}(M) \mid=n\left(\left|S_{n}(M)\right|=n\right)$ and if $|M| N \mid=m<\infty(|N|=m<\infty)$ for some submodule $N, N=J^{m}(M)\left(N=S_{m}(M)\right)$ provided that $J^{k}(M) \neq J^{k+1}(M)$ $\left(S_{k}(M) \neq S_{k+1}(M)\right)$ for all $k \leqslant n-1$. If M has the unique chain as above, we call M an upper (lower) serial module. An upper (lower) serial module M with $J^{t}(M)=0\left(S_{t}(M)=M\right)$ for some t is called a serial module and in this case $S_{r}(M)=J^{t-r}(M)$.

Let R be a semi-perfect ring. If, for each primitive idempotent $e, e R$ is an upper serial module, then R is called a right upper serial ring (cf. [5]). Next we assume that R is a right semiartinian ring. If, for each indecomposable injective module E, E is a lower serial module, then R is called a right lower coserial ring.

We have shown in [5], Theorem 2 that if R is an artinian right (upper) serial ring, R satisfies the following condition: every submodule of a direct sum of hollow modules is also a direct sum of hollow modules. We shall study, in this section, a similar property for a quasi-projective module. The following result is well known provided R / J is a simple ring (cf. [1], p. 75). We shall give a proof for the sake of completeness.

Proposition 1. Let R be a semi-perfect ring. If R / J^{2} is a right serial ring, then R is a right upper serial ring.

Proof. We may assume that R is basic. We shall show by induction on t that $e R \supset e J \supseteq \cdots \supseteq e J^{t}$ is serial for each primitive idempotent e. Assume that the above fact is true for $i \leqslant t$. Then $t \geqslant 2$ by assumption. If $e J^{2}=e J$, the proposition is trivial. We assume that $e J / e J^{2}$ is a non-zero simple module. Then $e J / e J^{2} \approx f R / f J$ for some primitive idempotent f. Hence there exists an element x in eJf such that $e J=x R+e J^{2}$. Then $e J^{t}=x J^{t-1}+e J^{t+1}$, and so $e J^{t} / e J^{t+1}$ is a homomorphic image of $f J^{t-1} / f J^{t}$, since $x=e x f \in e J$. Hence $e J^{t} / e J^{t+1}$ is either simple or zero. Therefore R is right upper serial by induction.

We obtain the following proposition as dual to the above.
Proposition 1.' Let R be a right semi-artinian ring. If $S_{2}(E)$ is serial for every indecomposable and injective module E, then R is a right lower coserial ring.

Proof. Let $S_{i}(E) \supseteq S_{i-1}(E) \supseteq \cdots \supseteq S_{1}(E) \supset 0$ be a serial chain of E. We may assume $i \geqslant 2$. Then $E / S_{i-1}(E)$ is a uniform module. Hence $\widetilde{E}=E\left(E / S_{i-1}(E)\right)$, injective hull of $E / S_{i-1}(E)$, is indecomposable. Therefore $S_{i+1}(E) / S_{i}(E) \subseteq S_{2}(\widetilde{E}) /$ $S_{1}(\widetilde{E})$, and so $S_{i+1}(E) / S_{i}(E)$ is either simple or zero. Hence R is right lower coserial.

It is clear that eR is not serial even if $e R / e J^{2}$ is serial for a primitive idempotent e (cf. Example 1 below). Concerning this fact, we have the following
proposition.
Proposition 2. Let R be a semi-perfect ring and J the Jacobson radical of R. Let P be a hollow module eR/B with B a character right ideal of eR; i.e. P is a cyclic quasi-projective module. Assume $P / P J^{2}$ is a serial R-module. Then P is upper serial if and only if every maximal submodule of a finite (two) direct sum of homomorphic images P_{i} of P with $\left|P_{i}\right|<\infty$ is also a direct sum of hollow modules.

Proof. "Only if" part is clear from [3], Theorem 2 and [4], Theorem 1.
"If" part. Assume that the last condition of the proposition is satisfied and that, for a primitive idempotent $e, e R \supset e J \supset\left(e J^{2}+B\right) \supset \cdots \supset\left(e J^{t}+B\right)$ is the chain with $\left(e J^{i}+B\right) /\left(e J^{i+1}+B\right)$ simple for all $i \leqslant t-1$. Then we may assume $t \geqslant 2$ by assumption. Let N_{1} and N_{2} be maximal submodules, containing $\left(e J^{t+1}+B\right)$, of $\left(e J^{t}+B\right)$. Put $D=e R / N_{1} \oplus e R / N_{2}$ and $\bar{D}=D / J(D)=$ $e R / e J \oplus e R / e J$. Let $M^{\prime}=\{\bar{x}+\bar{x} \mid \bar{x} \in \bar{e} \bar{R}\}$ be a submodule of \bar{D}. Then there exists the maximal submodule M of D such that $M \supset J(D)$ and $M / J(D)=M^{\prime}$. Since $|S(D)|=\left|\left(e J^{t}+B\right) / N_{1} \oplus\left(e J^{t}+B\right) / N_{2}\right|=2, \quad M=M_{1} \oplus M_{2}$ by assumption, where the M_{i} are either hollow or zero. Assume $M_{i} \neq 0$ for $i=1,2$. Then we know that each M_{i} is uniform, for $|S(D)|=2$. Let $\pi_{i}: D \rightarrow e R / N_{i}$ be the projection for $i=1,2$. Since $\bar{M}=M^{\prime}, \pi_{i}\left(M_{j(i)}\right)=e R / N_{i}$ for some $j(i)$ of $\{1,2\}$, and so $\left|M_{j(i)}\right| \geqslant \mathrm{t}+1$. On the other hand, $|M|=2 t+1$. Hence $j(1)=j(2)$ (=1). $\quad M_{1}$ containing the simple socle, either $\pi_{1} \mid M_{1}$ or $\pi_{2} \mid M_{1}$ is an isomorphism. Assume $\pi \mid M_{1}$ is an isomorphism. Then $D=M_{1} \oplus e R / N_{2}$. Now take the composition mapping $f: e R / N_{1} \xrightarrow{i} D \xrightarrow{p} e R / N_{2}$, where i is the injection and p is the projection of the above decomposition. Let m be an element in M_{1}. Then $m=\pi_{1}(m)+\pi_{2}(m)$, and so $\pi_{1}(m)=m-\pi_{2}(m)$. Hence $f\left(\pi_{1}(m)\right)=-\pi_{2}(m)$. On the other hand, $\overline{\pi_{1}(m)}=\overline{m-\pi_{2}(m)}=(\bar{x}+\bar{x})-\overline{\pi_{2}(m)}=\bar{x}+\left(\bar{x}-\overline{\pi_{2}(m)}\right)$, where $\bar{m}=\bar{x}+\bar{x} ; \bar{x} \in \overline{e R}$. Hence $\overline{\pi_{1}(m)}=\bar{x}=\overline{\pi_{2}(m)}=-f\left(\overline{\pi_{1}(m)}\right)$. Accordingly, since $\pi_{1} \mid M_{1}$ is an isomorphism, the identity mapping of $e R / e J$ is liftable to $-f \in \operatorname{Hom}_{R}\left(e R / N_{1}, e R / N_{2}\right)$. Then there exists an element x in $e R e$ such that $-f(\vec{r})=x \bar{r}$ for $\vec{r} \in e R / N_{1}$. Hence $x N_{1} \subseteq N_{2}$ and $e-x=j$ is an element in $e J e$, for f is the identity of $e R / e J$. On the other hand, $j N_{1} \subseteq j\left(e J^{t}+B\right) \subseteq\left(e J^{t+1}+B\right)$ $\subseteq N_{2}$. Hence $N_{1}=e N_{1}=(x+j) N_{2} \subseteq N_{2}$ and so $N_{1}=N_{2}$ (cf. the proof of [3], Theorem 4). Therefore $\left(e J^{n}+B\right) /\left(e J^{n+1}+B\right)$ is either simple or zero. Next assume that $M_{2}=0$ and so M is hollow. Then $J(M)=J(D)$ and $M / J(M) \approx$ $e R / e J$. Hence we may assume $M=e R / e A$ for some right ideal $A . \quad|D|=2 t+2$ implies $|e R / e A|=2 t+1$. Since $M / J(D)=M^{\prime}, \pi_{i} \mid e R / e A$ is an epimorphism for $i=1$, 2. Put $B_{i}=\operatorname{ker}\left(\pi_{i} \mid e R / e A\right)$. Then $\left|e R / B_{i}\right|=t+1$. On the other hand, since $N_{i} \subseteq\left(e J^{t}+B\right)$, we have the natural epimorphism ν_{i} of $e R / N_{i}$ onto $e R /\left(e J^{t}+B\right)$. Hence $\nu_{i} \pi_{i}$ is an epimorphism of $e R / N_{i}$ onto $e R /\left(e J^{t}+B\right)$.

Therefore there exists a unit element y in $e R e$ such that $y \bar{r}=\nu_{i} \pi_{i} \bar{r}$ for $\bar{r} \in e R / N_{i}$. Since $B_{i} \subseteq \operatorname{ker} \nu_{i} \pi_{i}, y B_{i} \subseteq\left(e J^{t}+B\right)$, and so $B_{i} \subseteq y^{-1}\left(e J^{t}+B\right) \subseteq\left(e J^{t}+B\right)$. Now $\left|e R /\left(e J^{t}+B\right)\right|=t$ and $\left|e R / B_{i}\right|=t+1$. Hence $\left|\left(e J^{t}+B\right)\right| B_{i} \mid=1$. Furthermore, $B_{1} \cap B_{2}=e A$. Therefore $|e R / e A|=\left|e R /\left(e J^{t}+B\right)\right|+\left|\left(e J^{t}+B\right)\right| B_{1}\left|+\left|B_{1} / e A\right|=\right.$ $t+1+\left|\left(B_{1}+B_{2}\right) / B_{2}\right| \leqslant t+2$, for $B_{1}+B_{2} \subseteq e J^{t}+B$. On the other hand, $|e R / e A|$ $=2 \mathrm{t}+1$, which contradicts the assumption $t \geqslant 2$.

From the first half of the above proof we obtain the following:
Proposition 2'. Let R and P be as above (not necessarily $P / P J^{2}$ is serial). Then P is an upper serial module if and only if every finite (two) direct sum of homomorphic images P_{i} of P with $\left|P_{i}\right|<\infty$ has the lifting property of simple modules modulo the radical.

Proof. If $D=e R / N_{1} \oplus e R / N_{2}$ has the lifting property of simple modules modulo the radical, then every maximal submodule of D contains a non-zero direct summand of D by definition. Hence we have the first case of the above proof.

We note that the assumption on $P / P J^{2}$ is inevitable in Proposition 2 (cf. § 3).

2. Maximal submodules

i) General case

From now on we always assume that R is a right artinian ring. We shall study the similar situation to Proposition 2. Hence we may assume that R is basic. Let e be a primitive idempotent, then $e R e / e J e$ is a division ring. We consider hollow modules N_{i} of the form $e R / B_{i}$, where B_{i} is a submodule of $e J$. Put $D=\sum_{j=1}^{k} \oplus N_{j}$ and $\bar{D}=D / J(D)=\Sigma \oplus e R / e J$. Now R is basic. Then $(e R / e J) R=(e R / e J)(e R e)=(e R / e J)(e R e / e J e)$ and $R\left(e J / e J^{2}\right)=(e R e / e J e)\left(e J / e J^{2}\right) . \quad$ Put $e R e / e J e=\overline{e R e}=\Delta . \quad$ Then \bar{D} is a right Δ-vector space of dimension k. Let $\bar{x}=\sum x_{j}$ be an element in \bar{D}, where the \bar{x}_{j} are in $N_{j} / J\left(N_{j}\right)=e R / e J$ and we denote \bar{x}_{j}^{-1} by $\overline{x_{j}^{-1}}$, where x_{j}^{-1} is an element in $e R e$. Then $\bar{x}_{j} \bar{x}_{j}^{-1}=\bar{e}$. Let M be a maximal submodule of D. Then $M \supseteq J(D)$, and put $\bar{M}=M / J(D)$. It is clear that either $\bar{M}=\sum_{j \neq i} \oplus N_{j}$ for some i or \bar{M} has the following basis: $\left\{\bar{\alpha}_{1}=(\bar{\delta}, \bar{e}\right.$, $\left.o, \cdots, o, o), \bar{\alpha}_{2}=\left(\bar{\delta}_{2}, o, \bar{e}, o, \cdots, o\right), \cdots, \bar{\alpha}_{k-1}=\left(\bar{\delta}_{k-1}, o, \cdots, \bar{e}\right)\right\}$ and that M is generated by $\left\{\alpha_{j}=\left(\widetilde{\delta}_{j}, o, \cdots, \tilde{e}, \cdots, o\right)\right\}$ and $J(D)$ for the latter case, where the δ_{j} are in $e R e$ and $\widetilde{\delta}_{j}$ is an element in N_{j}. Conversely, if we take the set $\left\{\alpha_{i}\right\}_{i=1}^{k=1}$, the module generated by the α_{i} and $J(D)$ is a maximal submodule of D. We consider the condition in Proposition 2.
(*) Any maximal submodule of D is a direct sum of hollow modules.
Lemma 3. Let $\left\{N_{1}, N_{2}, \cdots, N_{t+1}\right\}$ be a set of hollow modules with $\left|N_{i}\right|=t$.

Put $D=\sum_{i=1}^{t+1} \oplus N_{i}$. If D satisfies (*), then every maximal submodule M of D contains a direct summand of D, which is isomorphic to some N_{i}.

Proof. Let $\pi_{i}: D \rightarrow N_{i}$ be the projection of D onto N_{i}. Assume that M is a direct sum of hollow modules $M_{i}: M=\sum \oplus M_{i}$. If $\left|M_{i}\right|<t, M_{i} \subseteq J(D)$ $=\sum \oplus J\left(N_{i}\right)$. Furthermore, since $|\bar{M}|=t$ and $\bar{M}_{i}=\left(M_{i}+J(D)\right) / J(D) \approx M_{i} \mid$ ($M_{i} \cap J(D)$ is either simple or zero, there exist at least $t M_{i_{j}}$ among $\left\{M_{i}\right\}$ such that $\left|\bar{M}_{i_{j}}\right|=1$, and hence $\left|M_{i_{j}}\right| \geqslant t$, since $\pi_{k} \mid M_{i_{j}}$ is an epimorphism for some k. If $\left|M_{i j}\right| \geqslant \mathrm{t}+1$ for all $j,|M| \geqslant t(t+1)=|D|$. Hence there exists some $M_{i_{0}}$ with $\left|M_{i_{0}}\right|=t . \quad \pi_{k} \mid M_{i_{0}}$ is an epimorphism for some k as above. Hence $M_{i_{0}}$ is a direct summand of D for $\left|M_{i_{0}}\right|=\left|N_{k}\right|$.

Assume that M in Lemma 3 is generated by $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t}\right\}$ as above and $J(D)$. Then M_{1} is generated by $\beta=\sum \alpha_{i} y_{i}+j$, where j is an elements in $J(D)$. Since M_{1} is a direct summand of $D, M_{1} \mp J(D)$. Hence some y_{i} of $\left\{y_{i}\right\}$ is not contained in eJe, Therefore we may assume $\beta=\alpha_{1}+\sum_{i \geqslant 2} \alpha_{i} y_{i}+j$. Put

$$
\begin{equation*}
\gamma=\alpha_{1}+\sum_{i \geqslant 2} \alpha_{i} y_{i}, \quad \delta=\delta_{1}+\sum_{i \geqslant 2} \delta_{i} y_{i} \quad \text { and } \quad \beta=\gamma+j \tag{1}
\end{equation*}
$$

where $\alpha_{i}=\left(\tilde{\delta}_{i}, o, \cdots, o, \tilde{e}, o, \cdots, o\right)$ is in D.
We frequentely use the method of the proof of [3], Theorem 2, and so we summarize here its content. Let N_{1} and N_{2} be hollow modules and f^{\prime} an element in $\operatorname{Hom}_{R}\left(N_{1} / J\left(N_{1}\right), N_{2} / J\left(N_{2}\right)\right)$. If there exists an element f, which induces f^{\prime}, in $\operatorname{Hom}_{R}\left(N_{1}, N_{2}\right)$, we say that f^{\prime} is lifted to f.

Lemma 4. Let $D=\sum_{i=1}^{n} \oplus N_{i}$ be a direct sum of hollow modules. Let $\bar{M}=$ $\left\{\bar{x}+\bar{f}_{2}(\bar{x})+\cdots+\bar{f}_{n}(\bar{x}) \mid \bar{x} \in \bar{N}_{1}\right.$ and $\left.\bar{f}_{i} \in \operatorname{Hom}_{R}\left(\bar{N}_{1}, \bar{N}_{i}\right)\right\}$ be a submodule of $\bar{D}=$ $D / J(D)$. If each \bar{f}_{i} is liftable, D contains a direct summand D_{1} such that $\bar{D}_{1}=\bar{M}$.

From Lemma 3, we are interested in the condition:
(**) Every maximal submodule of $D(k)=N_{1} \oplus N_{2} \oplus \cdots \oplus N_{k}$ contains a direct summand of D, which is isomorphic to some N_{i}.

Let B be a submodule in $e J$ contained in $r_{R}(e J e)=\{x \in R \mid e J e x=0\}$ and put $\Delta(B)=\{x \in \Delta \mid x B \subseteq B\}$.

Lemma 5. Let B be a submodule in eJ contained in $r_{R}(e J e)^{1)}$ and $N_{i}=e R / B$ for $i=1,2, \cdots, k+1$. Then $[\Delta: \Delta(B)]=k$ as a right $\Delta(B)$-module if and only if $D(k+1)=\sum_{i=1}^{k+1} \oplus N_{i}$ satisfies $(* *)$, but $D(k)$ does not.

Proof. Assume $[\Delta: \Delta(B)]=\mathrm{k}$. Let M be a maximal submodule of D $=D(k+1)$. Then we may assume that \bar{M} has the basis $\left\{\bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots, \bar{\alpha}_{k}\right\}$ as before. Since $[\Delta: \Delta(B)]=k$, there exists a set of elements $\left\{\tilde{y}_{i}\right\} \equiv=0$ of $\Delta(B)$ such

[^0]that $\sum \bar{\delta}_{i} \bar{y}_{i} \in \Delta(B)$. Then $\theta=\sum \alpha_{i} y_{i}=\left(\sum \widetilde{\delta}_{i} y_{i}, \tilde{y}_{1}, \cdots, \tilde{y}_{k}\right)$ is an element in M. Now all components of θ modulo $e J$ are elements in $\Delta(B)$. Therefore there exists a direct summand M_{1} of D such that $\bar{M}_{1}=(\theta R+J(D)) / J(D)$ by Lemma 4. Hence M_{1} is a submodule of M, for $M \supseteq J(D)$. It is clear that M_{1} is isomorphic to some N_{i}, for $\bar{M}_{1}=(\theta R+J(D)) / J(D)$. Assume that $D(k+1)$ satisfies (**). Let $\left\{\delta_{0}=\bar{e}, \bar{\delta}_{1}, \delta_{2}, \cdots, \bar{\delta}_{k}\right\}$ be any set of elements in Δ and M a maximal submodule generated by $\left\{\alpha_{i}=\left(\widetilde{\delta}_{i}, o, \cdots, \stackrel{i}{i+1}, o, \cdots, o\right)\right\}_{i=1}^{k}$ and $J(D)$. Then M contains a direct summand M_{1} of D with $\left|M_{1}\right|=|e R / B|$ by assumption. We may assume that M_{1} is generated by $\beta=\alpha_{1} y_{1}+\alpha_{2} y_{2}+\cdots+\alpha_{k} y_{k}+j$, where the \bar{y}_{i} are in Δ and j in $J(D)$. We may assume that there exists an integer i such that $\tilde{y}_{j} \neq o$ for all $j \leqslant i$ and $\tilde{y}_{j^{\prime}}=o$ for all $j^{\prime}>i$. Then $\beta=\left(\widetilde{\delta}_{1} y_{1}+\widetilde{\delta}_{2} y_{2}+\cdots\right.$ $\left.+\widetilde{\delta}_{i} y_{i}+\tilde{j}_{1}, \tilde{e} y_{1}+\tilde{j}_{2}, \tilde{e} y_{2}+\tilde{j}_{3}, \cdots, \tilde{e} y_{i}+\tilde{j}_{i+1}, \tilde{j}_{i+2}, \cdots, \tilde{j}_{k+1}\right)$, where the j_{p} are in $e J / B$. Consider the natural epimorphism φ of $e R$ onto $\beta e R \subseteq M_{1}$ by setting $\varphi(r)=\beta r$ for $r \in e R$. Let x be in $\operatorname{ker} \varphi$. Then $\left(e+j_{2}\right) x \in B$. We may assume that $j_{2} \in e J e$ and $\left(e+j_{2}\right)^{-1}=e+j_{2}^{\prime}$, where j_{2}^{\prime} is in $e J e$. Hence $x \in\left(e+j_{2}^{\prime}\right) B=B$, and so $\operatorname{ker} \varphi \subseteq B$, which implies $|e R / B|=\left|M_{1}\right| \geqslant|\beta e R|=|e R / \operatorname{ker} \varphi| \geqslant|e R / B|$, and so ker $\varphi=B$. Hence $\delta B \subseteq B,\left(e y_{2}\right) B=B, \cdots$ and $\left(e y_{i}\right) B=B$ provided $\bar{\delta}=\left(\bar{\delta}_{1}+\bar{\delta}_{2} \bar{y}_{2}\right.$ $\left.+\cdots \bar{\delta}_{i} \bar{y}_{i}\right) \neq o$ (note that $j_{p} B=0$). Therefore $[\Delta: \Delta(B)] \leqslant k$. Thus we obtain the lemma from the above.

We note that if $D(i)$ satisfies $(* *)$, then $D(i)$ does for all $i \geqslant j$ (cf. §3). Hence we have the following corollary.

Corollary. $[\Delta: \Delta(B)]=k$ implies that k is the minimal integer among k^{\prime} such that $D\left(k^{\prime}+1\right)$ satisfies $(* *)$, where $D\left(k^{\prime}+1\right)=\sum_{i=1}^{k+1} \oplus N_{i}$ and $N_{i}=e R / B$ for all i.

Proposition 6. Let A and B be submodules of eJ contained in $r_{R}(e J e)$ and with $|A|=|B|$ and $[\Delta: \Delta(B)]=k$.
i) There exists a unit element x in eRe such that $x B=A$ if and only if k $D(k+1)=e R / A \oplus e R / \overbrace{B \oplus \cdots \oplus e R} / B$ satisfies $(* *)$.
ii) If eJ is an irredundant sum of $\left\{B=B_{1}, B_{2}, \cdots, B_{t+1}| | B_{i}|=|B|\right.$ for all i\} and i) is satisfied for any pair (B_{i}, B_{j}), then $k \geqslant t+1$.

Proof. i). If there exists a unit x such that $x B=A, e R / A \approx e R / B$. Hence $D(k+1)$ satisfies ($* *$) by Lemma 5. Conversely, we assume that $D(k+1)$ k
$=e R / A \oplus e R / \overbrace{B \oplus \cdots \oplus e R} B$ satisfies ($* *$). Let M be a maximal submodule of D such that $\bar{M}=\left\langle\bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots, \bar{\alpha}_{k}\right\rangle$, where $\alpha_{i}=\left(\delta_{i}, o, \cdots, o, e_{i}, o, \cdots, o\right)$ and $\left\{\delta_{1}, \bar{\delta}_{2}, \cdots, \bar{\delta}_{k}\right\}$ is linearly independent over $\Delta(B)$. Then M contains a direct summand M_{1} generated by $\beta+j$, where $\beta=\left(\sum \tilde{\delta} y_{i}, \tilde{e}, \tilde{y}_{2}, \cdots, \tilde{y}_{k}\right)$. From the similar argument to the proof of Lemma 5 , we have $\left(\sum \delta_{i} y_{i}\right) B \subseteq A$ and $\sum \delta_{i} y_{i}$ $=\bar{\delta}_{i}+\sum_{i \geqslant 2} \widehat{\delta}_{i} y_{i} \neq 0$. ii). Let $e J=B_{1}+B_{2}+\cdots+B_{t+1}$ be an irredundant sum.

Then there exists a unit element x_{i} of $e R e$ such that $x_{i} B_{1}=B_{i}$ and $e J=e B_{1}$ $+\sum_{i=2}^{t+1} x_{i} B_{1}$. Therefore $\left\{\bar{x}_{1}=\bar{e}, \bar{x}_{2}, \cdots, \bar{x}_{s+1}\right\}$ is linearly independent over $\Delta(B)$, and so $[\Delta: \Delta(B)] \geqslant t+1$.
ii) Case $e J^{2}=0$.

From now on we assume $e J^{2}=0$. Then $e J=\sum_{i=1}^{t} \oplus A_{i}$, where the A_{i} are simple. We shall study the case $t=2$ in the above. In this case ($* *$) is equivalent to
$(* *)_{2} \quad$ Every maximal submodule of a direct sum $D(3)$ of three serial modules (of length two) contains a direct summand of $D(3)$.
(2 in $(* *)_{2}$ means the length of the serial modules in $D(3)$.)
Case I. $\quad A_{1} \approx A_{2}$.
Then there exists a simple right ideal A_{3} such that $A_{1} \oplus A_{2}=A_{1} \oplus A_{3}=$ $A_{2} \oplus A_{3}$. Put $e J=A_{1} \oplus A_{2} \oplus B, \quad N_{2}=e R /\left(A_{1} \oplus B\right), \quad N_{2}=e R /\left(A_{3} \oplus B\right)$ and $N_{3}=$ $e R /\left(A_{1} \oplus B\right)$.

Case II. $|e J| \geqslant 3$.
Put $e J=A_{1} \oplus A_{2} \oplus A_{3} \oplus B, \quad N_{1}=e R /\left(A_{2} \oplus A_{3} \oplus B\right), \quad N_{2}=e R /\left(A_{1} \oplus A_{3} \oplus B\right)$ and $N_{3}=e R /\left(A_{1} \oplus A_{2} \oplus B\right)$.

In either case we put $D=N_{1} \oplus N_{2} \oplus N_{3}$. We take a maximal submodule M^{\prime} of D generated by ($\tilde{e}, \tilde{k}_{1}, \tilde{o}$) and ($\tilde{o}, \tilde{e}, \tilde{k}_{2}$), where $\bar{k}_{1} \neq o$ and $\bar{k}_{2} \neq 0 . \quad M^{\prime}$ being maximal in D, there exists a unique maximal submodule M of D such that $M \subseteq J(D)$ and $\bar{M}=M^{\prime}$. From now on, we assume $(* *)_{2}$. Then M contains a direct summand M_{1} with $\left|M_{1}\right|=2 . \quad M$ is generated by ($\left.\tilde{e}, \tilde{k}_{1}, \tilde{o}\right)$, $\left(\tilde{o}, \tilde{e}, \tilde{k}_{2}\right)$ and $J(D)$. Hence M_{1} is generated by an element

$$
\begin{equation*}
\alpha=\left(\tilde{e}, \tilde{k}_{1}, \tilde{o}\right) x+\left(\tilde{o}, \tilde{e}, \tilde{k}_{2}\right) y+j, \tag{2}
\end{equation*}
$$

where x or y is not in J and j is in $J(D)$. Since R is basic, we may assume that x and y are in $e R e$ as above. Here we shall observe the element α of the form $k_{1}=k_{2}=e$ in (2), dividing into three cases:
i) y is in $e J e$, ii) x is in $e J e$ and iii) x and y are units in $e R e$.

Case i). $\left.\quad M_{1} \supseteq \alpha x^{-1} A_{1}=\left\{\tilde{a}, \tilde{k}_{1} \tilde{a}, o\right) \mid a \in A_{1}\right\} \neq 0 \quad$ and $\quad M_{1} \supseteq \alpha x^{-1} A_{2} \supseteq\left(0 \tilde{A}_{2}\right.$, $-) \neq 0$. Hence $\left|M_{1}\right| \geqslant 3$.

Case ii). We have similarly $\left|M_{1}\right| \geqslant 3$.
Thus we have the following lemma.
Lemma 7. Assume $(* *)_{2}$. Let $D=N_{1} \oplus N_{2} \oplus N_{3}$ be as in Cases I and II and M the maximal submodule of D given as above. Then there exists a hollow direct summand M_{1} of M with $\left|M_{1}\right|=2$, whose generator α is of the form in Case iii).

Lemma 8. Assume ($* *)_{2}$. In Case I , there exists a unit x in eRe satisfying $x B=B$ and $x A_{1} \equiv A_{2}(\bmod B)$, where eJ $=A_{1} \oplus A_{2} \oplus B$.

Proof. Let A_{i}, N_{i} and B be as in Case I. Then there exists α of Case iii) by Lemma 7, which generates a hollow direct summand M_{1} of M with $\left|M_{1}\right|$ 2. We may assume that M_{1} contains $\alpha=(\tilde{e}, \tilde{e}+\tilde{y}, \tilde{y})+j$ and y is a unit in $e R e$. Then $\alpha A_{1}=\left\{\left(\tilde{a}_{1},(\tilde{e}+\tilde{y}) a_{1}, \tilde{y} a_{1}\right) \mid a_{1} \in A_{1}\right\} \neq 0$. Assume $y B \neq B$. Then there exists $b \neq o$ in B such that $y b=a_{1}+a_{2}+b^{\prime}$, where a_{i} is in A_{i}, b^{\prime} in B and $a_{1}+a_{2} \neq o$. Then $\alpha b=(\tilde{o},(\tilde{e}+\tilde{y}) b, \tilde{y} b)=\left(\tilde{o}, \tilde{a}_{1}+\tilde{a}_{2}, \tilde{a}_{2}\right) \neq o$, and so $\left|M_{1}\right| \geqslant 3$, a contradiction. Therefore $y B=B$. Similarly, $\alpha A_{2}=\left(0,-, \tilde{y} A_{2}\right)=0$, and so $y A_{2} \subseteq A_{1} \oplus B$. Since $y B=B, y A_{2} \equiv A_{1}(\bmod B)$.

Lemma 9. If $|e J| \geqslant 3$, all the simple right ideals in $e R$ are isomorphic to one another provided that $(* *)_{2}$ is satisfied.

Proof. Assume $|e J| \geqslant 3$ and $A_{1} \approx A_{3}$ for simple right ideals A_{1} and A_{3} in $e J$. Since $|e J| \geqslant 3$, we have $e J=A_{1} \oplus A_{2} \oplus A_{3} \oplus B$ as in Case II. Let M_{1} and α be as above. Then $\alpha A_{1} \neq 0$. Let $y a_{3}=\beta_{1}+\beta_{2}+\beta_{3}+b^{\prime}$, where b^{\prime} is in B and β_{i}, a_{i} are in A_{i}. Since $A_{1} \approx A_{3}, \beta_{1}=0$. Hence, since $\left|M_{1}\right|=2$, $\alpha a_{3}=\left(o, \tilde{\beta}_{2}+\tilde{a}_{3}, \tilde{\beta}_{3}\right)=o$ implies

$$
\begin{equation*}
\beta_{1}=\beta_{2}=\beta_{3}=o \tag{3}
\end{equation*}
$$

Therefore $y A_{3} \subseteq B$. Let $y b=a_{1}+a_{2}+a_{3}+b^{\prime}$, where b, b^{\prime} are in B and a_{i} in A_{i}. Then $\alpha b=\left(\tilde{o}, \tilde{a}_{2}, \tilde{a}_{3}\right)=o$ by the assumption $\left|M_{1}\right|=2$. Hence $a_{2}=a_{3}=o$, and so $y B \subseteq B \oplus A_{1}$. Let π be the projection of $B \oplus A_{1}$ onto A_{1}. Since $\pi y B=A_{1}$ (note that $y A_{3} \subseteq B$ implies $y B \neq B$), $B=A_{1}^{\prime} \oplus B_{1}$, where $A_{1}^{\prime} \approx A_{1}$ and $B_{1}=\operatorname{ker} \pi y$. Hence $y B_{1} \subseteq B$. Since $y A_{3} \subseteq B$ as above, and $A_{3} \approx y A_{3} \approx A_{1}^{\prime}$, $y A_{3} \subseteq B_{1}$. Put $B_{2}=y A_{3}+y^{2} A_{3}+\cdots+y^{n} A_{3}=y A_{3}+\cdots+y^{n} A_{3}+y^{n+1} A_{3}$ for some n. Since $y B_{1} \subseteq B$ and $y^{k} A_{3} \approx A_{1}^{\prime}, y^{k} A_{3} \subseteq B_{2}=y B_{2} \subseteq B_{1}$ by the above fact and induction on k of $y^{k} A_{3}$, which is a contradiction, for $A_{3} \ddagger B_{2}, y A_{3} \subset B_{2}$ and $y B_{2}=B_{2}$.

Proposition 10. Assume $(* *)_{2}$ and $e J^{2}=0$. If $|e J| \geqslant 3, e R A_{1}=e J$, where A_{1} is a simple right ideal in eJ. Hence eJ is a simple two-sided ideal of R.

Proof. Put $e J=e R A_{1} \oplus B$. Assume $B \neq 0$. Put $B=A_{2} \oplus B_{0}$ and $e R A_{1}=$ $A_{1} \oplus C_{0}$. Then $e J=A_{1} \oplus A_{2} \oplus\left(B_{0} \oplus C_{0}\right)$. By Lemma 8, there exists an x in $e R e$ such that $x A_{1} \subseteq A_{2} \oplus B_{0} \oplus C_{0} ; x a_{1}=a_{2}+b_{0}+c_{0}\left(a_{2} \neq o\right)$ for $a_{1} \neq o$ in A_{1}. Hence $x a_{1}-c_{0}=a_{2}+b_{0} \in e R A_{1} \cap B=0$, which is a contradiction.

Proposition 11. Assume $(* *)_{2}$ and $e J^{2}=0$. There exist two simple right ideals not isomorphic to each other in eJ or $|e J|=1$ if and only if $\Delta=\Delta\left(A_{1}\right)$ for a simple right ideal A_{1}. In this case, eJ $=A_{1} \oplus A_{2}$ or $A_{2}=0$.

Proof. This is clear from Lemmas 8 and 9.

3. Main theorems

Let R be a right artinian ring with identity. We have shown in [5], Corollary 3 that R is a right serial ring if and only if

I Every submodule of a finite direct sum of hollow (serial) modules is also a direct sum of hcllow modules, and

II R is a right $Q F-2$ ring.
We shall study, in this section, a ring R satisfying Condition I. It is clear that Condition I is preserved by Morita equivalence, and hence we may assume that R is a basic ring. Then if $R=\sum \oplus e_{i} R$ for primitive idempotents e_{i}, $e_{j} R e_{i}=e_{i} J e_{j}$ for $i \neq j$ and $e_{i} R e_{i} / e_{i} J e_{i}$ is a division ring.

If every finitely generated indecomposable R-module is hollow, R is called a ring of right local type following Tachikawa [8] (see [7]). Now we assume that every indecomposable injective module is finitely generated (e.g. R is an algebra of finite dimension over a field, cf. [6]). It is clear that if R is of right local type, then R satisfies Condition I and every indecomposable injective module is hollow. Conversely, we assume the above two conditions. Let M be a finitely generated indecomposable module. Then the injective envelope of M is a finite direct sum of indecomposable injectives, which are hollow. Hence M is hollow by Condition I, and so R is a ring of right local type.

It is not easy for the author to give a characterization of R with Condition I. Hence we shall restrict ourselves to a case $J^{2}=0$. From now on, we always assume $J^{2}=0$. In this section we shall add one more assumption: $|e J| \leqslant 4$ for every primitive idempotent e.

Theorem 12. Let R be a right artinian ring with $J^{2}=0$. Assume $|e J| \leqslant 4$ for every primitive idempotent e. Then R satisfies Condition I if and only if eJ has one of the following forms:
i) $e J=A_{1}$.
ii) $e J=A_{1} \oplus A_{2} ; A_{1} \not \approx A_{2}$.
iii) $e J=A_{1} \oplus A_{2} ; A_{1} \approx A_{2}$ and a), for any right ideals A and A^{\prime} with $|e R| A \mid$ $=\left|e R / A^{\prime}\right|=2$, eR $/ A \approx e R / A^{\prime}$; i.e. $A=x A^{\prime}$ for a unit element x in eRe and b) $[\Delta: \Delta(A)]=2$.
iv) $e J=A_{1} \oplus A_{2} \oplus A_{3} ; A_{1} \approx A_{2} \approx A_{3}$ and iii-a) and iii)-b) are satisfied for right ideals A^{\prime} in eJ with $\left|e R / A^{\prime}\right|=2$ and a), for any right ideals B, B^{\prime} in eJ with $|e R / B|=\left|e R / B^{\prime}\right|=3, e R / B \approx e R / B^{\prime}$ and b$)\left[\Delta: \Delta\left(B_{1}\right)\right]=3$, where $B_{1}=A_{1} \oplus A_{2}$.
v) $e J=A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4} ; A_{1} \approx_{2} A \approx A_{3} \approx A_{4}$ and iii)-a), iii)-b) and iv)-a), iv)-b) are satisfied for right ideals A and B with $|e R| A \mid=2$ and $|e R / B|=3$, respectively and a), for any right ideals C, C^{\prime} of eJ with $|e R / C|=\left|e R / C^{\prime}\right|=4$, $\left.e R / C \approx e R / C^{\prime}, \mathrm{b}\right)[\Delta: \Delta(C)]=4$ and c$) \operatorname{End}_{R}\left(A_{1}\right)=\Delta\left(A_{1}\right)$, where the A_{i} are simple right ideals in $e R, \Delta=e$ Re/eJe and $\Delta(A)=\{x \in \Delta \mid x A \subseteq A\}$.

Proof of "Only if" part.

i), ii) and iii).

We assume Condition I, and hence (*) and $(* *)_{2}$. We may assume $e J=A_{1} \oplus A_{2}$ and $A_{1} \approx A_{2}$. Let A_{3} be a simple right ideal in $e J$. Then $A_{1}=A_{3}$ or $e J=A_{1} \oplus A_{3}$. It is clear that $A_{1} \approx A_{3}$. Hence there exists a unit element x in $e R e$ such that $x A_{1}=A_{3}$ by Lemma 8. Therefore $\left[\Delta: \Delta\left(A_{1}\right)\right]=2$ by Lemma 3 and Corollary to Lemma 5.
iv) From now on, in this paragraph, we shall assume that R satisfies Condition I and that $e J=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n} ; A_{1} \approx A_{i}$ for all i. Hence $D=\sum_{i=1}^{t+1} \oplus N_{i}$ satisfies ($* *$) by Lemma 3, where $N_{i} \approx e R / C_{i}$ and $\left|N_{i}\right|=t$.

Lemma 13. Let A_{1} and B_{1} be right ideals in eJ such that $\left|A_{1}\right|=1$ and $\left|B_{1}\right|=n-1$. Then $\left[\Delta: \Delta\left(A_{1}\right)\right]=n$ and $\left[\Delta: \Delta\left(B_{1}\right)\right]=2$.

Proof. Let $\left[\Delta: \Delta\left(A_{1}\right)\right]=m$ and $\Delta=\Delta\left(A_{1}\right) \oplus x_{2} \Delta\left(A_{1}\right) \oplus \cdots \oplus x_{m} \Delta\left(A_{1}\right)$. Then $e J=\Delta A_{1}=A_{1}+\sum_{i \leqslant 2}^{m} x_{i} A_{1}$ by Proposition 10, provided $n \geqslant 3$ (note if $n=2, A_{1} \approx B_{1}$). Hence $m \geqslant n$. On the otner hand, $m \leqslant n$ by Lemma 3 and Corollary to Lemma 5 , and hence $m=n$. It is clear from Lemma 5 that $\left[\Delta: \Delta\left(B_{1}\right)\right] \leqslant 2$. If $n=2$ and $\Delta\left(B_{1}\right)=\Delta, B_{1}$ is a character submodule of $e J$, which contradictions the assumption: $A_{1} \approx A_{i}$ by Lemma 8 . Hence if $n=2,\left[\Delta: \Delta\left(B_{1}\right)\right]=2$. If $n \geqslant 3, e J=$ $\Delta A_{1}=\Delta B_{1}$ by Proposition 10. Hence $\left[\Delta: \Delta\left(B_{1}\right)\right]=2$.

Lemma 14. Let A_{1}, A_{2} and B_{1}, B_{2} be as in Lemma 13, respectively. Then there exists a unit x in eRe such that $x A_{1}=A_{2}\left(x B_{1}=B_{2}\right)$.

Proof. This is clear from Lemma 13 and Proposition 6.
Thus we have shown the "Only if" part for the case $|e J|=3$.
v). We shall show the "Only if" part for $|e J|=4$. It is remained to show $\left[\Delta: \Delta\left(B_{1}\right)\right]=3$ and $\operatorname{End}_{R}\left(A_{1}\right)=\Delta\left(A_{1}\right)$, where $B_{1}=A_{1} \oplus A_{2} . \quad\left[\Delta: \Delta\left(B_{1}\right)\right] \leqslant 3$ by Lemma 3 and Corollary to Lemma 5. Hence we may show by Proposition 6 that, for B in $e J$ with $|B|=2$, there exists a unit element y in $e R e$ such that $y B_{1}=B$, for $e J$ is an irredundant sum of $B_{1}+\left(A_{1} \oplus A_{3}\right)+\left(A_{1} \oplus A_{4}\right)$. Since $\Delta B_{1}=e J$ by Proposition $10, \Delta \neq \Delta\left(B_{1}\right)=\Delta_{2}$. Then there exist two elements \bar{b}, \bar{c} in Δ which are independent over Δ_{2} and \bar{a} in $\Delta-\Delta_{2}^{\prime}$, where $\Delta_{2}^{\prime}=\Delta(B)$. Put $D=e R / B \oplus e R / B_{1} \oplus e R / B_{1}$ (not necessarily $n=4$, but $\left|B_{1}\right|=|B|=n-2$). We shall consider three elements in D as before: $\quad \alpha_{1}=(\tilde{a}, \tilde{e}, \tilde{o}, \tilde{o}), \alpha_{2}=(\tilde{b}, \tilde{o}, \tilde{e}, \tilde{o})$ and $\alpha_{3}=(\tilde{c}, \tilde{o}, \tilde{o}, \tilde{e})$. By Lemma 3 we can find a cyclic submodule M_{1} with $\left|M_{1}\right|=3$ containing $\beta^{\prime}=\beta+j$, where $\beta=\sum_{i=1}^{3} \alpha_{i} y_{i}$ and $j \in J(D)$. We shall show from the choice of $\{\bar{a}, \bar{b}, \bar{c}\}$ that we may assume that two elements of $\left\{y_{i}\right\}$ are not in eJe. If $\bar{y}_{2}=\bar{y}_{3}=o$, assuming $\bar{y}_{1}=\bar{e}$, we have $|\beta C|=\mid\{(\tilde{a} c, \tilde{o}, \tilde{o}, \tilde{o}) \mid c \in C\}$ $\geqslant 2$, where $e J=B \oplus C$. On the other hand, $\beta B=(\tilde{a} B, 0,0,0) \neq 0$, and hence
$\left|J\left(M_{1}\right)\right| \geqslant|\beta C|+|\beta B| \geqslant 3$, which is a contradiction. If $\bar{y}_{1}=\bar{y}_{3}=o,\left|\beta C^{\prime}\right| \geqslant 2$, where $e J=B_{1} \oplus C^{\prime}$, and hence $\beta B_{1}=\left(\tilde{b} B_{1}, 0,0,0\right)$ must be zero by the similar argument as above. Hence $b B_{1}=B$. Similarly, if $\bar{y}_{1}=\bar{y}_{2}=o, c B_{1}=B$. Hence we may assume that some two elements of $\left\{y_{i}\right\}$ are not in eJe. Assume \bar{y}_{1} $\neq o$ and $\bar{y}_{2} \neq o$. Then we may assume $\beta=\left(\tilde{a}+\tilde{b} y_{2}+\tilde{c} y_{3}, \tilde{e}, \tilde{y}_{2}, \tilde{y}_{3}\right)$. Since $\beta C=(-, \tilde{C},-,-),|\beta C| \geqslant 2$. Hence $\beta B=\left(-, 0, \tilde{y}_{2} B,-\right)=0$. Therefore $y_{2} B=B_{1}$. We have the same situation for $\bar{y}_{1} \neq o$ and $\bar{y}_{3} \neq 0$. Finally, assume $\bar{y}_{1}=0, \bar{y}_{2} \neq o$ and $\bar{y}_{3} \neq o$. Then $\beta=\left(\tilde{b}+\tilde{c} y_{3}, \tilde{o}, \tilde{e}, \tilde{y}_{3}\right)$. As above, $\beta B_{1}=0=$ $\left.\left\{\left(\tilde{b}+\tilde{c} y_{3}\right) b_{1}, \tilde{o}, \tilde{o}, \quad \tilde{y}_{3} b_{1}\right) \mid b_{1} \in B_{1}\right\}$. Hence $\left(\bar{b}+\bar{c} y_{3}\right) B_{1} \subseteq B$ and $y_{3} B_{1} \subseteq B_{1}$, which implies that \bar{y}_{3} is in Δ_{2}. Since \bar{b} and \bar{c} are independent over $\Delta_{2}, \bar{b}+\bar{c} \bar{y}_{3} \neq o$ and so $b+c y_{3}$ is a unit element. Therefore $\left[\Delta: \Delta_{2}\right]=3$ by Proposition 6.

From the above argument we have the following lemma.
Lemma 15. $[\Delta: \Delta(B)]=3$, where $B \subseteq e J$ and $|B|=n-2$.
Lemma 16. $\operatorname{End}_{R}\left(A_{1}\right)=\Delta\left(A_{1}\right)$ if $|e J|=4$, where A_{1} is a simple right ideal in eJ.

Proof. Let f be a non-zero element in $\operatorname{Hom}_{R}\left(A_{1}, A_{3}\right)$. Put $A_{3}^{\prime}=\left\{f^{-1}\left(a_{3}\right)+\right.$ $\left.a_{3} \mid a_{3} \in A_{3}\right\} \subseteq A_{1} \oplus A_{3}$. Then $B \oplus A_{3}^{\prime}=B \oplus A_{3}$, where $B=A_{1} \oplus A_{2}$. There exist \bar{a} and \bar{b} in Δ such that $a(B)=A_{4} \oplus A_{3}^{\prime}$ and $b\left(A_{1}\right)=A_{3}$ by Proposition 6 and Lemmas 14 and 15. Let M be a maximal submodule of $D=e R / B \oplus e R / B \oplus e R / A_{1}$ whose basis modulo $J(D)$ is $\left\{\bar{\alpha}_{1}=(\bar{a}, \bar{e}, o), \bar{\alpha}_{2}=(\bar{b}, o, \bar{e})\right\}$. We define an epimorphism $\varphi: e R \oplus e R \rightarrow \alpha_{1} R+\alpha_{2} R \subset M$ by setting $\varphi\left(r^{\prime}+s^{\prime}\right)=\alpha_{1} r^{\prime}+\alpha_{2} s^{\prime}$ $=\left(\tilde{a} r^{\prime}+\tilde{b} s^{\prime}, \tilde{r}^{\prime}, \tilde{s}^{\prime}\right)$ for $r^{\prime}, s^{\prime} \in e R$. Let $r+s$ be in ker φ. Then r is in B and s in A_{1}. Since $a(B)=A_{4} \oplus A_{3}^{\prime}, B=B_{1} \oplus B_{2}$, where $B_{1}=a^{-1}\left(A_{4}\right)$ and $B_{2}=a^{-1}\left(A_{3}^{\prime}\right)$. Now $a r+b s \in B=B_{1} \oplus B_{2}$. Put $r=b_{1}+b_{2} ; b_{i} \in B_{i}$. Then $a r+b s=a b_{1}+a b_{2}+b s$ $\in B$, where $a b_{2} \in A_{3}^{\prime}$ and $b s \in A_{3}$. Since $a b_{2} \in A_{3}^{\prime}, a b_{2}=f^{-1}(x)+x$ for some $x \in A_{3}$. Hence $o \equiv a b_{1}+a b_{2}+b s=f^{-1}(x)+(x+b s)+a b_{1}(\bmod B)$ implies $x=-b s$ and $b_{1}=o$, and so $-a b_{2}=f^{-1}(b s)+b s$. Thus we obtain an isomorphism $g: A_{1} \rightarrow B_{2}$ by setting $g(s)=b_{2}$. Hence ker $\varphi=\left\{g(s)+s \mid s \in A_{1}\right\} \subseteq e R \oplus e R$ and $\left(\alpha_{1} R+\alpha_{2} R\right) \approx$ $(e R \oplus e R) / \operatorname{ker} \varphi$. On the other hand, $|M|=9=|(\epsilon R \oplus e R) / \operatorname{ker} \varphi|$. Hence $M \approx(e R \oplus e R) /$ ker φ. Now M is a direct sum of hollow modules by assumption and M is decomposable for $\bar{M}=\bar{\alpha}_{1} R \oplus \bar{\alpha}_{2} R$. Therefore g is extendible to an element in $\operatorname{Hom}_{R}(e R, e R)=e R e$, say $g(s)=c s ; c \in \Delta$ by [2], Theorem 2.5 and [7], Lemma 1.2. $g(s)=b_{2}=c s$ and $(-a c-b) s=f^{-1}(b s)$. Accordingly, f is given by the left-sided multiplication of $\left(-a c b^{-1}-e\right)^{-1}$. Let h be in $\operatorname{Hom}_{R}\left(A_{1}, A_{1}\right)$. Then $b h \in \operatorname{Hom}_{R}\left(A_{1}, A_{3}\right)$. Hence $b h$ is given by an element c^{\prime} in Δ from the above.

Proof of "If" part.

We assume the conditions in Theorem 12 and we shall show that R satisfies Condition I. In order to see this we need several lemmas below.

Let N_{1} and N_{2} be hollow modules. Assume that $N_{1}=e R$ and $N_{2}=e R / A$ for a right ideal A in $e J$. Let f^{\prime} be an element in $\operatorname{Hom}_{R}(e R / e J, e R / e J)$. Then f^{\prime} is given by the left-sided multiplication of an element \bar{k} in eRe/eJe, where k is in $e R e$. Let ν be the natural epimorphism of $e R$ to $e R / e A$. Then $\nu k \in$ $\operatorname{Hom}_{R}(e R, e R / e A)$ induces f^{\prime}. Hence we have the following lemma.

Lemma 17. Every element in $\operatorname{Hom}_{R}(e R / e J, e R / e J)$ is lifted to an element in $\operatorname{Hom}_{R}(e R, e R / e A)$.

By N_{i} we denote the hollow module of the form $e / e_{i} B$, where B is a right ideal. Let $T=\sum_{I_{1}} \oplus N_{1 i} \oplus \sum_{I_{2}} \oplus N_{2 i} \oplus \cdots \oplus \sum_{I_{n}} \oplus N_{n i}$, and let M be a maximal submodule of T. Then $M \supseteq J(T)$ and $\bar{T}=T / J(T) \supseteq \bar{M}=M / J(T)$. We shall show by induction on $\sum_{i}\left|I_{i}\right|$ that M is a direct sum of hollow modules. Since $\sum_{I_{i}} \oplus \bar{N}_{i j}$ is the homogeneous component of \bar{T} and \bar{M} is maximal, $\bar{M}=$ $\sum \oplus\left(\bar{M} \cap \sum_{r_{i^{\prime}}} \oplus \bar{N}_{i j}\right)$ and $\bar{M} \supseteq \sum_{I_{i^{\prime}}} \oplus \bar{N}_{i^{\prime} j}$ except some i, say $i=1$. Therefore $M=$ $M_{1} \oplus \sum_{i \geqslant 2} \sum_{I_{i}} \oplus N_{i j}$ and M_{1} is a maximal submodule of $\sum_{I_{1}} \oplus N_{1 i}$. Hence we may assume $n=1$; i.e. $T=\sum_{I} \oplus N_{i}$ and $N_{i} \approx e_{1} R / \varepsilon_{1} B_{i}$. Let π_{i} be the projection of T onto N_{i}. If $\bar{\pi}_{i}(\bar{M})=0$ for some i, $M=J\left(N_{i}\right) \oplus \sum_{j \neq i} \oplus N_{j}$ and $J\left(N_{j}\right)$ is a direct sum of simple modules by the form of N_{i}. Hence M is a direct sum of hollow modules. Therefore we assume $\bar{\pi}_{i}(\bar{M}) \neq 0$ for all i. Then we have the following lemma.

Lemma 18. Let T, M and N_{i} be as above. If N_{1} is either isomorphic to $e R$ or $e R / e J$, then M contains a non-zero direct summand of T.

Proof. Assume that N_{1} is simple. Since M is maximal, $M \supseteq N_{1}$ or $M \oplus$ $N_{1}=T$. Next assume $N_{1}=e R$. Since $\bar{\pi}_{1}(\bar{M}) \neq 0, \bar{M}$ contains a simple submodule \bar{C} such that $\bar{\pi}_{i}(\bar{C}) \neq 0$. Furthermore every element in $\operatorname{Hom}_{R}\left(\bar{N}_{1}, \bar{N}_{i}\right)$ is liftable by Lemma 17 for all i. Therefore T contains a direct summand T_{1} isomorphic to N_{1} such that $\bar{T}_{1}=\bar{C}$ by Lemma 4. Since $M \supseteq J(T), M \supseteq T_{1}$.

Let T_{1} be a direct summand of T as in Lemma 18. Then $T=T_{1} \oplus T_{2} \supseteq M$ $=T_{1} \oplus\left(M \cap T_{2}\right)$ and $M \cap T_{2}$ is a maximal submodule of T_{2}.
i), ii) and iii).

Now $\left\{e R, e R / e J \text { and } \epsilon R / A_{1}\right\}_{e}$ or $\left\{e R, e R / e J, e R / A_{1} \text { and } e R / A_{2}\right\}_{e}$ is the representative set of hollow modules, accordingly as $\left\{A_{2}=0\right.$ or $\left.A_{1} \approx A_{2}\right\}$ or $\left\{A_{1} \approx A_{2}\right\}$. Hence it is sufficient to consider the case $N_{i}=e R / A_{1}$ or $e R / A_{2}$ for all i by Lemma 18. Under this assumption we shall show by induction on $|I|$ that M is a direct sum of hollow modules.

1) $A_{2}=0$.

Then A_{1} is a character submodule of $e R$. Hence T has the lifting pro-
perty of direct decompositions modulo the radical by [3], Theorem 3 (cf. Lemma 4), and so $M \approx J\left(N_{1}\right) \oplus \sum_{i \neq 1} \oplus N_{i}$.
2) $|I|=1$.

This is trivial.
3) $|I|=2$.

Let M be a maximal submodule of $D=e R / N_{1} \oplus e R / N_{2}$. Then $\bar{M}=\alpha R$ for some $\alpha \in M$. Since $\alpha R \Phi J(D)$ and $J(D)$ is semi-simple, $\alpha R+J(D)=\alpha R$ $\oplus C_{1} \oplus \cdots \oplus C_{i}$, where the C_{i} are simple. Hence $M=\alpha R \oplus C_{1} \oplus \cdots \oplus C_{i}$ for $\bar{M}=\alpha R$. We shall show the explicit form of αR in the following.
a) $A_{1} \approx A_{2}$.

Then A_{1} and A_{2} are character submodules.
a) $T=e R / A_{1} \oplus e R / A_{1}$ or $e R / A_{2} \oplus e R / A_{2}$.

We have the same situation as in 1).
b) $T=e R / A_{1} \oplus e R / A_{2}$.

We may assume $\bar{M}=\left\{\bar{x}+f(\bar{x}) \mid x \in e R / A_{1}, f \in \operatorname{Hom}_{R}\left(\overline{e R /} / A_{1}, \overline{e R /} A_{2}\right)=\right.$ $\left.\operatorname{Hom}_{R}(e R / e J, e R / e J)\right\} . f$ is given by the left-sided multiplication of an element \bar{z}, where z is in $e R e$. Take a mapping $\theta: e R \rightarrow T$ given by setting $\theta(a)=\nu_{1}(a)+\nu_{2}(z a)$, where $\nu_{i}: e R \rightarrow e R / A_{i}$ is the natural epimorphism for $i=1,2$. Then $\operatorname{ker} \theta=A_{1} \cap A_{2}=0$ provided $z \notin e J e$, and $\overline{\operatorname{im}} \theta=\bar{M}$. Hence $M=\operatorname{im} \theta \approx e R$ for $|M|=|e R|=3$. (If $z \in e J e$, it is clear that $M=e R / A_{1} \oplus e J / A_{2}$.)

乃) $\quad A_{1} \approx A_{2}$ and hence $e R / A_{1} \approx e R / A_{2}$.
Let M and z be as above. If z is in $\Delta\left(A_{1}\right), f$ is liftable. Hence $M \approx$ $e R / A_{1} \oplus e J / A_{1}$. If $z \notin \Delta\left(A_{1}\right), \bar{z}^{-1}\left(A_{1}\right) \neq A_{1}$, and so $A_{1} \cap \bar{z}^{-1}\left(A_{1}\right)=0$. We can define the $\theta: e R \rightarrow T$ as in i). Then $\operatorname{ker} \theta=A_{1} \cap \bar{z}^{-1}\left(A_{1}\right)=0$. Therefore $M \approx e R$.
4) $\quad|1|=3 . \quad \alpha) \quad A_{1} \approx A_{2}$.
a) $T=e R / A_{1} \oplus e R / A_{1} \oplus e R / A_{1}$ or $T=e R / A_{2} \oplus e R / A_{2} \oplus e R / A_{2}$.
b) $T=e R / A_{1} \oplus e R / A_{1} \oplus e R / A_{2}$.

Since $\bar{\pi}_{3}(\bar{M}) \neq 0, \bar{M}$ contains a simple submodule \bar{C} contained in $\overline{e R} / A_{1} \oplus$ $\overline{e R} / A_{1}$. Then $e R / A_{1} \oplus e R / A_{1}$ contains a direct summand T_{1} of T such that $\bar{T}_{1}=\bar{C}$ by 3$\left.)-\mathrm{a}\right)$. Then $M \supseteq T_{1}$. Let $T=T_{1} \oplus T_{2} \oplus e R / A_{2} \supseteq M=T_{1} \oplus\left(M \cap\left(T_{2} \oplus\right.\right.$ $\left.e R / A_{2}\right)$). Then M is a direct sum of hollow modules by 3).
B) $A_{1} \approx A_{2}$ and hence $\left[\Delta: \Delta\left(A_{1}\right)\right]=2$.

Let $T=e R / A_{1} \oplus e R / A_{1} \oplus e R / A_{1} \supseteq M$ be as above. Then M contains a direct summand of T by Proposition 6.

From the above argument we obtain the following lemma.
Lemma 19. Let $D=\sum_{i=1}^{3} \oplus N_{i}$ and $N_{i}=e R \mid A_{i}$ as above such that $\left|N_{i}\right|$ $=2$ for $i=1,2,3$, and e a primitive idempotent. Then under the conditions of Theorem 12, every maximal submodule of D contains a direct summand D_{1} of D with $\left|D_{1}\right|=2$.

We note that if $\bar{\pi}_{i}(\bar{M})=0, M=J\left(N_{1}\right) \oplus N_{2} \oplus N_{3}$, and so M contains the direct summand N_{2} of D. We shall show by induction on t that the content of Lemma 19 is true for t direct summands ($t \geqslant 3$).

Let N_{i} be as in Lemma 19 and $D=\sum_{i=1}^{t} \oplus N_{i}$. Assume $t \geqslant 4$. Let M be a maximal submodule of D. As is well known, \bar{M} contains a maximal submodule \bar{M}_{1} in $\bar{N}_{1} \oplus \bar{N}_{1} \oplus \bar{N}_{2} \oplus \stackrel{i}{\cdots} \bar{N}_{t}=\bar{D}_{0}$. Hence M contains a maximal submodule M_{1} in $N_{1} \oplus N_{2} \oplus \because \oplus N_{t}=D_{0}$. Since M_{1} contains a direct summand D_{0} of D_{1} by the induction hypothesis, M contains a direct summand D_{1} of D with $\left|D_{1}\right|=2$. Thus we can show, by 1)~4), Lemma 19 and induction on the number of direct summands of D, that every maximal submodule is a direct sum of hollow modules.

Now let P be a submodule of D and let M be a maximal submodule of D containing P. Then M is also a direct sum of hollow modules. Repeating this manner, we can show that P is a direct sum of hollow modules.
iv) We shall show the "If" part for $|e J|=3$.

Put $\Delta(i, k)=\left\{x \in \Delta \mid x\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{i}\right) \subseteq\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{k}\right)\right\}$ for $i<k$.
Lemma 20. We assume that $i) e R /\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{i}\right) \approx e R / B$ for any right ideal B in eJ with $|e R| B \mid=n-i+1$, where $n=|e J|$ and $i i)\left[\Delta: \Delta\left(A_{1} \oplus A_{2}\right.\right.$ $\left.\left.\oplus \cdots \oplus A_{i}\right)\right]=n-i+1$. Then $\left[\Delta(i, k): \Delta\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{i}\right)\right]=k-i+1$ as a right $\Delta\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{i}\right)$-module for $k>i$ (cf. Proposition 6).

Proof. Put $B_{0}=A_{1} \oplus \cdots \oplus A_{i-1}, B=B_{0} \oplus A_{i}$. Then there exists a unit element x_{i+j} in $e R e$ such that $x_{i+j} B=B_{0} \oplus A_{i+j}$ by i). Since $B+\sum_{t=i+1}^{n} x_{t} B$ is an irredundant sum, $\left(\Delta(B)+\sum x_{t} \Delta(B)\right)$ is a direct sum. Hence $\Delta=\Delta(B) \oplus \sum$ $\oplus x_{t} \Delta(B)$ by ii). Let $x=\delta_{0}+\sum x_{t} \delta_{t}$ be an element in $\Delta(i, k)$, where the δ_{i} are in $\Delta(B)$. Note that $x_{i+j} \delta_{i+j}(B)=B_{0} \oplus A_{i+j}$. Then $\delta_{l}=o$ for $l<k$, and so $x \in \Delta(B) \oplus x_{i+1} \Delta(B) \oplus \cdots \oplus x_{k} \Delta(B) \subseteq \Delta(i, k)$.

For the latter use, we assume that $|e J|=n$ and $B_{1}=A_{1} \oplus \cdots \oplus A_{n-2}$. Then the following cases 1) and 2) are trivial from the remark of case $|e J|=2$.

1) $D=e R / B_{1} \oplus e R / B_{1}$.

Let M be a maximal submodule of D and $\bar{\alpha}_{1}=(\bar{e}, \bar{a})$, a basis of \bar{M}. If \bar{a} is in $\Delta_{n-2}=\Delta\left(B_{1}\right)\left(\left[\Delta: \Delta_{n-2}\right]=3\right), M$ contains a direct summand of D by Lemma 4. If a is not in $\Delta_{n-2}, a^{-1} B_{1} \cap B_{1}=C$, where $|e R / C|=4$ or 5 . Then M contains an isomorphic image M_{1} of $e R / C$ with $\bar{M}=\bar{M}_{1}$. Hence $M=M_{1} \oplus M_{2}$, where M_{2} is simple.
2) $D=e R / B \oplus e R /\left(B_{1} \oplus A_{n-1}\right)$, where $B=B_{1}$ or $B=B_{1} \oplus A_{n-1}$.

Let M and α be as above. If $a B \subseteq B_{1} \oplus A_{n-1}, M$ contains a direct summand of D. Assume $a B \subseteq B_{1} \oplus A_{n-1}$. If $B=B_{1} \oplus A_{n-1}, \bar{a}^{-1}\left(B_{1} \oplus A_{n-1}\right) \cap\left(B_{1} \oplus A_{n-1}\right)=C$,
where C is a submodule of $B_{1} \oplus A_{n-1}$ with $|C|=d-2$. Then M contains an isomorphic image of $e R / C$, and hence $M \approx e R / C$. If $B=B_{1}, B_{1} \subseteq a^{-1}\left(B_{1} \oplus A_{n-1}\right)$ and so $\left|B_{1} \cap \bar{a}^{-1}\left(B_{1} \oplus A_{n-1}\right)\right|=n-3$. Then M contains an isomorphic image of $e R / C^{\prime}$, where $\left|C^{\prime}\right|=n-1$, and hence $M \approx e R / C^{\prime}$.
3) $D=e R / B_{1} \oplus e R / B_{1} \oplus e R / B_{1}$.

Let M be a maximal submodule of D. We shall show that M contains a non-zero direct summand of D. We may assume that \bar{M} has a basis $\left\{\bar{\alpha}_{1}=\left(\bar{a}^{\prime}, o, \bar{e}\right), \bar{\alpha}_{2}=\left(\bar{b}^{\prime}, \bar{e}, o\right)\right\}$ with $\bar{a}^{\prime} \bar{b}^{\prime} \neq o$. Assume $\bar{a}^{\prime}, \bar{b}^{\prime}$ and \bar{e} are dependent over $\Delta_{n-2}=\Delta\left(B_{1}\right)$. Then there exist \bar{x} and \bar{y} in Δ_{n-2} such that $\bar{a}^{\prime} x+\bar{b}^{\prime} y \in \Delta_{n-2}$ and $\bar{x} \neq o$ or $\bar{y} \neq o . \quad \theta=\alpha_{1} x+\alpha_{2} y=(\tilde{w}, \tilde{x}, \tilde{y})$ is in M, where $w=a^{\prime} x+b^{\prime} y$. Since all components of θ modulo $e J$ belong to Δ_{n-2}, M contains a direct summand M_{1} with $\bar{M}=\bar{\theta} R$ by Lemma 4. Next assume $\bar{a}^{\prime}, \bar{b}^{\prime}$ and \bar{e} are independent over Δ_{n-2}. We consider special elements β_{1}, β_{2} in D. Let $\beta_{1}=(\tilde{a}, \tilde{x}, \tilde{y})$ and $\beta_{2}=\left(\tilde{b}, \tilde{x}^{\prime}, \tilde{y}^{\prime}\right)$ be two elements in D, where neither \bar{a} nor \bar{b} belongs to Δ_{n-2}. Assume $\left(\begin{array}{ll}\bar{x} & \bar{x} \\ \bar{y} & \bar{y}\end{array}\right)$ is a unit matrix in $\left(\Delta_{n-2}\right)_{2}$. Then $\bar{\beta}_{1}$ and $\bar{\beta}_{2}$ are independent over Δ. First we consider the following case: $a\left(B_{1}\right) \subseteq B_{1} \oplus A_{n-1}$ and $b\left(B_{1}\right) \subseteq$ $B_{1} \oplus A_{n}$. Since $B_{1} \oplus A_{n-1}=B_{1}+a\left(B_{1}\right)$ and $B_{1} \oplus A_{n}=B_{1}+b\left(B_{1}\right), a\left(B_{1}\right) \cap B_{1}=C_{1}$ and $b\left(B_{1}\right) \cap B_{1}=C_{2}$ are of length $n-3$. We shall define a homomorphism φ_{1} of $e R$ to D by setting $\varphi_{1}(r)=(\tilde{a} r, \tilde{x} r, \tilde{y} r)$. Let r be in $\operatorname{ker} \varphi_{1}$. Then $a r \in B_{1}$, $x r \in B_{1}$ and $y r \in B_{1}$. Since \bar{x} and \bar{y} are in Δ_{n-2} and $\bar{x} \neq o$ or $\bar{y} \neq o, r \in B_{1} \cap \bar{a}^{-1}\left(B_{1}\right)$ $=\bar{a}^{-1}\left(C_{1}\right)$.Hence φ_{1} induces a monomorphism of $e R / a^{-1}\left(C_{1}\right)$ to D. Similarly, we obtain a monomorphism φ_{2} of $e R / b^{-1}\left(C_{1}\right)$ to D. Next we shall show that $\beta_{1} R+\beta_{2} R=M^{\prime}$ is a maximal submodule of $D . \quad \beta B=\left(\tilde{a} B_{1}, 0,0\right)=\left(\widetilde{E_{1}}, 0,0\right)$, where $a\left(B_{1}\right)=C_{1} \oplus E_{1}$ and E_{1} is simple and $\beta_{2} B_{1}=\left(\tilde{b} B_{1}, 0,0\right)=\left(\widetilde{E}_{2}, 0,0\right)$, where $b\left(B_{1}\right)=C_{2} \oplus E_{2}$. Since $B_{1}+a\left(B_{1}\right)=B_{1} \oplus A_{n-1} \neq B_{1} \oplus A_{n}=B_{1}+b\left(B_{1}\right), \widetilde{E_{1}} \neq \widetilde{E_{2}}$. Let u and v be any elements in $A_{n-1} \oplus A_{n}$. Then $\beta_{1} u+\beta_{2} v=\left(\tilde{a} u+\tilde{b} v, \tilde{x} u+\tilde{x}^{\prime} v\right.$, $\left.\tilde{y} u+\tilde{y}^{\prime} v\right)$. Since $\left(\begin{array}{ll}\bar{x} & \bar{x}^{\prime} \\ \bar{y} & \bar{y}^{\prime}\end{array}\right)$ is a unit, $\beta_{1} u+\beta_{2} v=o$ if and only if $u=v=o$. Hence $M^{\prime} \supseteq J\left(M^{\prime}\right) \supseteq\left(\beta_{1} B \oplus \beta_{1} B \oplus \beta_{1}\left(A_{n-1} \oplus A_{n}\right) \oplus \beta_{2}\left(A_{n-1} \oplus A_{n}\right)\right)$, and so $M^{\prime} \supseteq J(D)$ for $|J(D)|=6$. Since $\bar{M}^{\prime}=\bar{\beta}_{1} R+\bar{\beta}_{2} R, M^{\prime}$ is a maximal submodule of D. Hence $\left|M^{\prime}\right|=8$. On the other hand, we have an epimorphism $\widetilde{\boldsymbol{q}}_{1} \oplus \widetilde{\mathscr{\Phi}}_{2}: e R / a^{-1}\left(C_{1}\right) \oplus$ $e R / b^{-1}\left(C_{2}\right) \rightarrow M^{\prime} . \quad\left|e R / \bar{a}^{-1}\left(C_{1}\right) \oplus e R / / \bar{b}^{-1}\left(C_{2}\right)\right|=8$ for $\left|\bar{a}^{-1}\left(C_{1}\right)\right|=\left|\bar{b}^{-1}\left(C_{2}\right)\right|=n-3$. Hence $\widetilde{\mathscr{q}}_{1} \oplus \widetilde{\mathscr{\rho}}_{2}$ is an isomorphism and M^{\prime} is a direct sum of hollow modules. Now we shall come back to the beginning. Assume $\bar{a}^{\prime}, \bar{b}^{\prime}$ and \bar{e} are independent over Δ_{n-2}. There exist $\bar{a}^{\prime \prime}, \bar{b}^{\prime \prime}$ in Δ such that $a^{\prime \prime}\left(B_{1}\right)=A_{1} \oplus \cdots \oplus A_{n-3} \oplus A_{n-1}$ and $b^{\prime \prime}\left(B_{1}\right)=A_{1} \oplus \cdots \oplus A_{n-3} \oplus A_{n}$ by assumption. Then $\bar{e}, \bar{a}^{\prime \prime}$ and $\bar{b}^{\prime \prime}$ are independent over Δ_{n-2}, for $e\left(B_{1}\right)+a^{\prime \prime}\left(B_{1}\right)+b^{\prime \prime}\left(B_{1}\right)$ is an irredundant sum. There exist x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$ in Δ_{n-2} such that $\bar{a}^{\prime \prime}=\bar{e} z+\bar{a}^{\prime} x+\bar{b}^{\prime} y$ and $\bar{b}^{\prime \prime}=\bar{e} z^{\prime}+$ $\bar{a}^{\prime} x^{\prime}+\bar{b}^{\prime} y^{\prime}$ by the assumption $\left[\Delta: \Delta_{n-2}\right]=3$. It is clear that $\left(\begin{array}{ll}\bar{x} & \bar{x}^{\prime} \\ \bar{y} & \bar{y}^{\prime}\end{array}\right)$ is a unit matrix in $\left(\Delta_{n-2}\right)_{2}$. Then M contains $\beta_{1}=\alpha_{1} x+\alpha_{2} y=\left(\tilde{a}^{\prime \prime}-\tilde{e} z, \tilde{x}, \tilde{y}\right)$ and $\beta_{2}=$
$\alpha_{1} x^{\prime}+\alpha_{2} y^{\prime}=\left(\tilde{b}^{\prime \prime}-\tilde{e} z^{\prime}, \tilde{x}^{\prime}, \tilde{y}^{\prime}\right) . \quad$ It is clear that $\left(a^{\prime \prime}-e z\right)\left(B_{1}\right) \subseteq B_{1} \oplus A_{n-1}$, $\left(b^{\prime \prime}-e z^{\prime}\right)\left(B_{1}\right) \subseteq B_{1} \oplus A_{n}$ and neither ($\bar{a}^{\prime \prime}-\bar{e} z$) nor ($\bar{b}^{\prime \prime}-\bar{e} z^{\prime}$) belongs to Δ_{n-2}. Hence, as was shown in the initial part, $M=\beta_{1} R+\beta_{2} R$ is a direct sum of hollow modules M_{i} with $\left|M_{i}\right|=4$.
4) $\quad D=e R / B_{1} \oplus e R / B_{1} \oplus e R /\left(B_{1} \oplus A_{n-1}\right)$.

We may assume that the maximal submodule \bar{M} has the basis $\left\{\bar{\alpha}_{1}=(\bar{e}, o, \bar{a})\right.$, $\left.\bar{\alpha}_{2}=(o, \bar{e}, \bar{b})\right\}$. Now $\left[\Delta / \Delta(n-2, n-1): \Delta_{n-2}\right]=1$ by Lemma 20 and the assumptions in Theorem 12. Hence there exists an element \bar{z} in Δ_{n-2} such that $\bar{a}+\bar{b} z \in \Delta(n-2, n-1)$. Then $\theta=\alpha_{1}+\alpha_{2} z=(\tilde{e}, \tilde{z}, \tilde{a}+\tilde{b} z)$ is an element in M. Therefore M contains a direct summand of D by Lemma 4.
5) $D=e R / B_{1} \oplus e R /\left(B_{1} \oplus A_{n-1}\right) \oplus e R /\left(B_{1} \oplus A_{n-1}\right)$.

Let $\left\{\bar{\alpha}_{1}=(a, o, \bar{e}), \bar{\alpha}_{2}=(\bar{b}, \bar{e}, o)\right\}$ be the basis of \bar{M}. Then there exist \bar{x}, \bar{y} in $\Delta_{n-1}=\Delta\left(B_{1} \oplus A_{n-1}\right)$ such that $\bar{x} \neq 0$ or $\bar{y} \neq 0$ and $\bar{a} x+\bar{b} y \in \Delta_{n-1}$ by the assumptions in Theorem 12. Since each component of $\theta=\alpha_{1} x+\alpha_{2} y=(\tilde{a} x+\tilde{b} y, \tilde{y}, \tilde{x})$ modulo $e J$ belongs to Δ_{n-1}, M contains a direct summand of D (consider two cases $\bar{a} x+\bar{b} y=0$ and $a x+\bar{b} y \neq 0$).
6) $D=e R /\left(B_{1} \oplus A_{n-1}\right) \oplus e R /\left(B_{1} \oplus A_{n-1}\right) \oplus e R /\left(B_{1} \oplus A_{n-1}\right)$.

Every maximal submodule M of D contains a direct summand M_{1} of D by Lemma 5.
7) $\quad D=e R / B_{1} \oplus e R / B_{1} \oplus e R / B_{1} \oplus e R / B_{1}$.

This is similar to 6).
8) $D=\epsilon R / B_{1} \oplus e R / B_{1} \oplus e R / B_{1} \oplus e R /\left(B_{1} \oplus A_{n-1}\right)$ and $D=e R / B_{1} \oplus e R / B_{1} \oplus e R /\left(B_{1} \oplus A_{n-1}\right) \oplus e R /\left(B_{1} \oplus A_{n-1}\right)$.
They are reduced to 4) or 5) (cf. the proof of Case $|e J|=2$).
9) $D=e R / B_{1} \oplus e R /\left(B_{1} \oplus A_{n-1}\right) \oplus e R /\left(B_{1} \oplus A_{n-1}\right) \oplus e R /\left(B_{1} \oplus A_{n-1}\right)$.

This is reduced to 6).
10) Let $D=\sum_{i=1}^{t} \oplus e R / C_{i}$, where $C_{i}=B_{1}$ or $B_{1} \oplus A_{n-1}$. If $t \geqslant 6$, every maximal submodule M of D has a direct summand of D by the assumptions of Theorem 12 and Proposition 6. Hence M is a direct sum of hollow modules from 1)~9) and by induction. Therefore R satisfies Condition I for $|e J|=3$ from the similar argument to Case $|e J|=2$.
v). We assume $|e J|=4$ and that the conditions of Theorem 12 are satisfied. We have many situations similar to those in Case iv), and so we shall give only some remarks in those cases. Let $\left\{N_{i}\right\}$ be a set of hollow modules such that $N_{i} \approx e R / C_{i}$ for some right ideal C_{i} in $e J$. Put $D=\sum_{I} \oplus N_{i}$. We shall show that every maximal submodule M of D is a direct sum of hollow modules. We shall do this by induction on $|I|$.

1) $|I| \leqslant 2$.

This is clear from the remark given in Case $|e J|=2$
Put $B_{1}=A_{1} \oplus A_{2}, C_{1}=A_{1} \oplus A_{2} \oplus A_{3}, \Delta_{1}=\Delta\left(A_{1}\right), \Delta_{2}=\Delta\left(B_{1}\right)$ and $\Delta_{3}=\Delta\left(C_{1}\right)$.
2) $|I|=3$.
a) $D=e R / A_{1} \oplus e R / A_{1} \oplus e R / A_{1}$.

Assume that \bar{M} has a basis $\left\{\bar{\alpha}_{1}=(\bar{a}, \bar{e}, o), \bar{\alpha}_{2}=(\bar{b}, o, \bar{e})\right.$ with $\left.\bar{a} \bar{b} \neq 0\right\}$. If \bar{a}, \bar{b} and \bar{e} are dependent over Δ_{1}, M contains a non-zero direct summand of D as in Case iv). Assume \bar{a}, \bar{b} and \bar{e} are independent over Δ_{1}. Then $A_{1}+$ $a\left(A_{1}\right)+b\left(A_{1}\right)=A_{1} \oplus a\left(A_{1}\right) \oplus b\left(A_{1}\right)$, since the sum is irredundant and A_{1} is simple. We obtain a homomorphism $\varphi: e R \oplus e R \rightarrow M$ given by setting $\varphi\left(r_{1}+r_{2}\right)=$ $\alpha_{1} r_{1}+\alpha_{2} r_{2}=\left(\tilde{a} r_{1}+\tilde{b} r_{2}, \tilde{r}_{1}, \tilde{r}_{2}\right)$. It is clear from the above direct sum that φ is an isomorphism. Since $\overline{\operatorname{im}} \varphi=\bar{M}, M=\operatorname{im} \varphi \oplus M_{2}$, where M_{2} is simple.
b) $D=e R / B_{1} \oplus e R / B_{1} \oplus e R / B_{1}$.

This is Case 3) of iv).
c) $D=e R / C_{1} \oplus e R / C_{1} \oplus e R / C_{1}$.

Since $\left[\Delta: \Delta_{3}\right]=2, M$ contains a direct summand of D by Lemma 5 .
d) $D=N_{1} \oplus e R / A_{1} \oplus e R / A_{1}$, where $N_{1}=e R / B_{1}$ or $e R / C_{1}$.

Since $\left[\Delta: \Delta_{1}\right]=4$ and $\left[\Delta(1,2): \Delta_{1}\right]=2,\left[\Delta / \Delta(1,2): \Delta_{1}\right]=2$. Let $D=$ $e R / B_{1} \oplus e R / A_{1} \oplus e R / A_{1}$. We shall use the same notations as in 3) of iv). Let $\beta_{1}=(\tilde{a}, \tilde{x}, \tilde{y})$ and $\beta_{2}=\left(\tilde{b}, \tilde{x}^{\prime}, \tilde{y}^{\prime}\right)$, where $\left(\begin{array}{ll}\bar{x} & \bar{x}^{\prime} \\ \bar{y} & \bar{y}^{\prime}\end{array}\right)$ is a unit matrix in $\left(\Delta_{1}\right)_{2}, a\left(A_{1}\right)$ $\subseteq B_{1} \oplus A_{3}$ and $b\left(A_{1}\right) \subseteq B_{1} \oplus A_{4}$. We define a homomorphism $\varphi: e R \oplus e R \rightarrow D$ by setting $\varphi(r+s)=\beta_{1} r+\beta_{2} s=\left(\tilde{a} r+\tilde{b} s, \tilde{x} r+\tilde{x}^{\prime} s, \tilde{y} r+\tilde{y}^{\prime} s\right)$. Assume $\tilde{x} r+\tilde{x}^{\prime} s \in A_{1}$ and $\tilde{y} r+\tilde{y}^{\prime} s \in A_{1}$. Since $\left(\begin{array}{ll}\bar{x} & \bar{x}^{\prime} \\ \bar{y} & \bar{y}^{\prime}\end{array}\right)$ is a unit matrix in $\left(\Delta_{1}\right)_{2}, r$ and s belong to A_{1}. Further $\tilde{a} r+\tilde{b} s=\pi_{3}(\tilde{a} r)+\pi_{4}(\tilde{b} s) \in A_{3} \oplus A_{4}$, where π_{i} is the projection of $e J$ onto A_{i}. Hence $\operatorname{ker} \varphi$ is equal to one of the following: (0), $\left(A_{1}+(0)\right)$ and $\left(A_{1} \oplus A_{1}\right)$. Therefore, for a maximal submodule M^{*} containing β_{1} and β_{2}, $M^{*}=((e R+e R) / \operatorname{ker} \varphi) \oplus M_{1} \oplus M_{2} \oplus \cdots$, where the M_{i} are simple or zero. Now let M be any maximal submodule of D and $\left\{\bar{\alpha}_{1}=\left(\bar{a}^{\prime}, \bar{e}, o\right), \bar{\alpha}_{2}=\left(\bar{b}^{\prime}\right.\right.$, o, $\left.\left.\bar{e}\right)\right\}$ a basis of \bar{M}. First we consider the elements $\overline{\bar{a}}^{\prime}$ and $\overline{\bar{b}}^{\prime}$ in $\Delta / \Delta(1,2)$. If $\overline{\bar{a}}^{\prime}$ and \bar{b}^{\prime} are dependent over Δ_{1}, there exist \bar{x} and \bar{y} in Δ_{1} such that $\bar{a}^{\prime} x+\bar{b}^{\prime} y \in \Delta_{2}$ and $\bar{x} \neq \mathrm{o}$ or $\bar{y} \neq 0 . \quad \theta=\alpha_{1} x+\alpha_{2} y$ is in M and θR is a direct summand of D by Lemma 4. Next we assume that $\overline{\bar{a}}^{\prime}, \overline{\bar{b}^{\prime}}$ are independent over Δ_{1}. There exist $\bar{a}^{\prime \prime}, \bar{b}^{\prime \prime}$ in Δ such that $a^{\prime \prime}\left(B_{1}\right)=A_{1} \oplus A_{3}$ and $b^{\prime \prime}\left(B_{1}\right)=A_{1} \oplus A_{4}$ by assumption. Then $\overline{\bar{a}}^{\prime \prime}$ and $\overline{\bar{b}}^{\prime \prime}$ are independent over Δ_{1}. Since $[\Delta / \Delta(1,2)]=2$, there exists a unit matrix $\left(\begin{array}{ll}\bar{x} & \bar{y} \\ \bar{x}^{\prime} & \bar{y}^{\prime}\end{array}\right)$ in $\left(\Delta_{1}\right)_{2}$ such that $\overline{\bar{a}}^{\prime \prime}=\overline{\bar{a}}^{\prime} x+\overline{\bar{b}}^{\prime} y$ and $\overline{\bar{b}}^{\prime \prime}=\overline{\bar{a}}^{\prime \prime} x^{\prime}+\overline{\bar{b}}^{\prime} y^{\prime}$. Then M contains $\beta_{1}=\alpha_{1} x+\alpha_{2} y=\left(\tilde{a}^{\prime \prime}+\widetilde{w}_{1}, \tilde{x}, \tilde{y}\right)$ and $\beta_{2}=\alpha_{1} x^{\prime}+\alpha_{2} y^{\prime}=\left(\tilde{b}^{\prime \prime}+\widetilde{w}_{2}, \tilde{x}^{\prime}, \tilde{y}^{\prime}\right)$, where \bar{w}_{1} and \bar{w}_{2} are in $\Delta(1,2)$. Hence M is a direct sum of hollow modules by the beginning of d). If $N_{3}=e R / C_{1}$, the above argument is valid, for $C_{1} \supseteq B_{1}$.
e) $D=e R / B_{1} \oplus e R / B_{1} \oplus e R / A_{1}$.

We need the following lemma.
Lemma 21. Assume $\operatorname{End}_{R}\left(A_{1}\right)=\Delta\left(A_{1}\right)$ and that there exists a unit element
x in Δ such that $x A_{1}=A$ for any simple right ideal A in eJ. Let S_{1} and S_{2} be simple submodules of $e R$ and $\epsilon R / A_{1}$, respectively. Then every f in $\operatorname{Hom}_{R}\left(S_{1}, S_{2}\right)$ is extendible to an element in $\operatorname{Hom}_{R}\left(e R, e R / A_{1}\right)$.

Proof. Let ν be the natural epimorphism of $e R$ onto $e R / A_{1}$. Then we may assume from the assumption that f is given by the left-sided multiplication of an element \bar{x} in Δ. Then νx induces f.

Let M be a maximal submodule and $\left\{\bar{\alpha}_{1}=(\bar{a}, \bar{e}, o), \bar{\alpha}_{2}=(\bar{b}, o, \bar{e})\right\}$ the basis of \bar{M}. If $b\left(A_{1}\right) \subseteq B_{1}, M$ contains a direct summand M_{1} of D such that $\bar{M}_{1}=\bar{\alpha}_{2} R$ by Lemma 4. Hence we assume $b\left(A_{1}\right) \leftrightarrows B_{1}$.
e-1). $\quad a\left(B_{1}\right) \cap b\left(A_{1}\right)=0$ and $e J=B_{1} \oplus a\left(B_{1}\right)$.
Then $b\left(A_{1}\right)=X(f)=\{x+f(x) \mid x \in X\} \subseteq B_{1} \oplus a\left(B_{1}\right)$, where X is a simple submodule of $a\left(B_{1}\right)$ and $f \in \operatorname{Hom}_{R}\left(X, B_{1}\right)$. Let $\varphi: e R \oplus e R \rightarrow \alpha_{1} R+\alpha_{2} R$ be an epimorphism given by setting $\varphi(r+s)=\alpha_{1} r+\alpha_{2} s=(\tilde{a} r+\tilde{b} s, \tilde{r}, \tilde{s})$. Ker $\varphi=$ $\left\{r_{1}+s_{1} \mid r_{1} \in a^{-1}(X), s_{1} \in A_{1}\right.$ and $\left.a r_{1}+f\left(a r_{1}\right)=b s_{1}\right\}$. Hence we obtain an isomorphism $g: A_{1} \rightarrow a^{-1}(X)$ such that $g\left(a_{1}\right)=r_{1}$. Therefore $\alpha_{1} R+\alpha_{2} R \approx(e R \oplus e R) / \operatorname{ker} \varphi$ $\approx e R \oplus\left(e R / A_{1}\right)$ by Lemma 21, [7], Lemma 2.1 and [2], Theorem 2.5 (cf. Lemma 4). Accordingly, $M \approx e R \oplus e R / A_{1}$ for $|M|=9=\left|e R \oplus e R / A_{1}\right|$.
e-2) $a\left(B_{1}\right) \cap b\left(A_{1}\right)=0$ and $B_{1} \cap a\left(B_{1}\right)=X$ is simple.
e-2.1) $\quad a\left(B_{1}\right) \oplus b\left(A_{1}\right) \supseteq B_{1}$.
Let $a\left(B_{1}\right)=X \oplus Y$. Since $a\left(B_{1}\right) \oplus b\left(A_{1}\right)=X \oplus Y \oplus b\left(A_{1}\right), B_{1}=X \oplus Z$, where $Z=B_{1} \cap\left(Y \oplus b\left(A_{1}\right)\right)$. For z in $Z, z=y+b\left(a_{1}\right) ; y \in Y$ and $a_{1} \in A_{1} . \quad b\left(A_{1}\right) \nsubseteq B_{1}$ implies that the mapping: $g(y)=a_{1}$ is an isomorphism of Y onto A_{1}. Let φ be as above. Then $\operatorname{ker} \varphi=\left(a^{-1}(X) \oplus 0\right) \oplus A_{1}(k)$, where $k: A_{1} \rightarrow a^{-1}(Y)$ is given by $k\left(a_{1}\right)=a^{-1} g^{-1}\left(a_{1}\right)$. Hence $\alpha_{1} R+\alpha_{2} R \approx e R / a^{-1}(X) \oplus e R / A_{1}$ by Lemma 21. Since $\bar{M}=\bar{\alpha}_{1} R \oplus \bar{\alpha}_{2} R, M \approx e R / a^{-1}(X) \oplus e R / A_{1} \oplus M_{1}$, where M_{1} is a simple submodule.
e-2.2) $\quad a\left(B_{1}\right) \oplus b\left(A_{1}\right) \not B_{1}$.
Then $e J=a\left(B_{1}\right) \oplus b\left(A_{1}\right) \oplus Z=X \oplus Y \oplus b\left(A_{1}\right) \oplus Z=Y \oplus b\left(A_{1}\right) \oplus B_{1}$. Hence $M \approx e R / a^{-1}(X) \oplus e R$.
e-3) $a\left(B_{1}\right) \supset b\left(A_{1}\right)$ and $e J=a\left(B_{1}\right) \oplus B_{1}$.
Then we have an isomorphism $a^{-1} b$ of A_{1} onto a simple submodule X of B_{1}. Hence $M \approx e R / A_{1} \oplus e R$ by [7], Lemma 2.1.
e-4). $a\left(B_{1}\right) \supset b\left(A_{1}\right)$ and $a\left(B_{1}\right) \cap B_{1}=b\left(A_{1}\right)$.
This is contained in Case $B_{1} \supset b\left(A_{1}\right)$.
e-5). $a\left(B_{1}\right) \supset b\left(A_{1}\right)$ and $a\left(B_{1}\right) \cap B_{1}=X$ is a simple module not equal to $b\left(A_{1}\right)$.

Let $a\left(B_{1}\right)=X \oplus Y$. Since $B_{1} \rrbracket b\left(A_{1}\right), b\left(A_{1}\right)=Y(f)$ for some $f: Y \rightarrow X$. Hence $M \approx e R / a^{-1}(X) \oplus e R / A_{1} \oplus M_{1}$ by Lemma 21.
e-6). $\quad a\left(B_{1}\right) \supset b\left(A_{1}\right)$ and $a\left(B_{1}\right)=B_{1}$.
Then M contains a direct summand M_{1} of D such that $\bar{M}_{1}=\bar{\alpha}_{1} R$ by Lemma 4.
f) $D=e R / C_{1} \oplus N_{2} \oplus e R / A_{1}$, where $N_{2}=e R / B_{1}$ or $e R / C_{1}$.

Let $\left\{\bar{\alpha}_{1}=(\bar{a}, \bar{e}, o), \bar{\alpha}_{2}=(\bar{b}, o, \bar{e})\right\}$ be the basis of \bar{M}. Since $[\Delta / \Delta(1,3)$: $\left.\Delta_{1}\right]=1$ by Lemma 20 and assumption, there exist x and y in Δ_{1} such that $\bar{a} x+\bar{b} y \in \Delta(1,3)$. Put $\theta=\alpha_{1} x+\alpha_{2} y=(\tilde{a} x+\tilde{b} y, \bar{x}, \bar{y})$. Then M contains a direct summand M_{1} of D such that $\bar{M}_{1}=\bar{\theta} R$ by Lemma 4.
3) $|I|=4$.
a). $\quad D=e R / A_{1} \oplus e R / A_{1} \oplus e R / A_{1} \oplus e R / A_{1}$.

Since $|D|=16,|M|=15$. Hence M contains a direct summand of D, which is isomorphic to $e R \oplus e R$ by the similar argument to 3) of Case $|e J|=3$.
b) Other cases.

Since $\left[\Delta / \Delta(1,2): \Delta_{1}\right]=3$ and $\left[\Delta / \Delta(2,3): \Delta_{2}\right]=2$, we can use the same argument as above.
4). The remaining part is similar to Case $|e J|=3$.

Thus we have completed the proof of Theorem 12.

4. Rings with $|\boldsymbol{e} J| \geqslant 5$

We shall study the ring R with $|/ e J| \geqslant 5$ under the assumption: $J^{2}=0$.
Theorem 22. Let R be a right artinian ring with $J^{2}=0$. Then
$(*)_{2} \quad$ Every maximal submodule of a finite direct sum of serial modules is a direct sum of hollow modules if and only if, for each primitive idempotent e,
i) $e J=A_{1} \oplus A_{2}, A_{1} \not \approx A_{2}$ or $A_{1}=0$, or
ii) $e J=A_{2} \oplus A_{2} \oplus \cdots \oplus A_{n} ; A_{1} \approx A_{i}$ for all $i(n \geqslant 2)$,
a) $\left[\Delta: \Delta\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n-1}\right)\right]=2$ and
b) there exists a unit x in Δ, for any right ideal B in eJ with $|B|=n-1$, such that $B=x\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n-1}\right)$; i.e. $e R / A \approx e R / B$.

Proof. "Only if" part. Put $B=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n-1} \subseteq e J$. Then [$\left.\Delta: \Delta(B)\right]$ $\leqslant 2$ by Lemma 3 and Corollary to Lemma 5. Assume $\Delta=\Delta(B)$. Then $n \leqslant 2$ by Lemma 8 and hence $A_{2}=0$ or $A_{1} \approx A_{2}$ by Lemma 8. ii)-b) is obtained from Proposition 6.
"If" part. Let $D=\Sigma \oplus N_{i}$ be a direct sum of serial modules. Then N_{i} is isomorphic to either $e R / e J$ or $e R / B$ (or ϵR if $e J=A_{1}$). Let M be a maximal submodule of D. Then, from Proposition 6 and the proof of Theorem 12, M is isomorphic to either $\mathrm{J}\left(N_{1}\right) \oplus \sum_{j \geqslant 2} \oplus N_{j}$ or $M_{1} \oplus \sum_{j \geqslant 3} \oplus N_{j}$, where M_{1} is a maximal submodule of $N_{1} \oplus N_{2}$. It is clear from the proof of 3) of Case $|e J|=2$ in Theorem 12 that M_{1} is isomorphic to $N_{1} \oplus N_{2} / J\left(N_{2}\right), N_{1} / J\left(N_{1}\right) \oplus N_{2}$ or $e R / C$, where $|e R / C|=3$. Thus M is a direct sum of hollow modules.

Theorem 23. Let R be as above. Then
$(*)_{3}$ Every maximal submodule of a finite direct sum of hollow modules whose length is equal to or less than three is a direct sum of hollow modules if and only if
R satisfies $(*)_{2}$ and
i) if eJ $=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ and $A_{1} \approx A_{i}$ for all $i(n \geqslant 3)$, then
a) $\left[\Delta: \Delta\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n-2}\right)\right]=3$, and
b) for a right ideal B with $|B|=n-2$, there exists a unit x in Δ such that $B=x\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n-1}\right)$; i.e. $e R / A \approx e R / B$.

Proof. Since the proof of Theorem 12 for Case $|e J|=3$ is given in a general form, we have the theorem from Theorem 22.

Theorem 24. Let R be a right artinian ring with $J^{2}=0$. Then R satisfies Condition I and eJ is simple or contains a proper character submodule for each e if and only if eJ $=A_{1} \oplus A_{2}$ and $A_{1} \approx A_{2}$.

Proof. Assume that R satisfies the first two conditions in the theorem. If $|e J| \geqslant 3$, by Proposition $11 e J=e R A_{1}$ for any simple submodule A_{1}. If B is a proper character submodule containing A_{1} of $\rho J, e J=e R e B=B$, which is a contradiction. Hence $|e J| \leqslant 2$. Further, if $A_{1} \approx A_{2}, A_{2}=x A_{1}$ by Lemma 8. Therefore $|e J|=1$ or $A_{1} \not \approx A_{2}$.

Similarly, by Lemma 5 and Proposition 6, we have the following:
Proposition 25. Let R be a right artinian ring with $J^{2}=0$. Assume the conditions i)-a) and b) in Theorem 23. Then the following condition is satisfied.
$(* *)_{3}$ Every maximal submodule of a direct sum $D(4)=\sum_{i=1}^{4} \oplus N_{i}$ of hollow modules N_{i} with $\left|N_{i}\right|=3$ contains a non-zero direct summand of D. Conversely, if $D(4)$ satisfies $(* *)_{3}$ and $D(3)$ does not, then i$\left.)-\mathrm{a}\right)$ and b) in Theorem 23 are satisfied.

Proposition 26. Let R be as above. Assume R satisfies (*) $)_{3}$. If $|e J| \geqslant 3$, eRe/eJe is not commutative for a primitive idempotent e.

Proof. Assume $|e J| \geqslant 3$ and $e J=A_{1} \oplus \cdots \oplus A_{n-2} \oplus A_{n-1} \oplus A_{n}$, where the A_{i} are simple. Put $B=A_{1} \oplus \cdots \oplus A_{n-2}$. Then there exist unit elements x, y in Δ such that $x B=A_{1} \oplus \cdots \oplus A_{n-3} \oplus A_{n-1}$ and $y B=B, y A_{n-1} \equiv A_{n}(\bmod B)$ by Lemma 8 and Theorem 23. $x y B=A_{1} \oplus \cdots \oplus A_{n-3} \oplus A_{n-1} \subseteq B \oplus A_{n} \subseteq y x B$. Hence $x y \neq y x$.

Corollary 1. Let R be a commutative artinian ring or an algebra of finite dimension over an algebraically closed field. Then R satisfied Condition I if and only if i) or ii) in Theorem 12 is satisfied.

Proof. This is clear from Proposition 26 and Lemma 8.
Corollary 2. Let R be as in Corollary 1 (not necessarily $J^{2}=0$). Assume R / J is a simple ring. Then R is a right serial ring if and only if R satisfies Condition I.

Proof. This is clear from Corollary 1 and Proposition 1.

5. Examples

Proposition 26 suggests us very much the possibility of $|e J| \leq 2$. We shall study this situation. Let D_{1} and D_{2} be two division rings and V a left D_{1} and right D_{2} vector space. For a right D_{2}-subspace V^{\prime} of V, we denote the dimension by $\left|V^{\prime}\right|_{D_{2}}$. Put $n=|V|_{D_{2}}$ and consider the following conditions.
a) If $\left|V_{1}\right|_{D_{2}}=\left|V_{2}\right|_{D_{2}}$ for subspaces V_{1}, V_{2} of V, then there exists an element d in D_{1} such that $d V_{1}=V_{2}$.
b) $\quad\left[D_{1}: D_{1}\left(V_{1}\right)\right]_{r}=n-\left|V_{1}\right|_{D_{2}}+1$, where $D_{1}\left(V_{1}\right)=\left\{d \in D_{1} \mid d V_{1} \subseteq V_{1}\right\}$.
c) Let d be a fixed non-zero element of V. There exists a monomorphism σ of D_{2} into D_{1} such that $d x=\sigma(x) d$ for $x \in D_{2}$.

Theorem 27. There exists an artinian ring R with $J^{2}=0$ satisfying the conditions iv) (resp. v)) in Theorem 12 if and only if there exists a vector space V as above satisfying 1) $|V|_{D_{2}}=3$ (resp. $|V|_{D_{2}}=4$), 2) a) and b) are satisfied for any V_{1} with $\left|V_{1}\right|_{D_{2}} \leqslant 2$ (resp. $\left.\left|V_{1}\right|_{D_{2}} \leq 3\right)$, (resp. 3) c) is satisfied).

Proof. If there exists a $D_{1}-D_{2}$ vector space V, then $R=\left(\begin{array}{cc}D_{1} & V \\ 0 & D_{2}\end{array}\right)$ satisfies Condition I by Theorem 12. Conversely, assume that there exists an artinian ring R satisfying Condition I. Let $e J=A_{1} \oplus A_{2} \oplus A_{3}$ (resp. $A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4}$). Since A_{1} is simple and R may be assumed basic, $A_{1} \approx f R / f J=f R f / f J f$ for a primitive idempotent f. Put $D_{1}=e R e / e J e$ and $D_{2}=f R f / f J f$. Then $e J$ is a left D_{1} and right D_{2} vector space. Hence $e J$ satisfies 1), 2) (resp. 1)~3)) by Theorem 12.

We note that if such a $D_{1}-D_{2}$ vector space exists, D_{1} should be non-commutative. Finally let R be an algebra of finite dimension over a field K. Assume R satisfies Condition I and put $\Delta=e R e / e J e$ for a primitive idempotent e.

Proposition 28. Let R and Δ be as above. Ther $[\Delta: K]$ is divisible by $|e J|$ provided $|e J| \geqslant 3$. If $[\Delta: K]$ is not divisible by 2 or 3 , then $|e J| \leqslant 2$.

Proof. This is clear from Lemmas 13 and 15.
Examples 1. Let $L \supset K$ be distinct fields and put

$$
R=\left(\begin{array}{ccc}
L & L & L \\
0 & L & L \\
0 & 0 & K
\end{array}\right)
$$

Then $e_{11} R / e_{11} J^{2}$ is serial but $e_{11} R$ is not serial.
2. Let T be a field and x an indeterminate. Let $L=T(x)$ and $K=T\left(x^{n}\right)$. Then we have an isomorphism σ of L onto K given by setting $\sigma(x)=x^{n}$. Put $R=R(n)=L \oplus L u$ a vector space over $L . \quad R$ is a ring by the following product:
$\left(x_{1}+x_{2} u\right)\left(y_{1}+y_{2} u\right)=x_{1} y_{1}+\left(x_{1} y_{2}+x_{2} \sigma\left(y_{1}\right)\right) u$. Then $J(R)=L u$ and $L u=K u \oplus$ $K x u \oplus \cdots \oplus K x^{n-1} u$. Every simple right ideal is isomorphic to $K u$ via the left-sided multiplication of an element in L. Hence $\{R, R / J, R / K u\}$ is the representative set of hollow modules if $n=2$. Therefore $R(1)$ and $R(2)$ satisfy Condition I (note that $J=A_{1} \oplus A_{2}$ and $A_{1} \approx A_{2}$ for $R(2)$), but $R(\mathrm{n})$ does not for $\mathrm{n} \geqslant 3$ by Theorem 12. $R(3)$ satisfies $\left({ }^{* *}\right)_{3}$ by Proposition 25.
3. Let $L \supset K$ be as in Example 1. Put

$$
R=\left(\begin{array}{ccc}
K & L & L \\
0 & L & 0 \\
0 & 0 & L
\end{array}\right) .
$$

Then $e_{11} J=(0, L, 0) \oplus(0,0, L)$ and R satisfies Condition I (note that $e_{11} J=$ $A_{1} \oplus A_{2}$ and $A_{1} \approx A_{2}$).
4. Let $D_{1} \subset D$ be division rings with $\left[D: D_{1}\right]_{r}=2$. Then

$$
R=\left(\begin{array}{cc}
D & D \\
0 & D_{1}
\end{array}\right)
$$

satisfies Condition I. If [$\left.D: D_{1}\right]_{l} \geqslant 3, R$ is not of right local type (see [7]).
5. Put

$$
R=\left(\begin{array}{cc}
K & K \oplus \\
0 & K
\end{array}\right) .
$$

Then $e_{11} J=K \oplus K$ and $(K, 0) \approx(0, K) \subseteq e_{11} J$. Hence R does not satisfy Condition I.

References

[1] K. Asano: Ring and ideal theory (Japanese), 1949, Kyoritu, Tokyo.
[2] H. Asashiba and T. Sumioka: On Krull-Schmidt's theorem and the indecomposability of amalgamated sums, Osaka J. Math. 20 (1983), 321-329.
[3] M. Harada: On lifting property on direct sums of hollow modules, Osaka J. Math. 17 (1980), 783-791.
[4] -: On modules with lifting properties, Osaka J. Math. 19 (1982), 189-201.
[5] -: Serial rings and direct decompositions, J. Pure Appl. Algebra 31 (1984), 55-61.
[6] A. Rosenberg and D. Zelinsky: Finiteness of the injective hull, Math. Z. 70 (1959), 372-380.
[7] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984), 629-648.
[8] H. Tachikawa: On rings for which every indecomposable right module has a unique maximal submodule, Math. Z. 71 (1959), 200-222.

[^0]: 1) We shall remove this assumption in the forth comming paper.
