PROJECTIVE MODULES OVER SIMPLE REGULAR RINGS

JIRO KADO

(Received July 7, 1978) (Revised October 30, 1978)

Recently K.R. Goodearl and D. Handelman [6] have studied simple regular rings from the point of view of dimension-like functions. They have shown that there exists a unique dimension function on the lattice of principal right ideals of a simple, regular and directly finite ring satisfying the comparability axiom. In this note we study some structures of projective modules over such a ring by making use of the dimension function.

In the section 1 we show that if there exists a dimension function on the lattice of principal right ideals of a regular ring, then this can be extended to a function on the set of all projective modules.

In the section 2 we investigate some structures of projective modules over a simple, regular and directly finite ring satisfying the comparability axiom and show that a directly finite projective module is isomorphic to a direct sum of a finitely generated free module and a projective right ideal, and a directly infinite projective module is a free module.

In the final section directly finite, regular and right self-injective rings are investigated. We show that this ring is a finite direct product of simple rings if and only if any non-singular directly finite injective right module is a finitely generated module.

Throughout this paper a ring R is an associative ring with identity and modules are unitary right R-modules.

1. Dimension functions

For any (Von Neumann) regular ring R, let L(R) be the lattice of principal right ideals and P(R) (FP(R)) the set of all projective (finitely generated projective) R-modules. We denote by $M \leq N$ the fact that M is isomorphic to a submodule of N for two modules M, N. In particular if R is regular, then $A \leq P$ for A in FP(R) and P in P(R) if and only if A is isomorphic to a direct summand of P [8, Lemma 4].

DEFINITION [6, p. 807]. A dimension function D on L(R) is a function from L(R) into non-negative real numbers satisfying the following conditions;

- (1) D(J)=0 if and only if J=0
- (2) D(R)=1
- (3) if $J \lesssim K$, then $D(J) \leq D(K)$
- (4) if $J \oplus K \in L(R)$, then $D(J \oplus K) = D(J) + D(K)$.
- I. Halperin [7] proved that if a dimension function D exists on L(R), then D can be uniquely extended to a function on FP(R). We shall show that this function D can be moreover extended to a function on P(R) by making use of the following lemma.

Lemma 1.1 [10]. For any projective module P over a regular ring, P is isomorphic to a direct sum of principal right ideals and any two direct sum decompositions of P have an isomorphic refinement.

Let P be in P(R). From now on, by $P=\oplus_{J\in\mathfrak{M}}J$ we denote the fact that there exists a set \mathfrak{M} of independent non-zero submodules isomorphic to some principal right ideal and P is a direct sum of the members of \mathfrak{M} . We put $D^*(P)=\sup\{\sum_{J\in\mathfrak{M}'}D(J);$ any finite subset \mathfrak{M}' of $\mathfrak{M}\}$ for any P in P(R) and any decomposition $P=\oplus_{J\in\mathfrak{M}}J$. If the above supremum is not convergent, we put $D^*(P)=\infty$. Now we shall prove that $D^*(P)$ does not depend on the decomposition of P. Let $P=\bigoplus_{K\in\mathfrak{N}}K$ be another decomposition. It is sufficient to prove that two numbers a, b defined by \mathfrak{M} and \mathfrak{N} coincide when \mathfrak{N} is a refinement of \mathfrak{M} . For any J in \mathfrak{M} , there exists a finite subset \mathfrak{N}' of \mathfrak{N} such that $J=\bigoplus_{K\in\mathfrak{N}'}K$. Hence we have $a\leq b$. Conversely for any finite subset \mathfrak{N}' of \mathfrak{N} and any K in \mathfrak{N}' , there exists some J in \mathfrak{M} such that K is a direct summand of J. Therefore there exists a finite subset \mathfrak{M}' of \mathfrak{M} such that $\sum_{K\in\mathfrak{N}'}D(K)\leq\sum_{J\in\mathfrak{M}'}D(J)$ and so we have $b\leq a$.

Now D^* is a function from P(R) into non-negative real numbers or ∞ , and from the definition and by Lemma 1.1, we can easily prove the following properties;

- (1) if $P \lesssim Q$ in P(R), then $D^*(P) \leq D^*(Q)$
- (2) if $P \oplus Q \in P(R)$, then $D^*(P \oplus Q) = D^*(P) + D^*(Q)$.

2. Projective modules

First we recall some definitions and some results in [6].

DEFINITION. A ring R is directly finite if xy=1 implies yx=1 for x, y in R. A module M is directly finite if $End_R(M)$ is directly finite. A ring R (a module M) is directly infinite if it is not directly finite. It is easily seen that a module M is directly finite if and only if M is not isomorphic to a proper direct summand of itself. A regular ring R satisfies the comparability axiom if we have either $J \lesssim K$ or $K \lesssim J$ for all J, K in L(R). For a cardinal number α and

a module M, αM denotes a direct sum of α copies of M.

Note. Throughout this section R is a simple, regular and directly finite ring satisfying the comparability axiom. In this case, any finitely generated projective R-module is directly finite by [6, Corollary 3.10].

EXAMPLE [6, pp. 815, 831 and 832]. Let F be a field and R_n the full matrix ring of degree 2^n over F. Let $f_n: R_n \to R_{n+1}$ be a diagonal homomorphism, i.e., $x \to \binom{50}{0x}$, and let R be a direct limit of $\{R_n, f_n\}$. This ring R is a simple, regular and directly finite ring which satisfies the comparability axiom and which is not artinian. Further R is neither left nor right self-injective.

Lemma 2.1 [6, Theorem 3.13 and Proposition 3.14]. Let J be in L(R). We put $D(J)=\sup\{mn^{-1}; m\geq 0, n>0, mR\leq nJ\}$. Then D is a unique dimension function on L(R). Further, for all J, K in L(R), we have $J\leq K$ if and only if $D(J)\leq D(K)$.

From now on, let D^* be the extension of the dimension function D as in the section 1. We consider projective modules over R from the point of view of D^* .

Lemma 2.2 Let A, B in FP(R). $A \leq B$ if and only if $D^*(A) \leq D^*(B)$. In particular, $A \cong B$ if and only if $D^*(A) = D^*(B)$.

Proof. We have $A \lesssim B$ or $B \lesssim A$ by [6, Lemma 3.7]. Then the proof of the first property is easy. If $D^*(A) = D^*(B)$, then $A \lesssim B$ and $B \lesssim A$. Hence A is isomorphic to a direct summand of itself. Then $A \cong B$, because A is directly finite.

The next is a key lemma for Theorem 2.4.

Lemma 2.3. For P in P(R) and A in FP(R), $P \leq A$ if and only if $D^*(P) \leq D^*(A)$.

Proof. By the definition, "only if" part is trivial. We assume $D^*(P) \leq D^*(A)$ and $P = \bigoplus_{J \in \mathfrak{M}} J$. First we know \mathfrak{M} is a countable set, because for each positive integer n, the set $\mathfrak{M}_n = \{J; D(J) > n^{-1}\}$ is a finite set and $\mathfrak{M} = \bigcup_n \mathfrak{M}_n$. Now put $\mathfrak{M} = \{J_n; n = 1, 2, \cdots\}$ and $P_n = \bigoplus_1^n J_i$, then we have $P = \bigcup_n P_n$. For each n, we can choose a monomorphism $f_n \colon P_n \to A$ by Lemma 2.2, because $D^*(P_n) \leq D^*(A)$. If we construct monomorphism $g_n \colon P_n \to A$ for each n such that g_{n+1} is an extension of g_n , then we have $P \lesssim A$. Put $g_1 = f_1$ and assume we have g_k for all $k \leq n$. We have decompositions $A = g_n(P_n) \oplus Q_n = f_{n+1}(P_n) \oplus f_{n+1}(J_{n+1}) \oplus Q_{n+1}$ for some submodules Q_n, Q_{n+1} , because homomorphism g_n, f_{n+1} split. Then we have $Q_n \cong f_{n+1}(J_{n+1}) \oplus Q_{n+1}$ by [6, Theorem 3.9] and so we choose a monomorphism $h \colon f_{n+1}(J_{n+1}) \to Q_n$. Consequently $g_{n+1} = g_n \oplus h f_{n+1} \colon P_{n+1} \to A$ is an extension of g_n .

We shall determine the structures of projective modules over a simple, regular and directly finite ring satisfying the comparability axiom.

Theorem 2.4. Let R be a simple, regular and directly finite ring satisfying the comparability axiom. For a projective R-module P, the following conditions are equivalent.

- (1) P is directly finite.
- (2) $D^*(P) < \infty$
- (3) P has a decomposition $P \cong nR \oplus J$ for some integer $n \ge 0$ and some right ideal J.
 - (4) $P \lesssim tR$ for some integer t > 0.
- Proof. (1) \Rightarrow (2). We assume $D^*(P)=\infty$. Put $P=\bigoplus_{J\in\mathfrak{M}}J$, then there exists a sequence of finite subsets \mathfrak{M}_i ($i=1,2,\cdots$) of \mathfrak{M} such that $\mathfrak{M}_i\cap\mathfrak{M}_j=\phi$ if $i\neq j$ and $D^*(\bigoplus_{J\in\mathfrak{M}_i}J)\geq 1$ for each i. Put $P_i=\bigoplus_{J\in\mathfrak{M}_i}J$, then we have $R\lesssim P_i$ by Lemma 2.2 and so we have $P_i=R_i\oplus Q_i$, where $R_i\cong R$. $F=\bigoplus_1^\infty R_i$ is a direct summand of P and $2F\cong F$. This contradicts that every direct summand of P is also directly finite.
- (2) \Rightarrow (3). We choose non-negative integer n such that $n < D^*(P) \le n+1$. If n=0, then we have $P \le R$ by Lemma 2.3. If n is positive, the first inequality implies that $nR \le P$ from the definition of D^* and by Lemma 2.2. Then we have $P=P_1 \oplus P_2$, where $P_1 \cong nR$. $D^*(P_2)=D^*(P)-D^*(P_1) \le 1$ implies $P_2 \le R$ by Lemma 2.3.
 - $(3) \Rightarrow (4)$ It is trivial.
- (4) \Rightarrow (1) If P is directly infinite, then there exists a set $\{P_i\}_1^{\infty}$ of independent non-zero cyclic submodules of P such that $P_i \cong P_j$ for all i, j. Then $D^*(\bigoplus_{i=1}^{\infty} P_i) = \infty$. This contradicts $D^*(P) \leq t$.

REMARK. A right ideal of R is projective if and only if it is countably generated. Further any right ideal has a projective submodule as an essential one [4, Lemmas 12 and 13].

The next three results follow to the advice of K. Oshiro.

Lemma 2.5. Let P and Q be countably generated but not finitely generated projective R-modules. If $D^*(P)=D^*(Q)$, then $P \cong Q$.

Proof. Since P and Q are not finitely generated, we put $P = \bigoplus_{i=1}^{\infty} P_n$ and $Q = \bigoplus_{i=1}^{\infty} Q_m$, where each P_n and Q_m are isomorphic to some non-zero members of L(R). We prove that there exist two increasing sequences $1 = n(1) < n(2) < \cdots$, $1 \le m(1) < m(2) < \cdots$, of positive integers and two sets $\{A_i\}_{i=1}^{\infty}$, $\{B_i\}_{i=1}^{\infty}$ of independent non-zero submodules of P satisfying, for each i

- $(1) \quad \bigoplus_{n(i)+1}^{n(i+1)} P_i = B_i \bigoplus A_{i+1}$
- $(2) \quad \bigoplus_{m(i-1)+1}^{m(i)} Q_i \cong A_i \oplus B_i$

where $A_1 = P_1$ and m(0) = 0.

First we choose integers $1 \le m(1)$, 1 < n(2) such that $D^*(P_1) < D^*(\bigoplus_{t=1}^{m(1)} Q_t) \le n(2)$ $D^*(\bigoplus_{i=1}^{n(2)} P_i)$. Then, by Lemma 2.2, we have $P_1 \oplus X \cong \bigoplus_{i=1}^{m(1)} Q_i$ and $\bigoplus_{i=1}^{m(1)} Q_i \oplus Y_i$ $\cong \bigoplus_{i=1}^{n(2)} P_{i}$, for some modules X, Y. Then we have $X \oplus Y \cong \bigoplus_{i=1}^{n(2)} P$ by [6, Theorem 3.9]. Put n(1)=1, $A_1=P_1$ and $B_1\oplus A_2=\oplus_2^{n(2)}P_i$, where $B_1\cong X$ and $A_2 \cong Y$. Next we assume that there exist two increasing sequences, $n(1) < \cdots$ $\langle n(k+1), m(1) \langle \cdots \langle m(k) \text{ and two sets } \{A_i\}_{i=1}^{k+1}, \{B_i\}_{i=1}^{k} \text{ of independent non-zero} \}$ submodules of P satisfying the properties (1) and (2). Since $\bigoplus_{i=1}^{k} (A_i \oplus B_i) \cong$ $\bigoplus_{i=1}^{m(k)} Q_i$ and $D^*(P) = D^*(Q)$, then $D^*(A_{k+1} \oplus (\bigoplus_{i=1}^{\infty} P_i)) = D^*(\bigoplus_{i=1}^{\infty} Q_i)$. We can take positive integers m(k+1), n(k+2) such that m(k) < m(k+1), n(k) < n(k+2)and $D^*(A_{k+1}) < D^*(\bigoplus_{m(k)+1}^{m(k+1)} Q_t) \le D^*(A_{k+1} \bigoplus (\bigoplus_{n(k+1)+1}^{n(k+2)} P_i))$. Then, again by Lemma 2.2, we obtain $A_{k+1} \oplus X' \cong \bigoplus_{m(k)+1}^{m(k+1)} Q_t$ and $\bigoplus_{m(k)+1}^{m(k+1)} Q_t \oplus Y' \cong A_{k+1} \oplus A_{k+1}$ $(\bigoplus_{n(k+1)+1}^{n(k+2)} P_i)$, for some modules X', Y'. Since $A_{k+1} \oplus X' \oplus Y' \cong A_{k+1} \oplus A_{k+1} \oplus$ $(\bigoplus_{n(k+1)+1}^{n(k+2)} P_i)$, then we have a decomposition $\bigoplus_{n(k+1)+1}^{n(k+2)} P_i = B_{k+1} \bigoplus A_{k+2}$, where $B_{k+1} \cong X'$ and $A_{k+2} \cong Y'$, by [6, Theorem 3.9]. By the above procedure, we can construct independent non-zero submodules $A_1, B_1, A_2, B_2, \cdots$ which satisfy the properties (1) and (2). Since each P_n is contained in $B_i \oplus A_{i+1}$ for some i, then $P = \bigoplus_{i=1}^{\infty} (A_i \oplus B_i)$. On the other hand we have $Q = \bigoplus_{i=1}^{\infty} (\bigoplus_{m(i-1)+1}^{m(i)} Q_i)$. Therefore we conclude that $P \cong Q$.

REMARK. The result obtained by applying Lemma 2.5 for P, Q in $P^*(R)$ means that the Grothendieck group generated by the isomorphism classes of directly finite projective R-modules is isomorphic to some subgroup of the additive group of R. (Cf. [2, Corollaries. 10.14 and 10.16]).

Theorem 2.6. Let R be a simple, regular and directly finite ring satisfying the comparability axiom. Any directly infinite projective R-modules is a free R-module.

Proof. By Theorem 2.4 and Lemma 2.5, we already see that every directly infinite, countably generated projective R-module is isomorphic to $\aleph_0 R$. Thus we shall show that every directly infinite projective R-module can be expressed as a direct sum of directly infinite, countably generated submodules. Let $P = \bigoplus_{\alpha \in I} P_{\alpha}$ be a directly infinite projective R-module, where each P_{α} is isomorphic to some non-zero I in I(R). Let $\mathfrak B$ be the set of all countably infinite subsets of I. We consider the family consisting of all subsets $\mathfrak F$ of $\mathfrak B$ satisfying the following properties;

- (1) each members of \mathfrak{F} is pairwise disjoint
- (2) $D^*(\bigoplus_{\alpha \in K} P_{\alpha}) = \infty$ for each K in \mathfrak{F} .

Since this family is a inductively ordered set using the inclusion relation, there exists a maximal member \mathfrak{F} by Zorn's Lemma. Put $I^*=\bigcup_{K\in\mathfrak{F}}K$. If $I^*=I$, then our proof is complete. Next we consider the case that $I^* \neq I$. First we shall show that $D^*(\bigoplus_{\alpha \in I^{**}P_\alpha}) < \infty$, where I^{**} is the complement of I^* . Other-

wise we can take a countably infinite subset I' of I^{**} such that $D^*(\bigoplus_{\alpha \in I'} P_{\alpha}) = \infty$. Then the set $\mathfrak{F} \cup \{I'\}$ is strictly greater than \mathfrak{F} . This is a contradiction. By the proof of Lemma 2.3, we see that I^{**} is a countable set. Choose one member K' of \mathfrak{F} , and put $\mathfrak{F}' = \mathfrak{F} - \{K'\}$, and $K'' = K' \cup I^{**}$. Then K'' is a countably infinite set and $D^*(\bigoplus_{\alpha \in K''} P_{\alpha}) = \infty$. The decomposition $P = (\bigoplus_{K \in \mathfrak{F}'} (\bigoplus_{\alpha \in K} P_{\alpha})) \oplus (\bigoplus_{\alpha \in K''} P_{\alpha})$ is a desired one.

DEFINITION [5, p. 174]. Let A be a module. If A=0, define $\mu(A)=0$. If $A \neq 0$, define $\mu(A)$ to be the smallest infinite cardinal number α such that $\alpha A \lesssim A$.

Proposition 2.7. Let P and S be projective modules which are not finitely generated. If $P \lesssim S$ and $S \lesssim P$, then $P \cong S$.

Proof. Since $D^*(P)=D^*(S)$ by the definition of D^* , then they are both directly finite or both directly infinite by Theorem 2.4. If P and S are directly finite, then they are countably generated by the proof of Lemma 2.3. Thus we have $P \cong S$ by Lemma 2.5. If P and S are directly infinite, then $P \cong \alpha R$ and S $\cong \beta R$ for some infinite cardinal numbers α , β by Theorem 2.6. We can assume $\alpha \leq \beta$. Let Q be the maximal ring of quotients of R and we use the notation E(A) to stand for an injective hull of a module A. Since $P \leq S$ and $S \leq P$, then $E(P) \cong E(S)$ by [1, Corollary]. On the other hand, $E(P) \cong E(\alpha Q)$ and E(S) $\cong E(\beta Q)$ and also Q is a prime ring because it satisfies the comparability. Therefore, by [5, Theorem 6.32], $\max\{\alpha', \mu(Q)\} = \mu(E(P)) = \mu(E(S)) = \max\{\beta', \mu(Q)\},\$ where α' and β' are the successores of α and β . Thus, if $\alpha < \beta$, then it must hold that $(\aleph_1 \leq \alpha) \leq \mu(Q)$. Since $\aleph_1 < \mu(Q)$, $\aleph_1 Q \leq Q$. Therefore let $\{A_\tau\}_{\tau \in I}$ be a independent set of principal right ideals of Q such that $A_{\tau}{\cong}Q$ for each τ in I and the cardinality of I is \aleph_1 . Then $\{A_\tau \cap R\}_{\tau \in I}$ is a independent set of nonzero right ideals of R. This contradicts the fact that there is no uncountable direct sum of non-zero right ideals of R. Consequently we must have $\alpha = \beta$ and hence $P \cong S$.

3. Directly finite, regular and right self-injective ring

Lemma 3.1 [3, Lemma 5' and 6, Proposition 1.4]. A prime, directly finite, regular and right self-injective ring is a simple ring satisfying the comparability axiom.

Proposition 3.2. Let R be a directly finite, regular and right self-injective ring. Then R is a finite direct product of simple rings if and only if any non-singular directly finite injective R-module is finitely generated.

Proof. First we shall prove that "only if" part. There exists a set $\{e_i\}_1^n$ of orthogonal central idempotents such that $\sum_{i=1}^n e_i = 1$ and each $e_i R$ is a simple

ring. Let M be a non-singular directly finite injective R-module. There exists a projective R-module P such that P is an essential submodule of M, because any non-singular finitely generated R-module is a projective and injective module (cf. [9, Theorem 2.7]). M is directly finite, and so P is also directly finite. Put $P_i = Pe_i$ for each i, then each P_i is also a directly finite projective module as an e_iR -module. Therefore there exists a positive integer t such that $P_i \lesssim t(e_iR)$ for all i by Lemma 3.1 and Theorem 2.4. Thus $P \lesssim tR$, because $P = \bigoplus_{i=1}^{n} P_{i}$. This monomorphism can be extended to be monomorphism from M into tR. Then M is isomorphic to a direct summand of tR. Conversely we assume that R can be decomposed into no finite direct product of prime rings. Then R itself is not prime. Hence there exist non-zero two-sided ideals A, B such that AB=0. Let A', B' be the injective hull of A, B in R, then they are also two-sided ideals and generated by central idempotents by [3, Lemma 1]. Since R is semi-prime, $A \cap B = 0$. Then $A' \cap B' = 0$. Hence there exist orthogonal central idempotents $\{e_i\}_1^3$ such that $\sum_{i=1}^3 e_i = 1$. By the assumption, at least one of $e_i R$, say $e_j R$, is not prime. Use the same argument for the ring $e_j R$, then there exists another set $\{e_i'\}_{i=1}^{5}$ of orthogonal central idempotents of R such that $\sum_{i=1}^{5} e_{i}' = 1$. Repeating these procedures, we obtain a countably infinite set $\{e_{n}\}_{1}^{\infty}$ of orthogonal non-zero central idempotents. If $\bigoplus_{1}^{\infty} e_{n}R$ is not essential in R_{R} , we choose some central idempotent f which generates the injective hull of $\bigoplus_{1}^{\infty} e_n R$ and we consider $\{e_n, 1-f\}_1^{\infty}$. Therefore we may assume that $\bigoplus_{i=1}^{\infty} e_i R$ is essential in R_R . Since R_R is injective and $\bigoplus_{1}^{\infty} e_n R$ is a two-sided ideal, $R \cong End_R(\bigoplus_{1}^{\infty} e_n R)$. $End_R(\bigoplus_{1}^{\infty}e_nR) \cong \prod_{n}End_R(e_nR) \cong \prod_{n}e_nR$, because $Hom_R(e_nR, e_mR) = 0$ for $n \neq m$ and each e_n is a central idempotent. Consequently $R \cong \prod_n e_n R$ by the mapping: $r \to \infty$ $(e_n r)$. We put $M_n = n(e_n R)$ for each n and we consider the R-module $M = \prod_n M_n$. This is obviously a non-singular injective R-module. We also know that it is directly finite, because $End_R(M) \cong \prod_n End_R(M_n)$ and $End_R(M_n)$ is directly finite for all n. By the assumption, there exists a positive integer t such that $M \le tR$. Now we choose an integer m which is larger than t. That $M_m \lesssim tR \cong \prod_n t(e_n R)$ implies that $M_m \lesssim t(e_m R)$, because $Hom_R(M_m, t(e_n R)) = 0$ for all $n \neq m$. This contradicts that M_m is directly finite. Hence R is a finite direct product of prime rings. Prime directly finite regular right self-injective rings are simple by Lemma 3.1, and so we have proved.

OSAKA CITY UNIVERSITY

References

- [1] R.T. Bumby: Modules which are isomorphic to submodules of each other, Arch. Math. 16 (1965), 184–185.
- [2] K.R. Goodearl and K. Boyle: Dimension theory for non-singular injective modules, Mem. Amer. Math. Soc. 177 (1976).

- [3] K.R. Goodearl: Prime ideals in regular self-injective rings, Canad. J. Math. 25 (1973), 829-839.
- [4] K.R. Goodearl: Simple regular rings and rank functions, Math. Ann. 214 (1975), 267-287.
- [5] K.R. Goodearl: Ring theory (nonsingular rings and modules) Monographs and Textbooks in Pure and Applied Mathematics No. 33 Marcel Dekker, Inc.
- [6] K.R. Goodearl and D. Handelman: Simple self-injective rings, Comm. Algebra 3 (1975), 797-834.
- [7] I. Halperin: Extension of the rank function, Studia Math. 27 (1966), 325-335.
- [8] I. Kaplansky: Projective modules, Ann. of Math. 68 (1958), 372-377.
- [9] F.L. Sandomierski: Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968). 225-230.
- [10] R.B. Warfield, Jr.: Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36.