Harada, M. Osaka J. Math. 2 (1965), 351-356

NOTE ON QUASI-INJECTIVE MODULES

MANABU HARADA

(Received June 25, 1965)

Let R be a ring with identity element and M be a unitary left Rmodule. M is called quasi-injective if every element in $\operatorname{Hom}_{R}(N, M)$ for any R-module N in M is extende to an element in $\operatorname{Hom}_{R}(M, M)$. M is an essential extension of N if $M' \cap N \neq (0)$ for any non-zero Rsubmodule M' of M and we call in this case that N is an essential submodule in M.

In Goldie [2] and Johnson, Wong [4] they have defined an R-submodule in M for R-submodule N as follows: $clN = \{m \in M | (N; m)$ is an essential left ideal in $R\}$. If clN = N, then N is called closed. We call cl(0) the singular submodule of M.

Johnson and Wong studied structures of closed submodules of a quasi-injective R-module with zero singular submodule and Goldie has also considered rings with zero singular ideal in [3], [4] and [2], respectively.

In this short note we shall prove the following theorem:

Let M be a quasi-injective R-module. Then M is a direct-sum of $Z_2(M) = \operatorname{clcl}(0)$ and any maximal submodule M_0 with zero singular submodule: $M = M_0 \oplus Z_2(M)$. Furthermore, every closed submodule in M corresponds uniquely to a direct summand of M_0 , which is closed in M_0 .

From this result we know some results in [3], [4] are valid without assumption cl(0) = (0).

In §2 we shall study all types of quasi-injective modules in a case where either R is a Dedekind domain or an algebra over a field with finite dimension.

We always assume that R is a ring with identity and M a unitary left R-module.

1. Closed submodules.

We shall denote the singular submodule cl(0) of M by Z(M) and clcl(0) by $Z_2(M)$ following to [2]. We also call $Z_2(M)$ the torsion submodule of M and M is torsion free if $Z_2(M) = (0)$. If R is a commutative integral domain, then they coincide with the usual torsion submodules

and torsion-free modules.

We note that if M is an essential extension of N, then the left ideal (N:m) is essential in R for any element m in M.

From [2], Lemma 2, 2 we have

Lemma 1.1. $Z_2(M)$ is a closed submodule in M. From the definition of closed module we have

Lemma 1.2. Every closed submodule of M contains $Z_2(M)$. **Lemma 1.3.** For submodules N_1 , N_2 of M we have

$$\operatorname{cl}(N_{\scriptscriptstyle 1}\cap N_{\scriptscriptstyle 2}) = \operatorname{cl} N_{\scriptscriptstyle 1}\cap \operatorname{cl} N_{\scriptscriptstyle 2}$$
 .

Let N be a submodule of M. If a submodule B of M is a maximal one with property $N \cap B = (0)$, then we call B a complement of N in M. We denote it by N^{c} .

Lemma 1.4. Let N be a submodule of M and B a complement of N. Then M is an essential extension of $B \oplus N$. Hence, $cl(B \oplus N) = M$.

Proposition 1.5. Let M be a quasi-injective R-module. Then every closed submodule N is a direct summand of M, namely $M=N\oplus N^c$ (cf. [4], Proposition 1.5).

Proof. Let N be a closed submodule and B a complement of N in M. Put $M_0 = B \oplus N$. Let p be a projection of M_0 to N. Then there exists an element $g \in \operatorname{Hom}_R(M, M)$ such that $g | M_0 = p$. Since $g^{-1}(0) \supseteq B$ and $g^{-1}(0) \cap N = (0)$, $g^{-1}(0) = B$. Furthermore, since $\operatorname{cl} M_0 = M$ by Lemma 1.4, there exists an essential left ideal L for any element m in M such that $Lm \subseteq M_0$. Therefore, $Lg(m) = g(Lm) \subseteq N$. Since $\operatorname{cl} N = N$, $g(m) \in N$. Hence, g(M) = N. Therefore, $M = g^{-1}(0) + g(M) = B \oplus N$.

Corollary. Let M be a quasi-injective. If N is closed, then N is quasi-injective (cf. [3], Theorem 1.6).

Proof. Since it is clear that a direct summand of a quasi-injective module is quasi-injective, we have the corollary from Proposition 1.5.

If we consider R as a left R-module, we have from the definition

Lemma 1.6. Let $M \supseteq N$ be R-modules. Then 1) $Z(R) M \subseteq Z(M)$, 2) $Z_2(R)M \subseteq Z_2(M)$, 3) $Z(N) = N \cap Z(M)$ and 4) $Z_2(N) = N \cap Z_2(M)$.

Theorem 1.7. Let M be a quasi-injective R-module and M_0 a submodule which is a maximal one with $Z(M_0)=(0)$. Then $M=M_0\oplus Z_2(M)$. A submodule N of M is closed if and only if N contains $Z_2(M)$ and $M_0 \cap N$ is a direct summand of M_0 .

352

Proof. From Lemma 1.6 we obtain that $M_0 \cap Z_2(M) = (0)$ and M_0 is a complement of $Z_2(M)$. Hence, $M = M_0 \oplus Z_2(M)$ by Proposition 1.5, since $Z_2(M)$ is closed. If N is a closed submodule of M, then $N \supseteq Z_2(M)$ by Lemma 1.1 and $N = M_0 \cap N \oplus Z_2(M)$. Since $N \cap M_0$ is closed in M_0 , $N \cap M_0$ is a direct summand of M_0 by Proposition 1.5. Conversely, we assume that $N \supseteq Z_2(M)$ and $N \cap M_0$ is a direct summand of M_0 ; $M_0 =$ $N \cap M_0 \oplus N_1$. Considering in M_0 , $M_0 = \operatorname{cl} M_0 = \operatorname{cl} (N \cap M_0) + \operatorname{cl} N_1$. Since $\operatorname{cl} (N \cap M_0) \cap \operatorname{cl} N_1 = \operatorname{cl} (N \cap M_0 \cap N_1) = \operatorname{cl} (0) = (0)$ by Lemma 1.2, $N \cap M_0$ is closed in M_0 . Let $x \in \operatorname{cl} N : x = m_0 + y$, where $m_0 \in M_0$, $y \in Z_2(M)$. Since $Lx \subseteq N$ for an essential left ideal L, $Lm_0 \subseteq N \cap M_0$. Hence, $m_0 \in N \cap M_0$. Therefore, $x \in N$.

Corollary. Let M be a quasi-injective. If N_1 , N_2 are closed in M, then N_1+N_2 is closed. Hence, $clcl(S_1+S_2)=clcl(S_1)+clcl(S_2)$ for any submodules S_1 and S_2 (cf. [3], Theorem 1.4 and [4], Theorem 1.2).

Proof. Since N_i is closed, N_i contains $Z_2(M)$. Hence, it is sufficient to show that $N_1 \cap M_0 + N_2 \cap M_0$ is a direct summand of M_0 by Theorem 1.7, where $M = M_0 \oplus Z_2(M)$. Thus, we may assume Z(M) = (0). $N_1 \cap N_2$ is closed by Lemma 1.2. Hence, $M = N_1 \oplus N_1' = (N_1 \cap N_2) \oplus M'$. Since $N_2 \cap (N_1 \cap M') = (0)$, there exists a submodule N_2' such that $N_2' \supseteq N_1 \cap M'$ and $M = N_2 \oplus N_2'$. Furthermore, $N_2' = (N_1 \cap M') \oplus N_3'$. Therefore, $M = N_2 \oplus (N_1 \cap M') \oplus N_3'$. On the other hand $N_1 = (N_1 \cap N_2) \oplus N_1 \cap M'$. Hence, $N_1 + N_2$ $= N_2 + (N_1 \cap M')$. Therefore, $M = (N_1 + N_2) \oplus N_3'$. The second half is clear from the first.

Proposition 1.8. Let M be quasi-injective. Then the set of closed submodules coincides with the set of complement submodules containing Z(M). Especially, if we assume Z(M)=(0), then every complement of a submodule N is isomorphic to each other and N^{cc} containing N coincides with clN.

Proof. Let $N=N_1^c \supseteq Z(M)$. For any element $n \in N_1 \cap clN$ we have $Ln \subseteq N_1 \cap N = (0)$, where L is an essential left ideal. Hence, $n \in Z(M) \cap N_1 = (0)$. Therefore, clN=N. The converse is clear from Proposition 1.5. We assume Z(M)=(0). In this case we note that clclN=clN. By Lemmas 1.3 and 1.4 and Corollary to Theorem 1.7 we have $M=cl(N \oplus N^c) = clN \oplus N^c$ for any submodule N. Hence, $N^c \approx M/clN$. Furthermore, we obtain $M=N^c \oplus N^{cc}=clN \oplus N^c$ by Proposition 1.5. If $N^{cc} \supseteq N$, then $N^{cc} \supseteq clN$. Hence, $N^{cc}=clN$.

2. Special cases.

First we consider some relations between a quasi-injective module M and its injective envelope E(M).

Proposition 2.1. Let M be an R-module. Then $E(M) = E(Z_2(M))$ $\oplus E(B)$ and $Z_2(E(M)) = E(Z_2(M))$, where B is a maximal torsion-free submodule in M.

Proof. We assume $Z_2(M) = (0)$ and E = E(M). Then $E = E_0 \oplus Z_2(E)$ by Theorem 1.7. Let p be a projection of E to E_0 . If p(m) = 0 for $m \in M$, then $m \in M \cap Z_2(E) = Z_2(M) = (0)$ by Lemma 1.6. Hence, M is monomorphic to E_0 . Therefore, $Z_2(E) = (0)$. If $Z_2(M) = M$, then $M \subseteq E(M)$ $\subseteq Z_2(E)$. Hence, $Z_2(E) = E$. Since M is an essential extension of $B \oplus$ $Z_2(M)$, $E = E(B) \oplus E(Z_2(M))$.

Lemma 2.2. Let M be an R-module and $K = \text{Hom}_R(E(M), E(M))$. M is quasi-injective if and only if M is a K-module. (See [3], Theorem 1.1.)

Proposition 2.3. Let M be quasi-injective. If $E(M) = N_1 \oplus N_2$, then $M = M \cap N_1 \oplus M \cap N_2$, and $N_i = E(M \cap N_i)$.

Proof. Let p be a projection of E(M) to N. Since $p \in K$, $p(M) \subseteq M$ by Lemma 2.2. Hence, $M = M \cap N_1 \oplus M \cap N_2$.

Corollary. Let R be a commutative integral domain. Then every injective module is a direct sum of the torsion submodule and a maximal torsion-free submodule. An injective envelope of torsion (resp. torsion-free) module is torsion (resp. torsion-free).

Proposition 2.4. Let M_1 , M_2 be quasi-injective such that $E(M_1) \approx E(M_2)$. Then $M_1 \oplus M_2$ is quasi-injective if and only if $M_1 \approx M_2$.

Proof. $E(M_1 \oplus M_2) = E(M_1) \oplus E(M_2)$. If $M_1 \approx M_2$, $M = M_1 \oplus M_2$ is a Hom_R(E(M), E(M))-module, and hence M is quasi-injective by Lemma 2.2. Conversely, we assume that M is quasi-injective. Let f be an element in $K = \text{Hom}_R(E(M), E(M))$ such that $f | E(M_2) \equiv 0$, $f | E(M_1)$ induces the isomorphism φ . Then $f(M) = f(M_1) \subseteq M \cap E(M_2) = M_2$ by Proposition 2.3. If we consider the same argument on M_2 for φ^{-1} , we can find $g \in K$ such that $gf | E(M_1) \equiv \text{identity} | E(M_1)$. Hence, $M_1 = gf(M_1) \subseteq g(M_2)$ $\subseteq M_1$. Therefore, $M_1 \approx M_2$.

Proposition 2.5. Let R be a left noetherian ring and M a quasiinjective R-module. Then M is a direct-sum of indecomposable quasiinjective R-modules. Furthermore, this decomposition is unique up to isomorphism, ([10], Theorem 4.5).

Proof. $E(M) = \sum \bigoplus \overline{M}_{\alpha}$ by [6], Theorem 2.5, where \overline{M}_{α} is an indecomposable injective *R*-module. Put $M_{\alpha} = M \cap \overline{M}_{\alpha}$. Then $M = \sum \bigoplus M_{\alpha}$ by Lemma 2.2. Since M_{α} is a direct summand of M, M_{α} is quasiinjective. It is clear that M_{α} is indecomposable. We assume $M = \sum \bigoplus M_{\alpha'}$

354

is a second decomposition. Since R is left noetherian, $E(M) = \sum \bigoplus E(M_{a'})$ and $E(M_{a'})$ is indecomposable by Proposition 2.3. Then there exists an automorphism φ in K such that $\varphi : \overline{M}_a \approx E(M_{\rho(a)'})$ for all α by [5], Proposition 2.7, where ρ is a permutation of indices α . Since $\varphi(M) \subseteq M$, $\varphi(M_{\alpha}) = \varphi(M \cap \overline{M}_{\alpha}) \subseteq M \cap E(M_{\rho(\alpha)'}) = M_{\rho(\alpha)'}$. Taking φ^{-1} , we obtain $M_{\alpha} \approx M_{\rho(\alpha)'}$.

Now we assume that R is a commutative noetherian ring. Then we know by [6], Proposition 3.1 that every indecomposable injective R-module is isomorphic to E(R/P), where P is a prime ideal in R.

Proposition 2.6. Let M be an indecomposable quasi-injective R-module. If M is torsion-free, then M is injective.

Proof. Since E(M) = E(R/P) is torsion-free by Proposition 2.1, Z(R/P) = (0). Hence, P is not essential in R. There exists a non-zero ideal Q such that $P \cap Q = (0)$. Therefore, P is minimal prime and $(0)_P = PR_P$. From [6], Theorem 3.6 E(R/P) is R_P -injective. Since R_P is the quotient field K of R/P, E(M) = Km. Furthermore, $K \subseteq \operatorname{Hom}_R(E(R/P), E(R/P))$. Hence, M = KM = E(M).

Corollary. Let R be a Dedekind domain and M a quasi-injective R-module. Then M is either injective or a direct-sum of R-modules $E(R/P_i)$ and $R/S_j^{n_j}$. Conversely, such a module is quasi-injective, where $\{P_i, S_j\}$ is a set of non-zero distinct primes in R.

Proof. $M=M_0\oplus Z_2(M)$. If $M_0 \neq (0)$, then $M_0 \approx \sum \oplus Q$ by Propositions 2.5 and 2.6, where Q is the quotient field of R. Since $Z_2(M)$ is torsion, $Z_2(M) = \sum_{i \in I} \oplus (E(R/P_i))^{\alpha_i} \oplus \sum_{j \in J} (R/(S_j^{n_j})^{\beta_j 1})$ by Proposition 2.5 and [5], Theorem 10. However if $M_0 \neq (0)$ then there exist natural epimorphisms of M_0 to $E(R/S_j)$. Hence, $J=\phi$ by Lemma 2.2, which means M is injective. If $M_0=(0)$, then $M \approx \sum \oplus E(R/P_i)^{\alpha_i} \oplus \sum (R/(S_j^{n_j}))^{\beta_j}$ and $\{P_i, S_j\}$ is a set of non-zero distinct primes by Proposition 2.4. The converse is clear.

Next, we consider a case of algebra A over a field K with finite dimension. Then we know from [7] that every indecomposable A-injective module M is isomorphic to $(eA)^* = \operatorname{Hom}_{K}(eA, K)$, where e is a primitive idempotent in A. Hence, there exists a non-degenerated bilinear mapping (,) of $eA \bigotimes M$ to K with respect to A. It is clear that the adjoint elements of $\operatorname{Hom}_{A}(M, M) = B$ is equal to eAe. Hence for an A-submodule N of M, ann $N = \{x | \in eA, (x, N) = 0\}$ is an eAe-module if and only if N is a B-module. Thus from Lemma 2.2 we have

¹⁾ M^{α} means a direcsum of α -copies of M.

M. HARADA

Proposition 2.7. Let A be an algebra over a field K such that $[A:K] < \infty$. Then every quasi-injective A-module is a direct-sum of modules $(e_i A/e_i R_i)^*$, where e_i is a primitive idempotents and R_i is a right ideal in A such that $e_i Ae_i R_i \subseteq R_i$.

Corollary. Let A be as above. If A is a generalized uniserial ring, then every sub-module of indecomposable injective module is quasi-injective.

Remark. The converse of Proposition 2.7 is, in general, not true. Finally, we consider the singular ideal of quasi-Frobenius ring.

Proposition 2.8. Let R be quasi-Frobenius. Then Z(R) is equal to the radical N of R and R is a direct sum of semi-simple subring and a quasi-Frobenius ring R_1 such that $Z_2(R_1)=R_1$.

Proof. Let S be a left scole of R, namely the sum of minimal left ideals in R. Then S is a unique minimal essential left ideal of R. Hence, Z(R)=the right annihilator S_r of S in R. Since $N_r = N_I$ by [8] and $S = N_r$, $Z(R) = S_r = N_{rr} = N_{Ir} = N$ by [8]. Furthermore, R is left R-injective by [1]. Hence, $R = L \oplus Z_2(R)$ as a left R-module by Theorem 1.7. Since $Z_2(R) \supseteq N$, $NL \subseteq N \cap L = (0)$. Hence, $L \subseteq S$. $S = S \cap N \oplus L'$, where $L' \supseteq L$ is a direct-sum of non-nilpotent minimal left ideals. Since SN = (0), $S^2 = L'$. It is clear that $Z_2(R) = (S^2)_r$. Therefore, $L'Z_2(R) = (0)$, which means that L is a two-sided ideal. Since L is completely reducible, L is semi-simple.

OSAKA CITY UNIVERSITY

References

- [1] S. Eilenberg and T. Nakayama: On the dimension of modules and algebras IV, Nagoya Math. J. 10 (1956), 87-95.
- [2] A. W. Goldie: Torsion-free modules and rings, J. Algebra 1 (1964), 268-287.
- [3] R. E. Johnson: Structure theory of faithful rings II, Trans. Amer. Soc. 84 (1957) 423-544.
- [4] R. E. Johnson and E. T. Wong: Quasi-injective modules and irreducible rings, J. London Math. Soc. 39 (1961), 260-268.
- [5] I. Kaplansky: Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952) 327-340.
- [6] E. Matlis: Injective modules over noetherian rings, Pacific J. Math. 48 (1958), 511-528.
- [7] H. Nagao and T. Nakayama: On the structure of M_0 and M_u -modules, Math. Z. 59 (1953) 164-170.
- [8] T. Nakayama: On Frobenius algebras, I, Ann. of Math. 40 (1939), 611–633, II, Ann. of Math. 42 (1941), 1–21.
- [9] E. T. Wong: Atomic quasi-injective modules, J. Math. Kyoto Univ. 3 (1964), 295-303.
- [10] Y. Miyashita: On quasi-injective modules, J. Fac. Sci. Hokkaido Univ. 18 (1965), 158-187.