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Toward a Model Theory for Transseries

Matthias Aschenbrenner, Lou van den Dries, and
Joris van der Hoeven

For Anand Pillay, on his 60th birthday

Abstract The differential field of transseries extends the field of real Laurent
series and occurs in various contexts: asymptotic expansions, analytic vector
fields, and o-minimal structures, to name a few. We give an overview of the
algebraic and model-theoretic aspects of this differential field and report on our
efforts to understand its elementary theory.

Introduction

We shall describe a fascinating mathematical object, the differential field T of
transseries. It is an ordered field extension of R and is a kind of universal domain
for asymptotic real differential algebra. In the context of this paper, a transseries is
what is called a logarithmic-exponential series or LE-series in van den Dries [35].
Here is the main problem that we have been pursuing, intermittently, for more than
15 years.

Conjecture The theory of the ordered differential field T is model complete and
is the model companion of the theory ofH -fields with small derivation.

With slow progress during many years, our understanding of the situation has re-
cently increased at a faster rate, and this is what we want to report on. In Section 1 we
give an informal description of T; in Section 2 we give some evidence for the conjec-
ture and indicate some plausible consequences. In Section 3 we define H -fields and
explain their expected role in the story. Section 4 describes our recent partial results
toward the conjecture, obtained since the publication of the survey Aschenbrenner
and van den Dries [3]. (A full account is in preparation, and of course we hope to
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finish it with a proof of the conjecture.) Section 5 proves quantifier-free versions
of the conjectural induced structure on the constant field R of T, of the asymptotic
o-minimality of T, and of T having the nonindependence property (NIP). In the last
Section 6 we discuss what might be the right primitives to eliminate quantifiers for
T; this amounts to a strong form of the above conjecture.

This paper is mainly expository and programmatic in nature, and occasionally
speculative. It is meant to be readable with only a rudimentary knowledge of model
theory, valuations, and differential fields and elaborates on talks by us on various
recent occasions, in particular, by the second-named author at the meeting in Oléron.
For more background on the material in Sections 1–3 (e.g., on Hardy fields; see [3]),
which can serve as a companion to the present paper.

Conventions Throughout, m, n range over N D ¹0; 1; 2; : : : º. For a field K we
let K� D K n ¹0º be its multiplicative group. By a Hahn field we mean a field
k..t�// of generalized power series, with coefficients in the field k and exponents in
a nontrivial ordered abelian group � , and we view it as a valued field in the usual
way.1 By differential field we mean a field K of characteristic zero equipped with a
derivation ∂WK ! K. In our work the operation of taking the logarithmic deriva-
tive is just as basic as the derivation itself, and so we introduce a special notation:
y� WD y0=y denotes the logarithmic derivative of a nonzero y in a differential field.
Thus .yz/� D y� C z� for nonzero y, z in a differential field. Given a differential
field K and an element a in a differential field extension of K, we let Khai be the
differential field generated by a over K. An ordered differential field is a differential
field equipped with an ordering in the usual sense of “ordered field.” A valued dif-
ferential field is a differential field equipped with a (Krull) valuation that is trivial on
its prime subfield Q. The term pc-sequence abbreviates pseudo-cauchy sequence.

1 Transseries

The ordered differential field T of transseries arises as a natural remedy for certain
shortcomings of the ordered differential field of formal Laurent series.

1.1 Laurent series Recall that the field R..x�1// of formal Laurent series in powers
of x�1 over R consists of all series of the form

f .x/ D anx
n
C an�1x

n�1
C � � � C a1x„ ƒ‚ …

infinite part of f

C a0 C a�1x
�1
C a�2x

�2
C � � �„ ƒ‚ …

infinitesimal part of f

with real coefficients an; an�1; : : : . We order R..x�1// by requiring x > R, and we
make it a differential field by requiring x0 D 1 and differentiating termwise.

The ordered differential field R..x�1// is too small for many purposes:
� x�1 has no antiderivative log x in R..x�1//;
� there is no reasonable exponentiation f 7! exp.f /.

Here reasonablemeans that it extends real exponentiation and preserves its key prop-
erties: the map f 7! exp.f / should be an isomorphism from the ordered additive
group of R..x�1// onto its ordered multiplicative group of positive elements, and
exp.x/ > xn for all n in view of x > R. Note that exponentiation does make sense
for the finite elements of R..x�1//:
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exp.a0 C a�1x�1 C a�2x�2 C � � � /

D ea0
1X
nD0

1

nŠ
.a�1x

�1
C a�2x

�2
C � � � /n

D ea0.1C b1x�1 C b2x�2 C � � � / for suitable b1; b2; : : : 2 R:

The main model-theoretic defect of R..x�1// as a differential field is that it defines
the subset Z (see Denef and Lipshitz [13, proof of Proposition 3.3(i)]). Thus it has
no “tame” model-theoretic features. (In contrast, R..x�1// viewed as just a field is
decidable by the work of Ax and Kochen [7].)

1.2 Transseries To remove these defects we extend R..x�1// to an ordered differ-
ential field T of transseries: series of transmonomials (or logarithmic-exponential
monomials) arranged from left to right in decreasing order, each multiplied by a real
coefficient, for example,

eex � 3ex2 C 5x
p
2
� .log x/� C 1C x�1 C x�2 C x�3 C � � � C e�x C x�1e�x :

The reversed order type of the set of transmonomials that occur in a given transseries
can be any countable ordinal. (For the series displayed it is !C2.) As with R..x�1//,
the natural derivation of T is given by termwise differentiation of such series, and in
the natural ordering on T, a nonzero transseries is positive if and only if its leading
(“leftmost”) coefficient is positive.

Transseries occur in solving implicit equations of the form P.x; y; ex ; ey/ D 0

for y as x ! C1, where P is a polynomial in four variables over R. More gener-
ally, transseries occur as asymptotic expansions of functions definable in o-minimal
expansions of the real field (see [3] for more on this). Transseries also arise as formal
solutions to algebraic differential equations and in many other ways. For example,
the Stirling expansion for the gamma function is a (very simple) transseries.

The terminology “transseries” is due to Écalle [15], who introduced T in his solu-
tion of Dulac’s problem: a polynomial vector field in the plane can only have finitely
many limit cycles. (This is related to Hilbert’s sixteenth problem.) Independently, T
was also defined by Dahn and Göring in [12], in connection with Tarski’s problem
on the real exponential field, and studied as such in [35], in the aftermath of Wilkie’s
famous theorem in [40]. (Discussions of the history of transseries are in van der
Hoeven [38], Ressayre [24].)

Transseries are added and multiplied in the usual way and form a ring T, and
this ring comes equipped with several other natural operations. Here are a few, each
accompanied by simple examples and relevant facts about T.

Taking the multiplicative inverse Each nonzero f 2 T has a multiplicative inverse in
T: for example,

1

x � x2e�x
D

1

x.1 � xe�x/
D x�1.1C xe�x C x2e�2x C � � � /

D x�1 C e�x C xe�2x C � � � :

As an ordered field, T is a real closed extension of R. In particular, an algebraic
closure of T is given by TŒi� where i2 D �1.
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Formal differentiation Each f 2 T can be differentiated term by term, giving a
derivation f 7! f 0 on the field T. For example,

.e�x C e�x2 C e�x3 C � � � /0 D �.e�x C 2xe�x2 C 3x2e�x3 C � � � /:

The field of constants of this derivation is ¹f 2 T W f 0 D 0º D R.
Formal integration For each f 2 T there is some F 2 T (unique up to addition of a
constant from R) with F 0 D f , for example,Z ex

x
dx D constant C

1X
nD0

nŠx�1�nex (diverges):

Formal composition Given f; g 2 T with g > R, we can “substitute g for x in
f ” to obtain a transseries f ı g 2 T. For example, let f .x/ D x C log x and
g.x/ D x log x; writing f .g.x// for f ı g, we have

f
�
g.x/

�
D x log x C log.x log x/ D x log x C log x C log.log x/;

g
�
f .x/

�
D .x C log x/ log.x C log x/

D x log x C .log x/2 C .x C log x/
1X
nD1

.�1/nC1

n

� log x
x

�n
D x log x C .log x/2 C log x C

1X
nD1

.�1/nC1

n.nC 1/

.log x/nC1

xn
:

The chain rule holds:

.f ı g/0 D .f 0 ı g/ � g0 for all f; g 2 T; g > R:

Compositional inversion The set T>R WD ¹f 2 T W f > Rº of positive infinite
transseries is closed under the composition operation .f; g/ 7! f ı g and forms a
group with identity element x. For example, the transseries g.x/ D x log x has a
compositional inverse of the form

x

log x
� F
� log log x

log x
;
1

log x

�
where F.X; Y / is an ordinary convergent power series in the two variables X and
Y over R with constant term 1. (This fact plays a certain role in the solution, using
transseries, of a problem of Hardy dating from 1911, obtained independently in van
den Dries [34] and van der Hoeven [36]; see [24].)
Exponentiation We have a canonical isomorphism f 7! exp.f /, with inverse
g 7! log.g/, between the ordered additive group of T and the ordered multiplicative
group T>0; it extends the exponentiation of finite Laurent series described above.
With sinh WD 1

2
ex � 1

2
e�x 2 T>0 (sinus hyperbolicus),

exp.sinh/ D exp
�1
2
ex
�
� exp

�
�
1

2
e�x

�
D e.1=2/ex �

1X
nD0

1

nŠ

�
�
1

2
e�x

�n
D

1X
nD0

.�1/n

nŠ2n
e.1=2/ex�nx ;

log.sinh/ D log
�ex
2
.1 � e�2x/

�
D x � log 2 �

1X
nD1

1

n
e�2nx :
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As an exponential ordered field, T is an elementary extension of the real exponential
field [34], and thus model complete and o-minimal (see [40]). The iterated exponen-
tials

e0 WD x; e1 WD exp x; e2 WD exp
�
exp.x/

�
; : : :

form an increasing cofinal sequence in the ordering of T. Likewise, their formal
compositional inverses

`0 WD x; `1 WD log x; `2 WD log
�
log.x/

�
; : : :

form a decreasing coinitial sequence in T>R.
A precise construction of T is in [35], where it is denoted by R..x�1//LE (see also

[15], Edgar [16], and [38] for other accounts). The purely logarithmic transseries are
those which, informally speaking, do not involve exponentiation, and they make up
an intriguing differential subfield Tlog of T that has a very explicit definition. First,
setting `0 WD x and `mC1 D log `m yields the sequence .`m/ of iterated logarithms
of x. Next, let Lm be the formal multiplicative group

`R0 � � � `
R
m D ¹`

r0
0 � � � `

rm
m W r0; : : : ; rm 2 Rº

made into an ordered group such that `r00 � � � `
rm
m > 1 if and only if the exponents

r0; : : : ; rm are not all zero, and ri > 0 for the least i with ri ¤ 0. Of course, if
m 6 n, then Lm is naturally an ordered subgroup of Ln, and so we have a natural
inclusion of Hahn fields R..Lm// � R..Ln//. We now have

Tlog D

1[
nD0

R..Ln// (increasing union of differential subfields).

It is straightforward to define logf 2 Tlog for f 2 T>0log .
The inductive construction of T is more complicated but also yields T as a di-

rected union of Hahn subfields, each of which is also closed under the derivation.
Hahn fields themselves (as opposed to suitable directed unions of Hahn fields) can-
not be equipped with a reasonable exponential map (see Kuhlmann, Kuhlmann, and
Shelah [23]).

Note that Tlog is a proper subfield of R..L//, where L WD
S1
nD0 Ln (directed

union of ordered multiplicative subgroups); for example, the series
1

`20
C

1

.`0`1/2
C � � � C

1

.`0`1 � � � `n/2
C � � �

lies in R..L// but not in Tlog, and in fact, not even in T. (This series will be important
in Section 4 below; see also Theorem 2.3.)

1.3 Analytic counterparts of T Convergent series in R..x�1// define germs of real
analytic functions at infinity. This yields an isomorphism of ordered differential
fields between the subfield of convergent series in R..x�1// and a Hardy field. It
would be desirable to extend this to isomorphisms between larger differential sub-
fields T of T and Hardy fields H which preserve as much structure as possible: the
ordering, differentiation, and even integration and composition, whenever defined.

However, if T is sufficiently closed under integration (or solutions of other simple
differential equations), then it will contain divergent power series in x�1, as well as
more general divergent transseries. A major difficulty is to give an analytic meaning
to such transseries. In simple cases, Borel summation provides a systematic device
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for doing this. Borel’s theory has been greatly extended by Écalle, who introduced a
big subfield Tas of T. The elements of Tas are called accelero-summable transseries,
and Tas is real closed, stable under differentiation, integration, composition, and so
on. The analytic counterparts of accelero-summable transseries are called analyzable
functions, and they appear naturally in Écalle’s proof of the Dulac conjecture. As a
prelude to the T-conjecture in the next section, here are some sweeping statements2
from Écalle’s book [15] on these notions, indicating that T and its cousin Tas might
be viewed as universal domains for asymptotic analysis.

It seems [. . . ] (but I have not yet verified this in all generality) that Tas is closed
under resolution of differential equations, or, more exactly, that if a differential equa-
tion has formal solutions in T, then these solutions are automatically in Tas.

It seems [. . . ] that the algebra Tas of accelero-summable transseries is truly the
algebra-from-which-one-can-never-exit and that it marks an almost impassable hori-
zon for “ordered analysis.” (This sector of analysis is in some sense “orthogonal”
to harmonic analysis.)

This notion of analysable function represents probably the ultimate extension of
the notion of (real) analytic function, and it seems inclusive and stable to a degree
unheard of.

Accelero-summation requires a big machinery. If we just try to construct isomor-
phisms T ! H which do not necessarily preserve composition but do preserve the
ordering and differentiation, then simpler arguments with a more model-theoretic
flavor can be used to prove the following, from van der Hoeven [39].

Theorem 1.1 Let Tda � T be the field of transseries that are differentially alge-
braic over R. Then there is an isomorphism of ordered differential fields between Tda

and some Hardy field.

In [39], this follows from general theorems about extending isomorphisms between
suitable differential subfields of T and Hardy fields.

2 The T-Conjecture

As explained above, the elementary theory of T as an exponential field is understood,
but T is far more interesting when viewed as a differential field.

From now on we consider T as an ordered valued differential field.

T-Conjecture T is model complete.

Model completeness is fairly robust as to which first-order language is used, but to
be precise, we consider T here as an L-structure, where L is the language of ordered
valued differential rings given by

L WD ¹0; 1;C;�; �; ∂;6;4º

where the unary operation symbol ∂ names the derivation, and the binary relation
symbol 4 names the valuation divisibility on the field T given by

f 4 g”jf j 6 cjgj for some c 2 R>0:

For the T-conjecture, it does not really matter whether or not we include 6 and 4,
since the ordering and the valuation divisibility are existentially definable in terms
of the other primitives: for 4, use that R is the field of constants for the derivation
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(see also Aschenbrenner and van den Dries [4, Section 14]). A purely differential-
algebraic formulation of the T-conjecture reads as follows.

For any differential polynomial P over Q inmC n variables there exists a differ-
ential polynomial Q over Q in mC p variables, for some p depending on P , such
that for all a 2 Tm the following equivalence holds:

P.a; b/ D 0 for some b 2 Tn” Q.a; c/ ¤ 0 for all c 2 Tp:

In logical terms: every existential formula in the language of differential rings is
equivalent in T to a universal formula in that language.

Sections 5 and 6 suggest that a strong form of the T-conjecture (elimination of
quantifiers in a reasonable language) will imply the following attractive and intrinsic
model-theoretic properties of T.
� If X � Tn is definable, then X \ Rn is semialgebraic.
� T is asymptotically o-minimal: for each definable X � T there is a b 2 T

such that either .b;C1/ � X or .b;C1/ � T nX .
� T has NIP. (What this means is explained in Section 5.)

2.1 Positive evidence In Section 5 we establish quantifier-free versions of the last
three statements. Over the years, evidence for the T-conjecture has accumulated.
For example, the value group of T equipped with a certain function induced by the
derivation of T (the “asymptotic couple” of T as defined in Section 3.3 below) is
model complete; see Aschenbrenner and van den Dries [1]. The best evidence for
the T-conjecture to date is the analysis by van der Hoeven in [38] of the set of zeros
in T of any given differential polynomial in one variable over T. Among other things,
he proved the following intermediate value theorem.

Theorem 2.1 Given any differential polynomial P.Y / 2 T¹Y º and f; h 2 T with
P.f / < 0 < P.h/, there is g 2 T with f < g < h and P.g/ D 0.

Here and later K¹Y º D KŒY; Y 0; Y 00; : : : � is the ring of differential polynomials in
the indeterminate Y over a differential field K. The proofs in [38] make full use
of the formal structure of T as an increasing union of Hahn fields. This makes it
possible to apply analytic techniques (fixed point theorems, compact-like operators,
etc.) for solving algebraic differential equations (see also van der Hoeven [37]).
Much of our work consists of recovering significant parts of [38] under weak first-
order assumptions on valued differential fields.

2.2 The different flavors of T In any precise inductive construction of T we can
impose various conditions on the so-called support of a transseries, which is the
ordered set of transmonomials occurring in it with a nonzero coefficient. This leads
to variants of the differential field T (see, e.g., the discussion in [15] and [38]). For
the sake of definiteness, we take here T to be the field R..x�1//LE of logarithmic-
exponential power series from [35], where supports are only required to be anti-
well-ordered; this is basically the weakest condition that can be imposed.

In [38], however, each transseries has a grid-based support contained in a finitely
generated subgroup of the multiplicative group of transmonomials. This leads to a
rather small differential subfield of our T, but results such as the intermediate value
theorem in [38] proved there for the grid-based version of T are known to hold also
for the T we consider here. Of course, we expect these variants of T all to be el-
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ementarily equivalent, and this is part of the motivation for our T-conjecture. For
this expectation to hold we would need also an explicit first-order axiomatization of
the theory of T, and show that the various flavors of T all satisfy these axioms. At
the end of Section 4 we conjecture such an axiomatization as part of a more explicit
version of the T-conjecture.

Likewise, we expect Écalle’s differential field Tas of accelero-summable trans-
series to be an elementary submodel of T. (By the way, Tas comes in similar variants
as T itself.) Also Tda, whose elements are the differentially algebraic transseries, is
a natural candidate for an elementary submodel of T.

2.3 Linear differential operators over T The intermediate value property for differ-
ential polynomials over T resembles the behavior of ordinary one-variable polyno-
mials overR. There is another analogy in [38] between T andRwhich is much easier
to establish: factoring linear differential operators over T is similar to factoring one-
variable polynomials over R. By a linear differential operator over T we mean an
operator A D a0Ca1∂C� � �Can∂n on T (∂ D the derivation, all ai 2 T); it defines
the same function on T as the differential polynomial a0Y C a1Y 0 C � � � C anY .n/.
The linear differential operators over T form a noncommutative ring TŒ∂� under com-
position.

Theorem 2.2 Every linear differential operator over T of positive order is surjec-
tive as a map T! T, and is a product (composition) of operators aC b∂ of order 1
in TŒi�Œ∂�. Every such operator is a product of order 1 and order 2 operators in TŒ@�.

Thus coming to grips with linear differential operators over T reduces to some extent
to understanding those of order 1 and order 2. Studying operators of order 1 is largely
a matter of solving equations y0 D a and z� D b. Modulo solving such equations,
order 2 operators can be reduced to those of the form 4∂2Cf , where the next theorem
is relevant.

Theorem 2.3 Let f 2 T. Then the following are equivalent:
(1) the equation 4y00 C fy D 0 has a nonzero solution in T;
(2) f < 1

.`0/2
C

1
.`0`1/2

C
1

.`0`1`2/2
C � � � C

1
.`0`1���`n/2

for some n;
(3) f ¤ 2.u��/0 � .u��/2 C .u�/2 for all u > R in T.

The equivalence of (1) and (2) is analogous to a theorem of Boshernitzan [11] and
Rosenlicht [29] in the realm of Hardy fields. (See the remarks following Theo-
rem 1.12 in [3] for a correction of [29].) The equivalence of (1) and (3) has been
known to us since 2002. Its model-theoretic significance is that the existential condi-
tion (1) on f is equivalent to a universal condition on f , namely (3), in accordance
with the T-conjecture.

We note here that for a nonconstant element u of a differential field,

2.u��/0 � .u��/2 C .u�/2 D 2
�
S.u/C .u�/2

�
; where

S.u/ WD .u0�/0 �
1

2
.u0�/2 D

u000

u0
�
3

2

�u00
u0

�2
is known as the Schwarzian derivative of u, which plays a role in the analytic theory
of linear differential equations (see Hille [21, Chapter 10]).
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3 H -Fields

Abraham Robinson taught us to think about model completeness and quantifier elim-
ination (QE) in an abstract algebraic way. This approach as refined by Shoenfield and
Blum suggests that the T-conjecture follows from an adequate extension theory for
those ordered differential fields that share certain basic (universal) properties with
T. This involves a critical choice of the “right” class of ordered differential fields.
Our choice: H -fields3 as defined below. Then the challenge becomes to show that
the “existentially closed” H -fields are exactly the H -fields that share certain deeper
first-order properties with T. If we can achieve this, then T will be model complete.

In practice this often amounts to the following: come up with the “right” extra
primitives (these should be existentially as well as universally definable in T); guess
the “right” axioms characterizing existentially closed H -fields; and prove suitable
embedding theorems for H -fields enriched with these primitives. If this works, one
has a proof of a strong form of the T-conjecture, namely an elimination of quantifiers
in the language L augmented by symbols for the extra primitives. Such an approach
to understanding definability in a given mathematical structure often yields further
payoffs, for example, a useful dimension theory for definable sets.

Let K be an ordered differential field, and put4

C D ¹a 2 K W a0 D 0º (constant field of K);

O D ¹a 2 K W jaj 6 c for some c 2 C>0º (convex hull of C in K);

O D ¹a 2 K W jaj < c for all c 2 C>0º (maximal ideal of O).
We call K anH -field if the following conditions are satisfied:
(H1) O D C C O,
(H2) a > C H) a0 > 0.

Examples of H -fields include any Hardy field containing R, such as R.x; ex/; the
ordered differential field R..x�1// of Laurent series; and T. All these satisfy an extra
axiom:
(H3) a 2 O H) a0 2 O,

which is also expressed by saying that the derivation is small.
An H -field K comes with a definable (Krull) valuation v whose valuation ring

is the convex hull O of C . It will be useful to fix some notation for any valued
differential field K, not necessarily an H -field: C is the constant field, O is the
valuation ring, O is the maximal ideal of O, and vWK� ! � with � D v.K�/ is
the valuation. If we need to indicate the dependence on K we use subscripts, so
C D CK , O D OK , and so on. The valuation divisibility on K corresponding to its
valuation is the binary relation 4 on K given by

f 4 g” vf > vg:

Note that if K is anH -field, then for all f; g 2 K,
f 4 g”jf j 6 cjgj for some c 2 C>0:

We also write g < f instead of f 4 g, and we define
f � g” f 4 g and g 4 f; f � g” f � g � f:

Further, we introduce the binary relations � and � on K:
f � g” f 4 g and f 6� g” vf > vg; f � g” g � f:
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If K is anH -field, then for f; g 2 K this means
f � g”jf j < cjgj for all c 2 C>0:

Rosenlicht gave a nice valuation-theoretic formulation of L’Hôpital’s rule: if K is a
Hardy field, then

for all f; g 2 K with f; g � 1W f � g” f 0 � g0: (�)
This rule (�) goes through for H -fields. The ordering of an H -field determines its
valuation, but plays otherwise a secondary role. Moreover, it is often useful to pass
to algebraic closures like TŒi�, with the valuation extending uniquely, still obeying
(H1) and (�), but without ordering. Thus much of our work is in the setting of as-
ymptotic differential fields: these are the valued differential fields satisfying (�). We
use “asymptotic field” as an abbreviation for “asymptotic differential field.” Sec-
tion 4 will show the benefits of coarsening the valuation of an H -field; the resulting
object might not be an H -field anymore, but remains an asymptotic field. It is a
useful and nontrivial fact that any algebraic extension of an asymptotic field is also
an asymptotic field.

AnH -fieldK is existentially closed if every finite system of algebraic differential
equations over K in several unknowns with a solution in an H -field extension of K
has a solution inK. The inclusion of differential inequalities (using 6 and<) and as-
ymptotic conditions (involving 4 and �) makes no difference. (See [4, Section 14].)
A more detailed version of the T-conjecture now says the following.

Refined T-Conjecture T is an existentially closed H -field, and there exists a set
† of L-sentences such that the existentially closed H -fields with small derivation
are exactly the H -fields satisfying †. (In more model-theoretic jargon: the theory
of H -fields with small derivation has a model companion, and T is a model of this
model companion.)

A comment on axiom (H1) for H -fields: it expresses that the constant field for the
derivation is also in a natural way the residue field for the valuation. However, (H1)
cannot be expressed by a universal sentence in the language L of ordered valued
differential rings. We define a pre-H -field to be an ordered valued differential sub-
field of an H -field. There are pre-H -fields that are not H -fields, and the valuation
of a pre-H -field is not always determined by its ordering, as is the case in H -fields.
Fortunately, any pre-H -field K has anH -field extensionH.K/, itsH -field closure,
that embeds uniquely over K into any H -field extension of K (see [2]). (Here and
below, “extension” and “embedding” are meant in the sense of L-structures.)

Figure 1 indicates the inclusions among the various classes of ordered valued dif-
ferential fields defined in this section, except that asymptotic fields are not necessarily
ordered. The right half represents the case of small derivation.

3.1 Liouville closed H -fields The real closure of anH -field is again anH -field (see
[2]). Going beyond algebraic adjunctions, we consider adjoining solutions to first-
order linear differential equations y0 C ay D b.

Call an H -field K Liouville closed if it is real closed and for all a; b 2 K there
are y; z 2 K such that y0 D a and z ¤ 0, z� D b; equivalently, K is real closed,
and any equation y0 C ay D b with a; b 2 K has a nonzero5 solution y 2 K. For
example, T is Liouville closed. Each existentially closed H -field is Liouville closed
as a consequence of the next theorem. A Liouville closure of an H -field K is a
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asymptotic fields

pre-H -fields

H -fields

Liouville closedH -fields

existentially closedH -fields

with small derivation

Figure 1

minimal Liouville closed H -field extension of K. We can now state the main result
from [2].

Theorem 3.1 Let K be an H -field. Then K has exactly one Liouville closure, or
exactly two Liouville closures (up to isomorphism over K).

Whether K has one or two Liouville closures is related to a trichotomy in the class
of H -fields which pervades our work. In fact, it is a trichotomy that can be detected
on the level of the value group (see below).

3.2 Trichotomy for H -fields LetK be an asymptotic field with valuation v and value
group � D v.K�/. We set

�¤ WD � n ¹0º; �< WD ¹
 2 � W 
 < 0º; �> WD ¹
 2 � W 
 > 0º:

It follows from the L’Hôpital–Rosenlicht rule (�) that the derivation and the logarith-
mic derivative of K induce functions on �¤:

v.a/ D 
 7! v.a0/ D 
 0 W �¤ ! �;

v.a/ D 
 7! v.a�/ D 
� WD 
 0 � 
 W �¤ ! �;

where a 2 K�, v.a/ ¤ 0. The function 
 7! 
 0W�¤ ! � is strictly increasing and
the function 
 7! 
�W�¤ ! � is symmetric: .�
/� D 
� for all 
 2 �¤. If K is
an H -field, then 
 7! 
� W �> ! � is decreasing. Figure 2 shows the qualitative
behavior of the functions 
 7! 
 0 and 
 7! 
� in the case of an H -field. Some
features are a little hard to indicate in such a picture, for example, the fact that 
� is
constant on each archimedean class of �¤.

Following Rosenlicht [28], we put

‰ D ‰K WD ¹

�
W 
 2 �¤º:
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� "

! �

ı


 0


�

Figure 2

Then‰ < .�>/0. In the rest of this subsection we assume thatK is anH -field. Then
exactly one of the following holds:

Case 1: ‰ < 
 < .�>/0 for some (necessarily unique) 
 ;
Case 2: ‰ has a largest element;
Case 3: sup‰ does not exist; equivalently, � D .�¤/0.

IfK D C we are in Case 1, with 
 D 0; the Laurent series field R..x�1// falls under
Case 2, and Liouville closedH -fields under Case 3. In Case 1 there are two Liouville
closures ofK; in Case 2 there is only one, but Case 3 requires finer distinctions for a
definite answer. We now explain this in more detail.

Suppose that K falls under Case 1. Then the element 
 is called a gap, and there
are two ways to remove the gap: with v.a/ D 
 , we have an H -field extension
K.y1/ with y1 � 1 and y01 D a, and we also have an H -field extension K.y2/ with
0 ¤ y2 � 1 and y�2 D a. Both of these extensions fall under Case 2, and they are
incompatible in the sense that they cannot be embedded over K into a common H -
field extension ofK. (Any Liouville closed extension ofK, however, contains either
a copy of K.y1/ or a copy of K.y2/.) Instead of “K falls under Case 1” we say “K
has a gap.”

Suppose that K falls under Case 2. Then so does every differential-algebraic H -
field extension of K that is finitely generated over K as a differential field. Thus
it takes an infinite generation process to construct the (unique) Liouville closure of
K. An H -field falling under Case 3 is said to admit asymptotic integration. This is
because Case 3 is equivalent to having for each nonzero a in the field an element y
in the field such that y0 � a.

3.3 Asymptotic couples LetK beanasymptoticfield. Theorderedgroup� D v.K�/
equipped with the function


 7! 
�W�¤ ! �
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is an asymptotic couple in the terminology of Rosenlicht (see [25], [26], [27]), who
proved the first nontrivial facts about them as structures in their own right, inde-
pendent of their origin in Hardy fields. Indeed, this function 
 7! 
� has rather
nice properties; it is a valuation on the abelian group �: for all ˛; ˇ 2 � (and
0� WD 1 > �),

(i) .˛ C ˇ/� > min.˛�; ˇ�/,
(ii) .�˛/� D ˛�.

IfK is, moreover, anH -field, then this valuation is compatible with the group order-
ing in the sense that for all ˛; ˇ 2 � ,

0 < ˛ 6 ˇ H) ˛� > ˇ�: (H)

The trichotomy from the previous section holds for all asymptotic couples satisfy-
ing (H) (see [2]). The asymptotic couple of T has a good model theory. It allows
elimination of quantifiers in its natural language augmented by a predicate for the
subset ‰ of � , and its theory is axiomatized by adding to Rosenlicht’s axioms6 for
asymptotic couples the following requirements:

(i) divisibility of the underlying abelian group;
(ii) compatibility with the ordering as in (H) above;
(iii) ‰ is downward closed, 0 2 ‰, and ‰ has no maximum;
(iv) there is no gap.

This result is in [1], which proves also the weak o-minimality of the asymptotic
couple of T. We do not want to create the impression that the structure induced by
T on its value group � is just that of an asymptotic couple: � is also a vector space
over the constant field R: r˛ D ˇ for r 2 R and ˛; ˇ 2 �¤ whenever ra� D b� and
a; b 2 T, va D ˛; vb D ˇ. This vector space structure is also accounted for in [1].
Moreover, these facts about T hold for any Liouville closed H -field K with small
derivation (with R replaced by C ).

4 New Results

The above material raises some issues which turn out to be related. First, no H -
subfield K of T with � ¤ ¹0º has a gap. Even to construct a Hardy field with a
gap and � ¤ ¹0º takes effort. Nevertheless, the model theory of asymptotic couples
strongly suggests thatH -fields with a gap should play a key role, and so the question
arises how a given H -field can be extended to one with a gap. The analogous issue
for asymptotic couples is easy, but we only managed to show rather recently that
every H -field can be extended to one with a gap. This is discussed in more detail in
Section 4.6.

Recall that a valued field is maximal if it has no proper immediate extension; this
is equivalent to the more geometric notion of spherically complete. For example,
Hahn fields are maximal. Decisive results in the model theory of maximal valued
fields are due to Ax and Kochen [6] and Eršov [17]. Among other things they showed
that henselian is the exact first-order counterpart of maximal, at least in equicharac-
teristic 0. In later extensions (Scanlon’s valued differential fields in [30] and the
valued difference fields from Azgin and van den Dries [8] and Bélair, Macintyre,
and Scanlon [9]), the natural models are still maximal. Here and below, “maximal”
means “maximal as a valued field,” even if the valued field in question has further
structure like a derivation.
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However, in our situation the expected natural models cannot be maximal: no
maximal H -field can be Liouville closed, let alone existentially closed. Maximal
H -fields do nevertheless exist in abundance, and turn out to be a natural source for
creating H -fields with a gap. It also remains true that immediate extensions require
close attention: T has proper immediate H -field extensions that embed over T into
an elementary extension of T (see the proof of Proposition 5.4). Thus we cannot
bypass the immediate extensions of T in any model-theoretic account of T as we are
aiming for.

4.1 Immediate extensions of H -fields

Theorem 4.1 Every real closed H -field has an immediate maximal H -field ex-
tension.

This was not even known when the value group is Q. A difference with the situation
for valued fields of equicharacteristic 0 (without derivation) is the lack of unique-
ness of the maximal immediate extension. (The proof of Proposition 5.4 shows such
nonuniqueness in the case of T.)

Here are some comments on our proof of Theorem 4.1. First, this involves a
change of derivation as follows. Let K be a differential field with derivation ∂, and
let � 2 K�. Then we defineK� to be the differential field obtained fromK by taking
��1∂ as its derivation instead of ∂. Then the constant fieldC ofK is also the constant
field of K� , and so C ¹Y º is a common differential subring of K¹Y º and K�¹Y º.
Given a differential polynomial P 2 K¹Y º, we let P � 2 K�¹Y º be the result of
rewriting P in terms of the derivation ��1∂, so P �.y/ D P.y/ for all y 2 K. (For
example, Y 0� D �Y 0 in K�¹Y º.) This change of derivation is called compositional
conjugation. A suitable choice of � can often drastically simplify things. Also, if K
is anH -field and � > 0, then K� is still anH -field, with ‰K� D ‰K � v�.

Next, given any valued differential fieldK, we extend its valuation v to a valuation
on the domain K¹Y º of differential polynomials by

vP WD min¹va W a 2 K is a coefficient of P º:
Let now K be a real closed H -field with value group � ¤ ¹0º, and suppose first
that K does not admit asymptotic integration. Then sup‰ exists in � , and by com-
positional conjugation we can arrange that sup‰ D 0. One can show that then K
is flexible, by which we mean that it has the following property: for any P 2 K¹Y º
with vP.0/ > vP and any 
 2 �>, the set ¹vP.y/ W y 2 K; jvyj < 
º is infinite.
This property then plays a key role in constructing an immediate maximal H -field
extension of K. (It is worth mentioning that the notion of flexibility makes sense for
any valued differential field. There are indeed other kinds of flexible valued differen-
tial fields such as those considered in [30] where this property can be used for similar
ends.)

The case that the real closed H -field K does admit asymptotic integration is
harder and uses compositional conjugation in a more delicate way. We say more
on this in the next subsection.

4.2 The Newton polynomial In this subsection K is a real closed H -field with as-
ymptotic integration. To simulate the favorable case sup‰ D 0 from the previous
subsection, we use compositional conjugation by � with v� < .�>/0 as large as
possible. Call � 2 K active if v� < .�>/0.
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Theorem 4.2 Let P 2 K¹Y º, P ¤ 0. Then there is a differential polynomial
NP 2 C ¹Y º, NP ¤ 0, such that for all active � 2 K with sufficiently large v� we
have a 2 K� and R 2 K�¹Y º with

P � D aNP CR in K�¹Y º; vR > va:

We call NP the Newton polynomial of P . As described here, NP is only determined
up to multiplication by an element of C�, but the key fact is that NP is independent
of the active � for high enough v�. We now have a modified version of the flexibility
property of the previous subsection: given any nonzero P 2 K¹Y º with NP .0/ D 0
and any 
 2 �>, the set ¹vP.y/ W y 2 K; jvyj < 
º is infinite. This can then be
used to prove Theorem 4.1 for real closedH -fields with asymptotic integration.

4.3 Newtonian H -fields and differential-henselian asymptotic fields An important
fact about T from [38] is that if the Newton polynomial of P 2 T¹Y º has degree 1,
then P has a zero in the valuation ring. Let us define anH -fieldK to be newtonian if
it is real closed, admits asymptotic integration, and every nonzero P 2 K¹Y º whose
Newton polynomial has degree 1 has a zero in the valuation ring. Thus T is newto-
nian. A more basic example of a newtonianH -field is Tlog. It is easy to see that ifK
is newtonian, then every linear differential equation a0y C a1y0C � � � C any.n/ D b
with a0; : : : ; an; b 2 K, an ¤ 0, has a solution in K.

If K is a newtonian H -field, then so is each compositional conjugate K�
with � > 0, and certain coarsenings of such compositional conjugates of K are
differential-henselian in the following sense. Let K be any valued differential field
with small derivation, that is, ∂O � O. It is not hard to see that then ∂O � O, and so
the residue field k D O=O is a differential field. In the spirit of [30] we define K to
be differential-henselian if
(DH1) every linear differential equation a0y C a1y

0 C � � � C any
.n/ D b with

a0; : : : ; an; b 2 k, an ¤ 0, has a solution in k;
(DH2) for every P 2 O¹Y º with vP0 > 0 and vP1 D 0, there is y 2 O such that

P.y/ D 0.
Here Pd is the homogeneous part of degree d of P , so

P0 D P.0/; P1 D
X
i

@P

@Y .i/
.0/Y .i/:

We now have an analogue of the familiar lifting of residue fields in henselian valued
fields of equicharacteristic 0: if K is differential-henselian, then every maximal dif-
ferential subfield of O maps isomorphically (as a differential field) onto k under the
residue map.

IfK is anH -field with ∂O � O, then the derivation on its residue field k is trivial,
so (DH1) fails. To make the notion of differential-henselian relevant forH -fields we
need to consider coarsenings. Suppose K is a newtonian H -field and ∂O � O. Then
the value group � D v.K�/ has a distinguished nontrivial convex subgroup

� WD ¹
 2 � W 
� > 0º;

andK with the coarsened valuation v�WK� ! �=� is differential-henselian. More-
over, by passing to suitable compositional conjugates of K, we can make this distin-
guished nontrivial convex subgroup � as small as we like, and in this way we can
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make the coarsened valuation approximate the original valuation as close as needed.
We call K with v� the flattening of K.

These coarsenings are asymptotic differential fields, as defined in Section 3. Let
us consider more generally any asymptotic differential field K with ∂O � O. Then
“differential-henselian” does have some further general consequences.

Lemma 4.3 If K is differential-henselian and a0; : : : ; an; b 2 K, an ¤ 0, then
a0y C a1y

0 C � � � C any
.n/ D b for some y 2 K.

This has a useful sharper version where we assume that a0; : : : ; an; b 2 O and ai … O

for some i , with the solution y also required to be in O.

Proposition 4.4 IfK is maximal as a valued field, and its differential residue field
k satisfies (DH1), then K is differential-henselian.

While the AKE paradigm7 does not apply directly toH -fields, it may well be relevant
indirectly by passing to coarsenings of compositional conjugates of H -fields. Here
we have of course in mind that “differential-henselian” should take over the role of
“henselian” in the AKE-theory.

It is worth mentioning that in dealing with a pc-sequence .a�/ in anH -field with
asymptotic integration we can reduce to two very different types of behavior: one
kind of behavior is when .a�/ is fluent, that is, it remains a pc-sequence upon coars-
ening the valuation by some nontrivial convex subgroup of the value group � , and the
other type of behavior is when .a�/ is jammed, that is, for every ı 2 �> there is an
index �0 such that j
� � 
�j < ı for all � > � > �0, where 
� WD v.a�C1 � a�/ for
all �. In differential-henselian matters it is enough to deal with fluent pc-sequences.
Jammed pc-sequences are considered in Section 4.6.

4.4 Consequences for existentially closed H -fields Using the results above, some
important facts about T can be shown to go through for existentially closedH -fields.
Thus existentially closedH -fields are not only Liouville closed, but also newtonian.
As to linear differential equations, let us go into a little more detail.

Let K be a differential field, and consider a linear differential operator

A D a0 C a1∂C � � � C an∂
n .a0; : : : ; an 2 K/

over K; here ∂ stands for the derivation operator on K. Then A defines a C -linear
map K ! K. With composition as product operation, these operators form a ring
extension KŒ∂� of K, with ∂a D a∂C a0 for a 2 K.

Theorem 4.5 If K is an existentially closed H -field, n > 1, an ¤ 0, then
AWK ! K is surjective, and A is a product of operators a C b∂ of order 1 in
KŒi�Œ∂� (and thus a product of order 1 and order 2 operators in KŒ∂�).

4.5 The equalizer theorem This is an important technical tool, needed, for example,
in proving Proposition 4.4.

Let K be a valued differential field with small derivation and value group � . Let
P D P.Y / 2 K¹Y º; P ¤ 0. Then we have for g 2 K� the nonzero differential
polynomial P.gY / 2 K¹Y º, and it turns out that its valuation vP.gY / depends only
on vg (not on g). Thus P induces a function

vP W� ! �; vP .
/ WD vP.gY / for g 2 K� with vg D 
:
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Moreover, if P.0/ D 0, this function is strictly increasing. The function vP con-
strains the behavior of vP.y/ as y ranges over K�.

Lemma 4.6 If the derivation on the residue field k is nontrivial, then vP .
/ D
min¹vP.y/ W y 2 K�; vy D 
º for each 
 2 � .

The following “equalizer” theorem lies much deeper.

Theorem 4.7 Let K be an asymptotic differential field with small derivation and
divisible value group � . Let P 2 K¹Y º, P ¤ 0, be homogeneous of degree d > 0.
Then vP W� ! � is a bijection. If also Q 2 K¹Y º, Q ¤ 0, is homogeneous of
degree e ¤ d , then there is a unique 
 2 � with vP .
/ D vQ.
/.

In combination with compositional conjugation and Newton polynomials, the equal-
izer theorem plays a role in detecting the 
 2 � for which there can exist y 2 K�
with vy D 
 and P.y/ D 0.

4.6 Two important pseudo-cauchy sequences We consider here jammed pc-
sequences. Recall that in T we have the iterated logarithms `n with

`0 D x; `nC1 D log `n;

and that this sequence is coinitial in T>R. By a straightforward computation,

œn WD �`
��
n D

1

`0
C

1

`0`1
C � � � C

1

`0`1 � � � `n
:

Thus .œn/ is a ( jammed) pc-sequence in T, but has no pseudolimit in T. It does
have a pseudolimit in a suitable immediate H -field extension, and such a limit can
be thought of as

P1
nD0

1
`0`1���`n

.
The fact that the pc-sequence .œn/ has no pseudolimit in T is related to a key

elementary property of T. To explain this we assume in the rest of this subsection
that K is a real closedH -field with asymptotic integration.

To mimic the above iterated logarithms, first take for any f � 1 in K an Lf � 1
in K such that .Lf /0 � f �. (Think of Lf as a substitute for log f .) Next, pick a
sequence of elements `� � 1 in K, indexed by the ordinals � less than some infinite
limit ordinal: take any `0 � 1 in K, and set `�C1 WD L.`�/; if � is an infinite limit
ordinal such that all `� with � < � have been chosen, then take `� � 1 in K such
that `� � `� for all � < �, if there is such an `�. This yields a sequence .`�/ with
the following properties:

(i) `� � `�0 whenever � < �0;
(ii) .`�/ is coinitial in K�1, that is, for each f � 1 in K there is an index � with

f � `�.
Now set œ� WD �`��� . One can show that this yields a jammed pc-sequence .œ�/
in K and that the pseudolimits of this pc-sequence in H -field extensions of K do
not depend on the choice of the sequence .`�/: different choices yield “equivalent”
pc-sequences in the sense of [9]. Here is a useful fact about this pc-sequence.

Theorem 4.8 If œ 2 K is a pseudolimit of .œ�/, then there is anH -field extension
K.”/ such that ”� D �œ and K.”/ has a gap v.”/.

Every H -field has an extension to a real closed H -field with asymptotic integration
(for example, a Liouville closure). By Theorem 4.1 we can further arrange that this
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extension is maximal, so that all pc-sequences in it have a pseudolimit in it. Thus the
last theorem has the following consequence.

Corollary 4.9 EveryH -field has anH -field extension with a gap.

If K is Liouville closed, then .œ�/ has no pseudolimit in K.

Theorem 4.10 The following conditions on K are equivalent:
(1) K ˆ 8a9bŒv.a � b�/ 6 vb < .�>/0�;
(2) .œ�/ has no pseudolimit in K.

Since T satisfies (2), it also satisfies (1). Our discussion preceding Corollary 4.9
made it clear that not all real closedH -fields with asymptotic integration satisfy (2).
We call attention to the first-order nature of condition (1).

There is a related and even more important pc-sequence. To define it, set

!.z/ WD �2z0 � z2 for z 2 K:

Then in T we have

¨n WD !.œn/ D
1

.`0/2
C

1

.`0`1/2
C

1

.`0`1`2/2
C � � � C

1

.`0`1 � � � `n/2
;

so .¨n/ is also a jammed pc-sequence in T without any pseudolimit in T. Likewise,
for our real closedH -field K with asymptotic integration, and setting ¨� WD !.œ�/,
the sequence .¨�/ is a jammed pc-sequence. (If .œ�/ pseudo-converges in K, then
so does .¨�/, but [5] has a Liouville closed example where the converse fails.) Here
is an analogue of Theorem 4.10.

Theorem 4.11 The following conditions on K are equivalent:
(1) K ˆ 8a9bŒvb < .�>/0 and v.aC !.�b�// 6 2vb�;
(2) .¨�/ has no pseudolimit in K;
(3) .¨�/ has no pseudolimit in any differentially algebraic H -field extension of

K. (Asymptotic differential transcendence of .¨�/.)

The equivalence of (1) and (2) is relatively easy, but to show that (2) implies (3) is
much harder. Since T satisfies (2), it also satisfies (1) and (3). The first-order nature
of condition (1) will surely play a role in our quest to characterize the existentially
closedH -fields by first-order axioms. The equivalence of (2) and (3) is related to the
following important fact.

Theorem 4.12 Suppose .¨�/ has no pseudolimit in K. Then .œ�/ has a pseu-
dolimit œ in an immediate H -field extension of K such that for any pseudolimit a of
.œ�/ in any H -field extension of K there is a unique isomorphism Khœi ! Khai

over K of ordered valued differential fields sending œ to a.

We define an H -field to be ¨-free if it is real closed, admits asymptotic integration,
and satisfies the equivalent conditions of Theorem 4.11. Any real closedH -field that
admits asymptotic integration and is a directed union of H -subfields F for which
‰F has a largest element is ¨-free. The property of being ¨-free is first-order and
invariant under compositional conjugation by positive elements.
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4.7 Simple Newton polynomials As shown in [38], the Newton polynomials of dif-
ferential polynomials over T have the very special form

.c0 C c1Y C � � � C cmY
m/ � .Y 0/n .c0; : : : ; cm 2 R D C/:

This fails for some other real closedH -fields with asymptotic integration.

Example Consider the immediate H -field extension K D R..L// of Tlog, where
L D

S1
nD0 Ln (see the end of Section 1.2). This H -field K admits asymptotic

integration, and is not ¨-free, since it contains a pseudolimit ¨ WD
P1
nD0

1
.`0`1���`n/2

of the pc-sequence .¨n/. We set

P WD N � ¨ � .Y 0/2 2 K¹Y º where N.Y / WD 2Y 0Y 000 � 3.Y 00/2 2 R¹Y º:

A somewhat lengthy computation yields NP D N … RŒY �.Y 0/N.

It turns out that ¨-freeness is exactly what causes Newton polynomials to have the
above simple form.

Theorem 4.13 Let K be a real closed H -field with asymptotic integration. Then
K is ¨-free if and only if the Newton polynomial of any nonzero differential polyno-
mial P 2 K¹Y º has the form

.c0 C c1Y C � � � C cmY
m/ � .Y 0/n .c0; : : : ; cm 2 C/:

This has a nice consequence for the behavior of a differential polynomial near the
constant field.

Corollary 4.14 Let K be an ¨-free H -field, and let P 2 K¹Y º, P ¤ 0. Then
there are ˛ 2 � , a 2 K>C and m, n such that

CL < y < a H) v
�
P.y/

�
D ˛ Cmvy C nvy0

for all y in allH -field extensions L of K, where CL is the constant field of L.

We also have the following converse to a result from Section 4.3.

Corollary 4.15 Suppose that the H -field K is ¨-free, and suppose that there are
active � > 0 in K with arbitrarily high v� < .�>/0 such that the flattening of K� is
differential-henselian. Then K is newtonian.

4.8 Conjectural characterization of existentially closed H -fields We can show that
every existentially closed H -field with small derivation is ¨-free. We already men-
tioned earlier that they are Liouville closed, and newtonian, and that their linear
differential operators factor completely after adjoining i D

p
�1 to the field. Maybe

this is the full story.

Optimistic Conjecture AnH -fieldK with small derivation is existentially closed
if and only if it satisfies the following first-order conditions:

(i) K is Liouville closed;
(ii) every A 2 KŒ∂�; A … K, is a product of operators of order 1 in KŒi�Œ∂�;
(iii) K is ¨-free;
(iv) K is newtonian.
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This conjecture makes the T-conjecture more precise. It is probably not optimal as
a first-order characterization of existentially closed H -fields. For example, in the
presence of (i), (iii), and (iv) we can perhaps restrict (ii) to A of order 2. Also, in
some arguments we need the “newtonian” property not just for K, but also for KŒi�.
We expect the newtonian property of KŒi� to be a formal consequence of K being
newtonian, but if we do not succeed in proving that, we are willing to strengthen (iv)
accordingly.

It is also conceivable that theH -fieldTlog has a good model theory. It satisfies (ii),
(iii), (iv), and has some other attractive properties. On the other hand, the H -field
Texp of purely exponential transseries defines Z (see [4, Section 13]).

5 Quantifier-Free Definability

In Section 2 we considered three intrinsic model-theoretic statements about T.
(1) If X � Tn is definable, then X \ Rn is semialgebraic.
(2) T is asymptotically o-minimal: for each definable X � T there is a b 2 T

such that either .b;C1/ � X or .b;C1/ � T nX .
(3) T has NIP.
In this section we prove quantifier-free versions of these statements. First we

do this in the easy case when the language is the natural language L of ordered
valued differential rings. (“Easy” means here that it follows with very little work
from results in the literature.) Next we exhibit a basic obstruction8 showing that T
does not eliminate quantifiers in L. This obstruction can be lifted by extending L

to a language L� which has a unary function symbol naming a certain integration
operator on T. (This operator is existentially definable in T using L.) We then show
that (1), (2), (3) also hold for quantifier-free definable relations on T when the latter
is construed as an L�-structure.

Thus (1), (2), and (3) would follow from the strong form of the T-conjecture
which says that T admits quantifier elimination in the language L�. This form of the
T-conjecture is unfortunately too strong. In Section 6 we discuss further obstacles,
and speculate on how these might be dealt with.

5.1 Quantifier-free definable sets in T using L Recall that
L D ¹0; 1;C;�; �; ∂;6;4º:

In this subsection we view anyH -fieldK as an L-structure in the natural way, and so
“quantifier-free definable” means “definable in K by a quantifier-free formula of the
language L augmented by names for the elements ofK.” The next three propositions
contain the quantifier-free versions of (1)–(3) above.

Proposition 5.1 Let K be a real closed H -field. If X � Kn is quantifier-free
definable, then its trace X \ C n in the field C of constants is semialgebraic.

Proof Let P D P.Y1; : : : ; Yn/ 2 K¹Y1; : : : ; Ynº be a differential polynomial.
Removing from P the terms involving any Y .r/i with r > 1 we obtain an ordinary
polynomial p 2 KŒY1; : : : ; Yn� such that for all y1; : : : ; yn 2 C � K,

P.y1; : : : ; yn/ D p.y1; : : : ; yn/:

Recall also that for all f; g 2 K we have
f 4 g”jf j 6 cjgj for some c 2 C>0:
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It follows that if X � Kn is quantifier-free definable, then X \C n is definable (with
parameters) in the pair .K;C / construed here as the real closed field K (forgetting
its derivation and valuation), with C as a distinguished subset. This pair .K;C /
is a model of RCFtame, as defined in [32]. By Proposition 8.1 of [32] applied to
T D RCF, a subset of C n which is definable (with parameters) in the pair .K;C / is
semialgebraic in the sense of C .

We now turn to quantifier-free asymptotic o-minimality. This follows easily from the
logarithmic decomposition of a differential polynomial in [38], as we explain now.
Let K be a differential field. For y 2 K, we set yh0i WD y, and inductively, if
yhni 2 K is defined and nonzero, yhnC1i WD .yhni/� (and otherwise yhnC1i is not
defined). Thus in the differential fraction field KhY i of the differential polynomial
ring K¹Y º each Y hni is defined, the elements Y h0i; Y h1i; Y h2i; : : : are algebraically
independent over K, and

KhY i D K.Y hni W n D 0; 1; 2; : : : /:

If yhni is defined and i D .i0; : : : ; in/ 2 N1Cn, we set

yhi i WD .yh0i/i0.yh1i/i1 � � � .yhni/in :

One can show that any P 2 K¹Y º of order at most r has a unique decomposition

P D
X

i

Phi iY
hi i (logarithmic decomposition);

with i ranging over N1Cr , all Phi i 2 K, and Phi i ¤ 0 for only finitely many i .
Consider the case y 2 K WD T. Then yh1i D y� is defined for y ¤ 0, and if

y > exp.x2/, then yh1i > 2x and y > .yh1i/m for all m. By induction on n, if
y > expnC1.x2/, with the exponent nC 1 referring to compositional iteration, then
yhnC1i is defined, yhni > expn.x2/, and yhnC1i > .yhni/m for all m.

Let a nonzero P 2 T¹Y º of order at most r be given with the logarithmic decom-
position displayed before. Take j 2 N1Cr lexicographically maximal with Phj i ¤ 0.
It follows from the above that we can take b 2 T so large that if y > b, then yhri
is defined and P.y/ � Phj iy

hj i (where f � g means f � g � g). In particular,
if Phj i > 0, then P.y/ > 0 for all y > b, and if Phj i < 0, then P.y/ < 0 for all
y > b. By similar reasoning, given any nonzero P;Q 2 T¹Y º, there is b 2 T such
that either P.y/ 4 Q.y/ for all y > b in T, or P.y/ � Q.y/ for all y > b in T.
Thus we have the following.

Proposition 5.2 If X � T is quantifier-free definable, then there is b 2 T such
that either .b;C1/ � X or .b;C1/ � T nX .

This proposition holds for any Liouville closedH -fieldK instead ofT: we can define
on such K a substitute for the exponential function exp as used in the proof above
(see [4, Section 1.1]).

A relation R � A � B is said to be independent if for every N > 1 there are
elements a1; : : : ; aN 2 A and bI 2 B , for each I � ¹1; : : : ; N º, such that

R.ai ; bI /” i 2 I
�
for i D 1; : : : ; N; and all I � ¹1; : : : ; N º

�
:

A (one-sorted) structure M D .M I : : : / is said to have NIP if there is no indepen-
dent definable relation R � Mm �M n. This is a robust model-theoretic tameness
condition on a structure. It was introduced early on by Shelah [31]; there is also
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a substantial body of recent work around this notion (see, e.g., Hrushovski [22]).
Stable structures as well as o-minimal structures have NIP.

Proposition 5.3 Let K be an H -field. No quantifier-free definable relation
R � Km �Kn is independent.

Proof Let OVDF be the L-theory of ordered, valued, differential fields where the
only axiom relating the ordering, valuation, and derivation is

8x8y .0 6 x 6 y ! x 4 y/:

Guzy and Point [19, Corollary 6.4] show that OVDF has a model completion OVDFc ,
and that OVDFc has NIP. Now use an embedding of K into some model of OVDFc .

5.2 T does not admit quantifier elimination in L Let K be an H -field. Then we
have the O-submodule

I.K/ WD ¹y 2 K W y 4 f 0 for some f 2 Oº

of K, with ∂O � I.K/. If the derivation ∂ of K is small, then I.K/ is an ideal in O.
If K is Liouville closed, then

∂O D I.K/ D ¹y 2 K W y � f � for all nonzero f 2 Oº;

so I.K/ is existentially as well as universally definable in the L-structure K. Still
considering T as an L-structure, we have the following.

Proposition 5.4 The subset I.T/ of T is not quantifier-free definable in T.

Proof Recall from Section 4.6 the pc-sequence .œn/ in T:

œn D �`
��
n D �

� 1
`n

���
D

1

`0
C

1

`0`1
C � � � C

1

`0`1 � � � `n
:

It has no pseudolimit in T. Fix some @1-saturated elementary extension K of T and
take ` 2 K such that ` > C but ` < `n for all n. Then œ WD �`�� D �.1=`/�� is a
pseudolimit of .œn/. An easy computation gives

�.1=`n/
0�
D œn C .1=`0 � � � `n/;

so .�.1=`n/0�/ is a pc-sequence with the same pseudolimits in K as .œn/. Now
a WD �.1=`/0� is a pseudolimit of .�.1=`n/0�/, so by Theorem 4.12, theH -subfields
Thœi and Thai of K are immediate extensions of T, and we have an isomorphism
Thœi ! Thai over T that sends œ to a. The element f D .1=`/� of K satisfies
f � D �œ and �0 � f � �� for all � 2 T� with � � 1, and the real closure
Thœirc of Thœi in K is an immediate extension of T. Hence in the terminology of
[4, Section 12] and using [4, Proposition 12.4], �œ creates a gap over Thœirc. Since
g D .1=`/0 satisfies g� D �a, the above isomorphism Thœi ! Thai extends by [4,
Lemma 12.3] and the uniqueness statement in [2, Lemma 5.3] to an isomorphism

Thœ; f i ! Tha; gi
of L-structures which sends f to g. Now, if I.T/ were defined in T by a quantifier-
free formula �.y/ in the language L augmented by names for the elements of T,
then we would have K ˆ :�.f / and K ˆ �.g/, and so Thœ; f i ˆ :�.f /
and Tha; gi ˆ �.g/, which violates the above isomorphism between Thœ; f i and
Tha; gi.



Toward a Model Theory for Transseries 301

For later use it is convenient to extend the language L as follows. Note that L has
the language of ordered rings as a sublanguage. We consider R as a structure for the
language of ordered rings in the usual way. A function Rn ! R is said to be Q-
semialgebraic if its graph is defined in the structure R by a (quantifier-free) formula
in the language of ordered rings; we do not allow names for arbitrary real numbers
in the defining formula. We extend L to the language L0 by adding for each Q-
semialgebraic function f WRn ! R an n-ary function symbol f . We construe any
real closed valued differential field K as an L0-structure by associating to any Q-
semialgebraic function f WRn ! R the functionKn ! K whose graph is defined in
K by any formula in the language of ordered rings that defines the graph of f in R.

For example, the function y 7! y�1WT ! T, with 0�1 WD 0 by convention, is
named by a function symbol of L0, and so is, for each integer d > 1, the function
y 7! y1=d WT! T, taking the value 0 for y 6 0 by convention.

Proposition 5.5 If X � Tn is quantifier-free definable in T as an L0-structure,
then X is quantifier-free definable in T as an L-structure.

One can view this as a partial quantifier elimination: it is obvious how to eliminate
occurrences of function symbols of L0 nL from a quantifier-free L0-formula at the
cost of introducing existentially quantified new variables, and Proposition 5.5 says
that we can eliminate those quantifiers again without reintroducing these function
symbols. This fact can be proved by explicit means, but we prefer a model-theoretic
argument that we can use also in later situations where explicit elimination would be
very tedious.

To formulate this in sufficient generality, let L be a sublanguage of the (one-
sorted) first-order language L�, and assume that L has a constant symbol. Let
A� D .AI : : : / and B� range overL�-structures, and let A and B be theirL-reducts.
Let T � be an L�-theory. Then we have the following criterion.

Lemma 5.6 Let '�.x/ with x D .x1; : : : ; xn/ be an L�-formula. Then '�.x/
is T �-equivalent to some quantifier-free L-formula '.x/ if and only if for all
A�;B� ˆ T �, common L-substructures C D .C I : : : / of A and B, and c 2 C n:

A� ˆ '�.c/” B� ˆ '�.c/:

This criterion is well known (at least for L D L�), and follows by a standard model-
theoretic compactness argument. Typically, the criterion gets used via its corollary
below. To state that corollary, we define T � to have closures of L-substructures if for
all A�;B� ˆ T � with a common L-substructure C D .C I : : : / of A and B, there
is a (necessarily unique) isomorphism from the L�-substructure of A� generated by
C onto the L�-substructure of B� generated by C which is the identity on C .

Corollary 5.7 If T � has closures of L-substructures, then every quantifier-free
L�-formula is T �-equivalent to a quantifier-free L-formula.

Proof of Proposition 5.5 We are going to apply Corollary 5.7 with
L WD L; L� WD L0;

T � WD the L�-theory of real closed valued differential fields:
Indeed, we show that T � has closures of L-substructures. Let E;F ˆ T � have a
common L-substructureD. ThusD is an ordered differential subring of both E and
F such that for all f; g 2 D we have f 4E g” f 4D g” f 4F g, where
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4D , 4E , 4F are the interpretations of the symbol 4 of L in D, E, F , respectively.
Let KE and KF be the fraction fields of the integral domain D in E and F , re-
spectively. Then KE is the underlying ring of an L-substructure of E, to be denoted
also by KE . Likewise, KF denotes the corresponding L-substructure of F , and we
have a unique L-isomorphism KE ! KF that is the identity on D. Let Krc

E and
Krc
F be the real closures of the ordered fields KE and KF in E and F , respectively.

Then Krc
E is the underlying ring of an L�-substructure of E, to be denoted also by

Krc
E . Likewise, K

rc
F denotes the corresponding L�-substructure of F , and the above

L-isomorphism KE ! KF extends uniquely to an L�-isomorphism Krc
E ! Krc

F . It
remains to note that Krc

E is the L�-substructure of E generated byD.

Let K be a real closed valued differential field. Then a set X � Kn is said to be Q-
semialgebraic if it is defined in K by some (quantifier-free) formula in the language
of ordered rings, and a function Kn ! K is said to be Q-semialgebraic if its graph
is.

5.3 Adding a new primitive Let L0I be the language L0 augmented by a unary
predicate symbol I. We construe T as an L0I-structure by interpreting I as I.T/. In
view of Proposition 5.4 and Lemma 5.5 this genuinely changes what can be defined
quantifier-free in T. Nevertheless, Propositions 5.1, 5.2, 5.3 (in the case K D T)
go through when “quantifier-free” is with respect to T as an L0I-structure. For
“quantifier-free NIP” we can almost repeat the previous argument.

Proposition 5.8 No quantifier-free definable relation R � Tm � Tn on T as an
L0I-structure is independent.

Proof The set I.T/ is convex in T. Embedding the L-structure T in a sufficiently
saturated modelM of OVDFc , we can take a > 0 inM such that .�a; a/\T D I.T/,
where the interval .�a; a/ is with respect to M . Now use that M has NIP.

Let K be a real closed H -field, and let r 2 N. For y D .y1; : : : ; ym/ 2 K
m we set

y0 WD .y01; : : : ; y
0
m/ 2 K

m, and accordingly we define

.y; y0; : : : ; y.r// WD .y1; : : : ; ym; y
0
1; : : : ; y

0
m; : : : ; y

.r/
1 ; : : : ; y.r/m / 2 Km.1Cr/:

A ∂-covering (of order r) of a function gWKm ! K consists of a finite covering C

of Km.1Cr/ by Q-semialgebraic sets and for each S 2 C a Q-semialgebraic function
gS WK

m.1Cr/ ! K such that

g.y/ D gS .y; y
0; : : : ; y.r// for all y 2 Km with .y; y0; : : : ; y.r// 2 S .

For example, if P 2 Q¹Y1; : : : ; Ymº is a differential polynomial of order at most
r , then the function y 7! P.y/WKm ! K has a ∂-covering of order r consisting
just of a single set, namely, Km.1Cr/. It is easy to see that if f WKn ! K is Q-
semialgebraic and g1; : : : ; gnWKm ! K have ∂-coverings (of various orders), then
f .g1; : : : ; gn/WK

m ! K has a ∂-covering. In particular, the sum g1 C g2 of func-
tions g1; g2WKm ! K with ∂-coverings has a ∂-covering, and so does their product
g1g2. Less obviously, we have the following lemma.

Lemma 5.9 If gWKm ! K has a ∂-covering, then so does the function

y 7! g.y/0WKm ! K:
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Proof Let C be a ∂-covering of g of order r with, for each set S 2 C , the witness-
ing function gS WKm.1Cr/ ! K. By further partitioning we can arrange that each set
S 2 C is a Q-semialgebraic cell which is of class C 1 in the sense that the standard
projection map pS WS ! p.S/ onto an open cell p.S/ � Kd , with d D dim S , is
not just a homeomorphism, but even a diffeomorphism of class C 1 (in the sense of
the real closed field K). In addition, we can arrange that for each witnessing map
gS WK

m.1Cr/ ! K the restriction of gS to S is of class C 1. Let us now focus on one
particular S 2 C , and first consider the case that S is open in Km.1Cr/. Then by the
Q-semialgebraic version of Lemma 4.4 in [4], and Remark (2) following its proof,
we have Q-semialgebraic functions h; h1; : : : ; hmr WKm.1Cr/ ! K such that for all
Ey D .y10; : : : ; ym0; : : : ; y1r ; : : : ; ymr / 2 S ,

gS . Ey/
0
D h. Ey/C

mX
iD1

rX
jD0

hij . Ey/y
0
ij :

If S is not open, of dimension d , this statement remains true, as one can see by
reducing to the case of the open cell p.S/ � Kd via the C 1-diffeomorphism
pS WS ! p.S/. It follows easily that the function y 7! g.y/0 has a ∂-covering of
order r C 1, whose sets are the products S �Km with S 2 C .

It follows that if t .y1; : : : ; yn/ is an L0I-term, then the function

b 7! t .b/WKn ! K

has a ∂-covering. This is now used to prove the following.

Proposition 5.10 If X � Tn is quantifier-free definable in T as an L0I-structure,
then X \ Rn is semialgebraic.

Proof By the remark preceding the proposition, and the arguments in the proof
of Proposition 5.1, it suffices to show the following. Let s.x; y/ and t .x; y/ with
x D .x1; : : : ; xm/ and y D .y1; : : : ; yn/ be L0I-terms in which the function symbol
∂ does not occur, and let a 2 Tm. Then the sets®

b 2 Rn W t .a; b/ D 0
¯
;

®
b 2 Rn W t .a; b/ > 0

¯
;®

b 2 Rn W s.a; b/ 4 t .a; b/
¯
;
®
b 2 Rn W t .a; b/ 2 I.T/

¯
are semialgebraic subsets of Rn. Since the function b 7! t .a; b/WTn ! T is semial-
gebraic in the sense of T, this holds for the first three sets by the argument at the end
of the proof of Proposition 5.1. For the last set, take some real closed field extension
K of T with a positive element c such that I.T/ D T \ .�c; c/, where the interval
.�c; c/ is in the sense of K. Then®

b 2 Rn W t .a; b/ 2 I.T/
¯
D
®
b 2 Rn W jt .a; b/j < c

¯
;

which is the trace in R of a semialgebraic subset ofKn. Such traces are known to be
semialgebraic in the sense of R.

In proving next that T qua L0I-structure is quantifier-free asymptotically o-minimal,
we shall use the easily verified fact that if K is an H -field that admits asymptotic
integration, and L is anH -field extension of K, then I.L/ \K D I.K/.

Proposition 5.11 If X � T is quantifier-free definable in T as an L0I-structure,
then for some f 2 T, either .f;C1/ � X or .f;C1/ � T nX .
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Proof LetK be an elementary extension of T as an L0I-structure, and let a; b 2 K,
a > T, b > T. By familiar model-theoretic arguments it suffices to show that then
there is an isomorphism of L-structures Thairc ! Thbirc over T that sends a to
b, and maps I.K/ \ Thairc onto I.K/ \ Thbirc. (Here rc refers to the real closure
in K.) Proposition 5.2 gives an isomorphism of L-structures Thai ! Thbi over
T sending a to b, and this isomorphism extends uniquely to an L-isomorphism
Thairc ! Thbirc. The arguments preceding Proposition 5.2 show that for all
m; n > 1,

v.ahn�1i/ < mv.ahni/ < v.T�/;
so a is differentially transcendental over T, and the value group of Thairc is

v.T�/˚
M
n

Qv.ahni/ (internal direct sum of Q-subspaces);

which contains v.T�/ as a convex subgroup. It also follows that Thairc is an H -
field, with the same constant field R as T. Therefore, Thairc admits asymptotic
integration, so I.K/ \ Thairc D I.Thairc/. Likewise, I.K/ \ Thbirc D I.Thbirc/,
hence our isomorphism Thairc ! Thbirc maps I.K/\Thairc onto I.K/\Thbirc, as
required.

This result tells us how a quantifier-free definable X � T behaves near C1. Using
fractional linear transformations we get analogous behavior to the left as well as to
the right of any point in T. In other words, the L0I-structure T is quantifier-free
locally o-minimal. (In this connection we note that local o-minimality by itself does
not imply NIP; see Fornasiero [18, Example 6.19].)

5.4 Expanding by small integration Next we show that “small integration” can be
eliminated from quantifier-free formulas. This is a further partial quantifier elimina-
tion in the style of Proposition 5.5.

Let K be an H -field. We have ∂O � I.K/, and we say that K admits small
integration if ∂O D I.K/. Liouville closed H -fields admit small integration. It
follows from Section 3 and Proposition 4.3 in [2] that K has an immediate H -field
extension si.K/ that is henselian as a valued field and admits small integration, with
the following universal property: for any H -field extension L of K that is henselian
as a valued field and admits small integration there is a unique K-embedding of
si.K/ into L. We call si.K/ the closure of K under small integration.

Let K be an H -field admitting small integration. The derivation ∂ is injective on
O, so we can define

R
WK ! K byZ
a0 D a for a 2 O;

Z
b D 0 for b … ∂O:

Note that the standard part map stWK ! K defined by

st.c C "/ D c for c 2 C; " � 1; st.a/ D a for a � 1;

can be expressed in terms of
R

by st.a/ D a �
R
a0. The reason for mentioning

this fact is that such a standard part map is used to eliminate quantifiers in certain
expansions of o-minimal fields (see [33, (5.9)]).

Real closed H -fields admitting small integration are construed below as L�-
structures where L� is a language extending L0I by a new unary function symbolR
, to be interpreted as indicated above.
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Let T � be theL�-theory of real closedH -fields admitting small integration. Then
we have the following elimination result.

Proposition 5.12 T � has closures of L0I-substructures. Thus every quantifier-free
L�-formula is T �-equivalent to a quantifier-free L0I-formula.

Proof Let K be a model of T �, and let E be an L0I-substructure of K. Then E
is a real closed pre-H -field, and we may consider the H -field closure H.E/ of E
as an H -subfield of K, with real closure H.E/rc in K. We let E� WD si.H.E/rc/
be the closure under small integration of H.E/rc, viewed as an H -subfield of K. In
fact, E� is real closed and closed under small integration, hence an L�-substructure
of K. Let L be another model of T � containing E as an L0I-substructure; we need
to show that the natural inclusion E ! L extends to an embedding of L�-structures
E� ! L. By the universal properties of H -field closure, real closure, and closure
under small integration, there is an embedding of L0-structures E� ! L which
extends the inclusion E ! L. This embedding also preserves the interpretations of
the symbol

R
in K, respectively, L; so after identifying E� with its image under this

embedding, it remains to show that I.K/\E� D I.L/\E�. For this we distinguish
two cases.
Case 1: There is r 2 OE n CE with v.r 0/ … .�>

E
/0 Take such r , and take y 2 H.E/

with y0 D r 0 and ˛ WD v.y/ > 0. Then by [2, Corollary 4.5, (1)], �H.E/ D �E˚Z˛
with 0 < n˛ < �>E for all n > 1. Also, max‰H.E/ D ˛�. It follows easily that

I.K/ \H.E/ D
®
f 2 H.E/ W vf > ˛�

¯
D I.L/ \H.E/:

This remains true when we replaceH.E/ by E�, since

�E� D divisible hull of �H.E/ D �E ˚Q˛;

and so max‰E� D ˛�.
Case 2: There is no such r Then by [2, Corollary 4.5(2)] we have �H.E/ D �E , and
hence �E� D �E . Now I.K/\E D I.L/\E gives .�>K/

0 \�E D .�
>
L /
0 \�E , so

.�>K/
0 \ �E� D .�

>
L /
0 \ �E� , and thus I.K/ \E� D I.L/ \E�.

We can do the same for small exponentiation: given a � 1 in T, its exponential ea
is the unique element 1 C y with y � 1 in T such that y0 D .1 C y/a0. Thus the
bijection a 7! eaW O ! 1 C O is (existentially and universally) definable in the L-
structure T. Arguments as in the proof of Proposition 5.12 show that expanding the
L�-structure T by this operation (taking the value 0 on T n O, by convention) does
not change what is quantifier-free definable.

6 Further Obstructions to Quantifier Elimination

The language L0I is rather strong as to what it can express quantifier-free about T, as
we have seen. However, T does not admit QE in this language. To discuss this, letK
be a Liouville closedH -field, and consider the subset

œ.K/ WD �.K>C /�� D ¹�a�� W a 2 K; a > C º

of K. In T the sequence .œn/ given by

œn WD �`
��
n D

1

`0
C

1

`0`1
C � � � C

1

`0`1 � � � `n
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is cofinal in œ.T/. As with most of this paper we omit proofs for what we claim
below: these proofs are either straightforward, or very similar to proofs of analogous
results in Section 5, or would require many extra pages.

Lemma 6.1 LetK be a Liouville closedH -field. Then œ.K/ is closed downward:
if f 2 K and f < g 2 œ.K/, then f 2 œ.K/. For f 2 K� we have

f 2 I.K/”�f � … œ.K/:

This follows easily from results in [2] and [4]. In particular, I.T/ is quantifier-free de-
finable from œ.T/ in the L0-structure T. A refinement of the proof of Proposition 5.4
shows that we cannot reverse here the roles of I.T/ and œ.T/.

Lemma 6.2 œ.T/ is not quantifier-free definable in the L0I-structure T.

Let L0
œ
be the language L0 augmented by a unary predicate symbol œ, to be inter-

preted in T as œ.T/. What we proved in Section 5 for T as an L0I-structure goes
through for T as an L0

œ
-structure. However, we run into a new obstruction involving

the function !.z/ D �z2 � 2z0. To explain this, we first summarize some basic facts
about this function ! on T. (See Figure 3 for a sketch of !.)

Lemma 6.3 The restriction of !WT ! T to œ.T/ is strictly increasing and has
the intermediate value property. Also, !.T/ D !.œ.T//, and thus the sequence .¨n/
with ¨n WD !.œn/ is strictly increasing and cofinal in !.T/.

We need the following strengthening of Theorem 4.12, where the ¨� are as in that
theorem.

1
`0`1���

�
1

`0`1���
1
`0
C

1
`0`1
C � � �

1

`2
0

C
1

.`0`1/2
C � � �

œ.T/

I.T/

T

T

0

!

Figure 3
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Theorem 6.4 Suppose that the H -field K is ¨-free. Then the sequence .¨�/ has
a pseudolimit ¨ in an immediate H -field extension Kh¨i of K such that for any
pseudolimit a of .¨�/ in any H -field extension of K there is a unique isomorphism
Kh¨i ! Khai over K of ordered valued differential fields sending ¨ to a.

Using also a result from [5], this theorem has the following consequence.

Corollary 6.5 !.T/ is not quantifier-free definable in the L0
œ
-structure T.

The next candidate of a language in which Tmight eliminate quantifiers is the exten-
sion L0

œ;¨
of L0

œ
by a unary predicate symbol ¨, interpreted in T by !.T/. At this

stage we do not know of any obstruction to this possibility.
Propositions 5.8, 5.10, and 5.11 remain true with L0

œ;¨
replacing L0I: the proofs

of 5.8 and 5.10 go through because œ.T/ and !.T/ are convex subsets of T, while
the proof of 5.11 needs some further elaboration.

We conclude that if the theory of T as an L0
œ;¨

-structure admits elimination of
quantifiers, then the T-conjecture from Section 2 holds, and T has properties (1),
(2), (3) stated at the beginning of Section 5.

While this paper was under review, the statement after Corollary 6.5 that “we do
not know of any obstruction to this possibility” became obsolete. We now believe
that the “correct” new primitive that will enable us to get quantifier elimination for
T is the function T ! T that maps each g 2 !.T/ to the unique f 2 ƒ.T/ with
!.f / D g, and sends each g 2 T n !.T/ to 0; so this function is the obvious partial
inverse to !.

Notes

1. Strictly speaking, any valued field isomorphic to such a generalized power series field is
also considered as a Hahn field in this paper.

2. The English translation given here is ours; the original sentences are on p. 148. We also
used our notations T and Tas instead of Écalle’s RŒŒŒx��� and R¹¹¹xººº.

3. The prefix H honors the pioneers Hahn, Hardy, and Hausdorff. Arguably, Borel’s work
[10] in this vein is even more significant, but his name doesn’t start with H. One could
go still further back, to du Bois and Reymond’s paper [14], a source of inspiration for
Hardy [20].

4. The notations O and O are reminders of Landau’s big O and small o.

5. This nonzero requirement was inadvertently dropped on p. 580 of [2].

6. Formally, an asymptotic couple is an ordered abelian group � equipped with a valuation
 W�¤ ! � such that  .˛/ < ˇ C  .ˇ/ for all ˛; ˇ 2 �>.

7. “AKE” stands for “Ax–Kochen–Eršov.”

8. The term obstruction is often used to refer to a nontrivial (co)homology class. Our
use here is in the same spirit. In fact, the vanishing of a homology group leads to the
elimination of a quantifier since this vanishing means that the existential condition on
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a chain c to be a boundary is equivalent to the quantifier-free condition on c that its
boundary vanishes.
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