Translator Disclaimer
2018 On Superstable Expansions of Free Abelian Groups
Daniel Palacín, Rizos Sklinos
Notre Dame J. Formal Logic 59(2): 157-169 (2018). DOI: 10.1215/00294527-2017-0023

Abstract

We prove that (Z,+,0) has no proper superstable expansions of finite Lascar rank. Nevertheless, this structure equipped with a predicate defining powers of a given natural number is superstable of Lascar rank ω. Additionally, our methods yield other superstable expansions such as (Z,+,0) equipped with the set of factorial elements.

Citation

Download Citation

Daniel Palacín. Rizos Sklinos. "On Superstable Expansions of Free Abelian Groups." Notre Dame J. Formal Logic 59 (2) 157 - 169, 2018. https://doi.org/10.1215/00294527-2017-0023

Information

Received: 22 September 2014; Accepted: 20 August 2015; Published: 2018
First available in Project Euclid: 29 January 2018

zbMATH: 06870285
MathSciNet: MR3778304
Digital Object Identifier: 10.1215/00294527-2017-0023

Subjects:
Primary: 03C45

Rights: Copyright © 2018 University of Notre Dame

JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.59 • No. 2 • 2018
Back to Top