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The First-Order Syntax of Variadic Functions

Samuel Alexander

Abstract We extend first-order logic to include variadic function symbols and
prove a substitution lemma. Two applications are given: one to bounded quanti-
fier elimination and one to the definability of certain Borel sets.

1 Introduction

A variadic function is a function which takes a variable number of arguments: for
example, a function from N<N to N is variadic, where N<N denotes the set of finite
sequences of naturals. In classical first-order logic, a language has function symbols
of fixed arities. In this paper I will explore how variadic function symbols can be
added to first-order logic. In so doing, we will also formalize the syntax of the
ellipsis, : : : , which of course is closely related to variadic function symbols.

To get an idea of the subtleties of the ellipsis, consider the following “proof” that
5050 D 385.

1. We know 1C � � � C 100 D 5050.
2. We know 1 D 12 and 100 D 102.
3. By replacement, 12 C � � � C 102 D 5050.
4. Also, 12 C � � � C 102 D .10/.10C 1/.2 � 10C 1/=6 D 385. So 5050 D 385.
Evidently, mathematicians implicitly impose some special syntax on the ellipsis.

This will be made explicit in the paper.
Of course, we can already talk about unary functionsN! Nwhich interpret their

input as the code for a finite sequence. My hope is that some coding can be avoided
by allowing variadic function symbols.

I was led to investigate the syntax of variadic function symbols when I was investi-
gating a certain class of subsets of Baire space and realized that I could characterize
that class with the help of first-order logic extended by variadic function symbols.
The results are written up in Alexander [1]. Some of the basic results of this paper
were first published there.
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Variadic functions are used in many programming languages. What little litera-
ture presently exists mostly seems to be in this context (e.g., Byrd and Friedman [4])
and in the related context of �-calculus (e.g., Goldberg [7]).

2 Basic Definitions

Definition 2.1

� A first-order variadic language (or simply a variadic language) is a first-order
language, including a constant symbol n for every n 2 N, together with a set
of variadic function symbols, and a special symbol � � �x for every variable x.
� A structure (or a model) for a variadic language L is a structure M for the
first-order part of L, with universe N, and which interprets each n as n, to-
gether with a set of variadic functions N<N ! N, one for every variadic
function symbol of L. If G is a variadic function symbol of L, GM will
denote the corresponding function GM W N<N ! N.

Definition 2.2

� (Terms) If L is a variadic language, then the terms of L, and their free vari-
ables, are defined as follows.
1. If c is a constant symbol, then c is a term with FV.c/ D ;.
2. If x is a variable, then x is a term with FV.x/ D ¹xº.
3. If f is an n-ary or variadic function symbol and u1; : : : ; un are terms,

then f .u1; : : : ; un/ is a term with free variables FV.u1/[� � �[FV.un/.
4. If G is a variadic function symbol, u; v are terms, and x is a variable,

then
G
�
u.0/ � � �x u.v/

�
is a term with free variables .FV.u/n¹xº/ [ FV.v/.

� (Term substitution) If r; t are terms and x is a variable, then the term r.x j t /

obtained by substituting t for x in r is defined by induction in the usual way,
with two new cases.
1. If r is G.u.0/ � � �x u.v//, then r.x j t / is

G
�
u.0/ � � �x u.v.x j t //

�
:

2. If r is G.u.0/ � � �y u.v// where y 6D x, then r.x j t / is

G
�
u.x j t /.0/ � � �y u.x j t /.v.x j t //

�
:

Lemma 2.3 (Unique readability) Assume that L has the following properties.
1. Every symbol of L is exactly one of the following: a left parenthesis, a right

parenthesis, a logical connective, =, a constant symbol, a variable, an n-ary
predicate symbol for some n, an n-ary function symbol for some n, a variadic
function symbol, or an ellipsis � � �x for some variable x.

2. If some symbol is an n-ary function (resp., predicate) symbol and also an
m-ary function (resp., predicate) symbol, then n D m.

3. If some symbol is � � �x and � � �y , then x and y are the same variable.
Then the terms of L have the unique readability property.

Proof This is proved by the usual inductive argument.
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Henceforth, we will always assume that every language satisfies the hypotheses of
Lemma 2.3. Thus the free variables of a term are well defined, as is term substitution.

Example 2.4 (Finite sigma notation) If L is a first-order language, we can extend
it to a variadic language L† by adding a variadic function symbol † (along with
ellipses and numerals). In practice, the term †.u.0/ � � �x u.v// is often written

vX
xD0

u:

The obvious interpretation †M of † in a structure is the variadic addition function
†M.a0; : : : ; an/ D a0 C � � � C an.

Throughout the paper, if M is a structure, then an assignment shall mean a function
which maps variables to elements of the universe of M. If s is an assignment and
n 2 N, I will write s.x j n/ for the assignment which agrees with s everywhere
except that it maps x to n.

We would like to define the interpretation of a term in a model by an assignment.
This is straightforward in classic logic, but when variadic terms are introduced, in-
terpretation becomes more subtle. There are actually two possible definitions; they
are equivalent, but to show it, we will first need to establish a substitution lemma for
one of the two.

When naively defining a numerical value for
Pv
iD0 u.i/, where u.i/ and v are

mathematical expressions, we implicitly use a definition by recursion on expres-
sion complexity, as each summand u.i/ may itself involve nested summations. The
process terminates because each summand u.i/ is strictly simpler than

P10
iD0 u.i/,

which is true because i itself is not a compound expression but a natural number.
Now, we would like to say

Pv
iD0 u.i/ D u.0/ C � � � C u.v/, where the summands

on the right-hand side are recursively computed using the definition currently being
made. But there are two ways to get here formally.

1. (Syntactic) Write a list of vC1 terms, the nth of which is obtained by syntac-
tically replacing the variable i in u by the constant n. Recursively compute
and add each of these new terms, using the same values for variables as we
are currently using.

2. (Semantic) Write a list of vC1 terms, each of which is exactly u. Recursively
compute and add them, but when computing the nth one, do it assuming the
value of variable i is n.

This motivates the following definition of two interpretations. (In Corollary 3.6 we
will see that both interpretations are equivalent.)

Definition 2.5 (Term interpretation) Let M be a structure for a variadic language
L, and let s be an assignment. Assume we have defined natural number interpreta-
tions us0 ; us0 (resp., syntactic and semantic interpretations of u) for every assignment
s0 and every term u strictly simpler than t . We define t s and ts inductively according
to the following cases:

1. If t is a constant symbol c, then t s D ts D cM.
2. If t is a variable x, then t s D ts D s.x/.
3. If t is f .u1; : : : ; uk/, then t s D f M.us1; : : : ; u

s
k
/ and ts D f M.u1s; : : : ;

uks/.
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4. If t is G.u.0/ � � �x u.v//, then

G
�
u.0/ � � �x u.v/

�s
D GM

�
u.x j 0/s; : : : ; u.x j vs/s

�
;

G
�
u.0/ � � �x u.v/

�
s
D GM

�
us.xj0/; : : : ; us.xjvs/

�
:

Here vs denotes the constant symbol corresponding to the natural vs .

Example 2.6 To illustrate the definition, assume vs D vs D 5. Then by definition,

G
�
u.0/ � � �x u.v/

�s
D GM

�
u.x j 0/s; : : : ; u.x j 5/s

�
D GM

�
u.x j 0/s; u.x j 1/s; u.x j 2/s; u.x j 3/s; u.x j 4/s; u.x j 5/s

�
;

G
�
u.0/ � � �x u.v/

�
s
D GM.us.xj0/; : : : ; us.xj5//

D GM.us.xj0/; us.xj1/; us.xj2/; us.xj3/; us.xj4/; us.xj5//:

Remark 2.7 Definition 2.5 may seem somewhat suspect because of how it uses
meta-ellipses to define the semantics of ellipses. If we were forbidden from using
meta-ellipses to define the semantics of ellipses, there are two approaches we could
take. One approach would be to use simultaneous induction to simultaneously define
interpretations t s and ts and also define sequences ht .x j 0/s; : : : ; t .x j n/si and
hts.xj0/; : : : ; ts.xjn/i. The latter would be defined by induction on n by means of
concatenation:

ht .x j 0/s; : : : ; t .x j nC 1/si D ht .x j 0/s; : : : ; t .x j n/si_ ht .x j nC 1/si;
hts.xj0/; : : : ; ts.xjnC1/i D hts.xj0/; : : : ; ts.xjn/i_ hts.xjnC1/i;

assuming that .t 0/s0 and .t 0/s0 are already defined for every assignment s0 and every
term t 0 which is at most as complex as t ; meanwhile, t s and ts would be defined as
in Definition 2.5, except that we would let

G
�
u.0/ � � �x u.v/

�s
D GM

�
hu.x j 0/s; : : : ; u.x j vs/si

�
;

G
�
u.0/ � � �x u.v/

�
s
D GM.hus.xj0/; : : : ; us.xjvs/i/:

This approach does not truly use meta-ellipses except as a name; the name could be
changed without changing the definition. Another alternative approach would be to
use generalized structures, which we will discuss in Section 6.

Remark 2.8 The syntactic part of Definition 2.5 relies on the fact that u.x j c/
is strictly simpler than G.u.0/ � � �x u.v// for any constant symbol c. The minimalist
might wonder whether we can treat first-order variadic function symbols without so
many constant symbols, using only the constant symbol 0 and the successor function
symbol S . Maybe the natural way to translate the definition of G.u.0/ � � �x u.v//s
would be to take Definition 2.5 using numerals n D SS : : : S.0/. But then u.x j c/
would no longer necessarily be simpler than G.u.0/ � � �x u.v//, casting doubt on
the productiveness of the definition. One way around this dilemma would be to
define term complexity not as a natural number but as an ordinal in �0, defining the
complexity of G.u.0/ � � �x u.v// to be, say, !c.u/Cc.v/, where c.u/ and c.v/ are the
complexities of u and v. Of course, such a radical approach is not necessary, but it is
more elegant than other solutions to the dilemma, and this author considers it a nice
and unexpected application of ordinals to syntax.
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3 The Substitution Lemma

We will deal mainly with syntactic interpretations t s . We will obtain a substitution
lemma for these and use it to show that the two interpretations are identical. The
choice is arbitrary: one could also obtain a substitution lemma about semantic in-
terpretations and use that to show equality. Once either version of the substitution
lemma is obtained, and the two interpretations are shown to be equal, the other sub-
stitution lemma becomes trivial. In any case, technical lemmas are required.

Lemma 3.1 Suppose u; t are terms and x; y are variables.
1. If x is not a free variable of u, then u.x j t / D u.
2. If x is not a free variable of u, and s is an assignment, then us does not

depend on s.x/.
3. If x is not a free variable of u or t , then x is not a free variable of u.y j t /.

Proof This is proved by a straightforward induction.

In first-order logic, substitutability is a property of formulas, but it is not needed
for terms: if r; t are any terms and x is any variable, then t is substitutable for x
in r (in first-order logic). This breaks down in variadic logic, requiring a notion of
substitutability into terms.

Definition 3.2 Fix a term t and a variable x. The substitutability of t for x in a
term r is defined inductively:
� If r is a variable or constant symbol, then t is substitutable for x in r .
� If r is f .u1; : : : ; un/ where u1; : : : ; un are terms and f is an n-ary or vari-
adic function symbol, then t is substitutable for x in r if and only if t is
substitutable for x in all the ui .
� If r is G.u.0/ � � �y u.v// where G is a variadic function symbol, u; v are
terms, and y is a variable (which may or may not be x), then t is substitutable
for x in r if at least one of the following holds:
– x is not a free variable of r , or
– y D x and t is substitutable for x in v, or
– y is not a free variable of t and t is substitutable for x in both u and v.

For a nonsubstitutability example, consider the term
P10
yD0 x �y, and try substituting

t D y for x. The result is
P10
yD0 y � y, which is no good since the new occurrence of

y becomes bound by the summation.
We define substitutability for formulas in the usual way, with just one change: if

p is a predicate symbol (or D), and u1; : : : ; un are terms, we say t is substitutable
for x in p.u1; : : : ; un/ if and only if t is substitutable for x in each ui .

Lemma 3.3 Suppose t is a term which is substitutable for the variable x in
G.u.0/ � � �y u.v//. Then t is substitutable for x in v. And if x 6D y, then t is
substitutable for x in u.

Proof This is proved by induction.

Lemma 3.4 Suppose r; t are terms, x; y are distinct variables, and c is a con-
stant symbol. If t is substitutable for x in r , and y does not occur free in t , then
r.x j t /.y j c/ D r.y j c/.x j t /.
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Proof This is proved by induction on complexity of r . If r is a constant symbol
or f .r1; : : : ; rn/ for some function symbol f and terms r1; : : : ; rn (wherein t is
substitutable for x), the lemma is clear by induction. If r is a variable, the claim
follows since y does not occur free in t . But suppose r is G.u.0/ � � �z u.v// for
some variadic function symbol G, terms u; v, and variable z (which may be x, y, or
neither). Since t is substitutable for x in r , at least one of the following holds: x is
not free in r ; or z D x and t is substitutable for x in v; or t is substitutable for x in
u and v. If x is not free in r , then the lemma follows from Lemma 3.1. But suppose
x is free in r . Unraveling definitions, we have the following table:

If z. . . Then r.x j t/ equals. . .
D x G

�
u.0/ � � �z u.v.x j t//

�
6D x G

�
u.x j t/.0/ � � �z u.x j t/.v.x j t//

�
If z. . . Then r.x j t/.y j c/ equals. . .
D x G

�
u.y j c/.0/ � � �z u.y j c/.v.x j t/.y j c//

�
D y G

�
u.x j t/.0/ � � �z u.x j t/.v.x j t/.y j c//

�
… ¹x; yº G

�
u.x j t/.y j c/.0/ � � �z u.x j t/.y j c/.v.x j t/.y j c//

�
By Lemma 3.3, t is substitutable for x in v, so v.x j t /.y j c/ D v.y j c/.x j t /

by induction. And if z 6D x, then Lemma 3.3 tells us that t is substitutable for x in u
as well, and so by induction u.x j t /.y j c/ D u.y j c/.x j t /. The lemma follows
by using these facts to rewrite the last row of the table and compare with a similar
table for r.y j c/.x j t /.

Theorem 3.5 (The variadic substitution lemma for terms) Let M be a structure
for a variadic language L, and let s be an assignment. If r and t are terms such that
t is substitutable for x in r , then r.x j t /s D rs.xjts/.

Proof We induct on the complexity of r , and most cases are straightforward. If x
is not free in r , the claim is trivial; assume x is free in r . The two important cases
follow.

We must show G.u.0/ � � �y u.v//.x j t /s D G.u.0/ � � �y u.v//s.xjt
s/ when y is

a different variable than x and t is substitutable for x in G.u.0/ � � �y u.v//.x j t /.
Using induction,

G
�
u.0/ � � �y u.v/

�
.x j t /s

D G
�
u.x j t /.0/ � � �y u.x j t /.v.x j t //

�s
D GM

�
u.x j t /.y j 0/s; : : : ; u.x j t /.y j v.x j t /s/s

�
D GM

�
u.y j 0/.x j t /s; : : : ; u.y j v.x j t /s/.x j t /s

�
(�)

D GM
�
u.y j 0/s.xjts/; : : : ; u.y j vs.xjts//s.xjts/

�
D G

�
u.0/ � � �y u.v/

�s.xjts/
:

To reach line (�), we need the fact that u.x j t /.y j c/ D u.y j c/.x j t / for
any constant symbol c. If x is not free in r , then it is not free in u (since y 6D x),
and so this follows from Lemma 3.1. Otherwise, since t is substitutable for x in r
by Lemma 3.3, we must have that y does not occur free in t , and so we can invoke
Lemma 3.4.
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We must also show G.u.0/ � � �x u.v//.x j t /s D G.u.0/ � � �x u.v//s.xjt
s/ when t

is substitutable for x in G.u.0/ � � �x u.v//.x j t /. Using induction,

G
�
u.0/ � � �x u.v/

�
.x j t /s D G

�
u.0/ � � �x u.v.x j t //

�s
D GM

�
u.x j 0/s; : : : ; u.x j v.x j t /s/s

�
D GM

�
u.x j 0/s; : : : ; u.x j vs.xjts//s

�
D GM

�
u.x j 0/s.xjts/; : : : ; u.x j vs.xjts//s.xjts/

�
(��)

D G
�
u.0/ � � �x u.v/

�s.xjts/
:

In line (��), I am able to change “exponents” from s to s.x j t s/ because the terms
in question do not depend on x.

Corollary 3.6 For any term t and assignment s, t s D ts .

Proof This is proved by induction on t . All cases are immediate except the case
when t is G.u.0/ � � �x u.v//. Note that constant symbols are always substitutable,
and write

G
�
u.0/ � � �x u.v/

�s
D GM

�
u.x j 0/s; : : : ; u.x j vs/s

�
(by definition)

D GM.us.xj0/; : : : ; us.xjv
s// (by Theorem 3.5)

D GM.us.xj0/; : : : ; us.xjvs// (by induction)
D G

�
u.0/ � � �x u.v/

�
s

(by definition):

First-order formulas over a variadic language are now defined in the obvious way. By
Corollary 3.6, we can define M ˆ t D rŒs� if and only if t s D rs or, equivalently,
ts D rs; that is, we are saved from having to make an arbitrary choice. The remain-
ing semantics are defined inductively in exactly the same way they are for first-order
logic. If M is a structure, s an assignment, and ' a formula, then M ˆ 'Œs� is de-
fined in the usual way from the above atomic case, and M ˆ ' means that M ˆ 'Œs�

for every assignment s. Term substitution in a formula is defined as usual. Substi-
tutability of a term for a variable in a formula is defined as usual, except that in the
atomic case, we say t is substitutable for x in r D q if and only if t is substitutable
for x in r and q (in the sense of Definition 3.2).

Corollary 3.7 (The variadic substitution lemma) If t is a term which is substi-
tutable for the variable x in the formula ', and s is an assignment and M a structure,
then M ˆ '.x j t /Œs� if and only if M ˆ 'Œs.x j t s/�.

Proof The proof is identical to the proof of the first-order substitution lemma,
except that Theorem 3.5 is invoked for the atomic case.

Example 3.8 Working in an appropriate language and structure, it can be shown
that

xX
xD0

x D x.x C 1/=2;

showing that it is safe to use the same variable in different roles, so long as we use
Definition 2.5 to be completely clear what the truth of the formula means.
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4 Bounded Quantifier Elimination

In this section, we shall assume our languages have no predicate symbols. If a lan-
guage has a binary function symbol � and a constant symbol 1, I will write u � v to
abbreviate � .u; v/ D 1.

Definition 4.1

� If L is a variadic language, the quantifier-free formulas of L are defined
inductively: ' is quantifier-free whenever ' is atomic; and if ' and  are
quantifier-free, then so are ' ^  , ' _  , ' !  , ' $  , and :'.
� If L contains a binary function symbol � and constant symbol 1, the un-
bounded quantifier-free (or uqf) formulas of L are defined inductively: ' is
uqf whenever ' is atomic; and if ' and  are uqf and x; y are distinct vari-
ables, then ' ^  , ' _  , ' !  , ' $  , :', 9x .x � y ^ '/, and
8x .x � y ! '/ are also uqf.

Proposition 4.2 (Bounded quantifier elimination) Suppose L is a variadic lan-
guage containing (possibly among other things) binary function symbols �, C, and
ı, and a variadic function symbol G. Suppose M is an L-model which interprets C
as addition and interprets �, ı, and G by

�
M .m; n/ D

´
1 if m � n,
0 otherwise,

ıM.m; n/ D

´
1 if m D n,
0 otherwise,

GM.m0; : : : ; mn/ D

´
1 if mi 6D 0 for some 0 � i � n,
0 otherwise.

For any uqf L-formula ', there is a quantifier-free L-formula  , with the same free
variables as ', such that M ˆ ' $  .

Proof I will show more strongly that, for any uqf formula ', there is a term
t' , with exactly the free variables of ', such that M ˆ ' $ .t' D 1/ and
M ˆ :' $ .t' D 0/. This is proved by induction on '.
� If ' is u D v, take t' D ı.u; v/.
� If ' is  ^ �, take t' D ı.t C t�; 2/.
� If ' is : , take t' D ı.t ; 0/.
� If ' is 9x .x � y ^  / where x 6D y, take t' D G.t .0/ � � �x t .y//.
� All other cases for ' are reduced to the above by basic logic. (There is no
predicate case by assumption.)

In all but the 9-case, it is routine to check M ˆ ' $ .t' D 1/, M ˆ :' $

.t' D 0/. The 9-case goes as follows. Assume ' is 9x .x � y ^  /, y 6D x.
By induction, M ˆ  $ .t D 1/ and M ˆ : $ .t D 0/. So
M ˆ  $ .t D 1/Œs� for every assignment s. Let s be an assignment. Then

M ˆ 'Œs� iff
M ˆ 9x .x � y ^  /Œs� iff

9n 2 N s.t. M ˆ x � y ^  Œs.x j n/� iff
9n � s.y/ s.t. M ˆ t D 1Œs.x j n/� iff (�)

9n � s.y/ s.t. t s.xjn/ D 1 iff
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GM.t
s.xj0/
 ; : : : ; t

s.xjs.y//
 / D 1 iff

GM
�
t .x j 0/s; : : : ; t .x j ys/s

�
D 1 iff (��)

M ˆ G
�
t .0/ � � �x t .y/

�
D 1Œs�:

In line .�/ we use the fact that s.x j n/.y/ D s.y/ since y 6D x. In line .��/
we invoke the variadic substitution lemma (noting that constant symbols are always
substitutable for x).

Corollary 4.3 Let L be the language with constant symbols n for all n 2 N,
binary function symbolsC, �, ı, and �, and a variadic function symbol G. Let M be
the model which interprets everything in the obvious way (interpreting ı and G as
above). A set X � N is computably enumerable if and only if there is a quantifier-
free L-formula ', with free variables a subset of ¹x; yº, such that for all n 2 N,
n 2 X $M ˆ 9y'.x j n/.

Proof Let L0 D Ln¹Gº be the first-order part of L. Assume X � N is c.e. By
computability theory, there is a uqf formula '0 of L0 with the desired properties.
The corollary follows by bounded quantifier elimination. The converse is clear by
Church’s thesis.

5 Defining Borel Sets

I will further extend the concept of variadic function symbols and apply the idea to
show that a certain language can define any †0

n- or …0
n-subset of NN with a formula

of complexity †n or …n, respectively, in a rather nice way. My interest in using
powerful language to define Borel sets is partially influenced by Vanden Boom [13,
pp. 276–77].

By an extended variadic language I mean a first-order language together with
various n-ary-by-variadic function symbols (for various n � 0), as well as constant
symbols n for every n 2 N and ellipses � � �x . A structure for an extended variadic lan-
guage is a structure M for the first-order part, with universe N and which interprets
each n as n, together with a function GM W Nn � N<N ! N for every n-ary-by-
variadic function symbol G. Terms, term substitution, term interpretation, and term
substitutability are defined in ways very similar to our work in Section 2, and the
variadic substitution lemma is proved in almost an identical way.

Definition 5.1 Let hi be the empty sequence.
� By LBor I mean the extended variadic language with a special unary function
symbol f along with, for every n > 0 and every � W Nn ! N<Nn¹hiº, an n-ary
function symbol `� and an n-ary-by-variadic function symbol ��.
� For any f W N ! N, Mf is the LBor structure which interprets f as f and
which, for any n > 0 and � W Nn ! N<Nn¹hiº, interprets

`
Mf
� .a1; : : : ; an/ D the length of �.a1; : : : ; an/, minus 1;

�
Mf
� .a1; : : : ; an; b1; : : : ; bm/ D

´
1 if .b1; : : : ; bm/ D �.a1; : : : ; an/,
0 otherwise.

� If ' is an LBor-sentence and S � NN, say that ' defines S if, for every
f W N! N, f 2 S if and only if Mf ˆ '.
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Theorem 5.2 Let n > 0, and let S � NN. Then S is †0
n (resp., …0

n) if and only if
S is defined by a †n (resp.,…n) sentence of LBor.

Proof This is obvious if S D ; or S D NN; assume not. If f0 is a finite sequence
of naturals, I will write Œf0� for the set of infinite extensions of f0.

()) Assume S is †0
n. If n is odd, we can write S D

S
i12N � � �

S
in2NŒfi1���in �

where the ¹fi1���inº are finite, nonempty sequences. If n is even, we can write
S D

S
i12N � � �

T
in2NŒfi1���in �

c . Let � W Nn ! N<Nn¹hiº be the map which sends
.i1; : : : ; in/ to fi1���in . Let f W N ! N. For any .i1; : : : ; in/, f extends fi1���in if
and only if �Mf

�

�
i1; : : : ; in; f .0/; : : : ; f .`

Mf
� .i1; : : : ; in//

�
D 1. So if n is odd, then

f 2 S iff

Mf ˆ 9x1 � � � 9xn��
�
x1; : : : ; xn; f.z/.0/ � � �z f.z/.`�.x1; : : : ; xn//

�
D 1:

And if n is even, then f 2 S iff

Mf ˆ 9x1 � � � 8xn��
�
x1; : : : ; xn; f.z/.0/ � � �z f.z/.`�.x1; : : : ; xn//

�
D 0:

The …0
n-case is similar.

(() By induction on n. For the base case, first use an induction argument on for-
mula complexity to show that if ' is a quantifier-free sentence of LBor and Mf ˆ ',
then there is some k so big that whenever g W N! N extends .f .0/; : : : ; f .k//, then
Mg ˆ '. Thus a set defined by a quantifier-free formula is open, and hence clopen
since its complement is also defined by that formula’s negation. The base case fol-
lows: for example, if S is defined by a sentence 9x', then (by variadic substitution)
S D

S
i2N¹g W N! N WMg ˆ '.x j i/º, a union of clopen sets, showing that S is

†0
1. The induction case is straightforward.

6 A Partial Mechanization

We partially automate Sections 2 and 3 using the Coq proof assistant (see Alexander
[2]). In Coq, it is easier to work with the semantic, rather than the syntactic, term
interpretations of Definition 2.5. This is because semantic term interpretation is
recursive in a direct structural way: to interpret a term, one need only interpret direct
subterms. This is in contrast with syntactic term interpretation, which is recursive in
term depth. To syntactically interpret a term, one must interpret terms which are not
direct subterms. This makes it much more tedious to automate proofs about syntactic
interpretations, so our automation primarily deals with semantic interpretations. We
do, however, automate Corollary 3.6, in light of which the distinction disappears.

Very often when automating mathematics, it is actually easier to prove a stronger
result. This is certainly the case here. By a generalized structure M for a variadic
language L we mean a structure for the first-order part of L, together with a set of
interpretations GM W NN � N! N for each variadic function symbol G of L. This
is a generalization in an obvious way: given a structure M0 as in Section 2, there
corresponds a generalized structure M which agrees with M0 on the first-order part
of L and is otherwise defined by

GM.f; v/ D GM0
�
f .0/; : : : ; f .v/

�
whenever G is a variadic function symbol, v 2 N, and f 2 NN. The syntactic and
semantic interpretations in M of a term G.u.0/ � � �x u.v// by an assignment s are,
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respectively,

G
�
u.0/ � � �x u.v/

�s
D GM

�
k 7! u.x j k/s; vs

�
;

G
�
u.0/ � � �x u.v/

�
s
D GM.k 7! us.xjk/; vs/:

All the results of Sections 2 and 3 generalize accordingly. It is easier to automate
these stronger results because Coq has better built-in support for working with func-
tions N! N than for working with finite sequences.

For even further simplicity, we also assume that all functions are either variadic
or binary, we assume the special constant symbols c are the only constant symbols
in the language, and we assume there are no predicate symbols.

Syntactic term interpretation seems to lie on the border of what Coq can handle.
Coq cannot automatically detect that the definition is total. We are able to convince
Coq of its totality using an experimental feature of Coq called Program Fixpoint (see
Sozeau [12]). Chung-Kil Hur [8], [9] helped us tremendously with the details of
getting Program Fixpoint to work.

In performing this partial mechanization, we were influenced by R. O’Connor’s
(see [11]) mechanization of ordinary first-order logic.

7 Future Work

There are several directions to take this study from here. For one thing, Sections 2
and 3 could easily be extended to other types of logic. In order to inject variadic
terms into a logic, there are two basic requirements: first, that function terms make
any sense at all in that logic; second, that the logic has a semantics which plays well
with variadic function symbols, especially the ellipsis. Some potential logics where
we could add variadic function symbols include second-order logic, more general
multisorted logic, and nominal logic, just to name three. The question is not so
much whether the machinery can be added to the logic, but rather, what interesting
applications result.

In the direction of multisorted logic, we could deal with semantics where one sort
ranges over (say) R and another ranges over N, and thereby rigorously study variadic
functions living in the real numbers. (Single-sorted first-order logic falls short here:
how are we to interpret a term like

P�
iD0 i?)

One of the shortcomings of this first-order treatment is that we were not able
to give what should be a basic example: the general Apply function from com-
puter science. If G W N<N ! N is a variadic function and n1; : : : ; nk 2 N, then
Apply.G; n1; : : : ; nk/ is defined to be G.n1; : : : ; nk/. This could be formalized us-
ing our variadic machinery in various typed logics where it makes sense to have a
function symbol whose “arity” is some Cartesian product of types.

Another direction we can go from here is to consider function symbols of infinite
arity. The basic idea is that if G is an infinitary function symbol in a language and
u is a term and x a variable, then G.u.0/ � � �x/ is another term, whose intended
interpretation by a model M and assignment s is

G
�
u.0/ � � �x

�s
D GM

�
u.x j 0/s; u.x j 1/s; : : :

�
;

where G itself is interpreted as some infinitary GM W NN ! N. In fact, much of
the work needed for this is already done in the Coq mechanization of Section 6. The
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reason that this direction would be exciting is that the bounded-quantifier elimination
of Section 4 could be strengthened to full quantifier elimination.

Finally, we are interested in embedding the hydra game of Kirby and Paris
[10] (a short and very readable introduction is given by Bauer [3]) into term in-
terpretation. A binary operator C is (left and right) self-distributive if it satisfies
a C .b C c/ D .a C b/ C .a C c/ and .a C b/ C c D .a C c/ C .b C c/.
(Self-distributive operators were studied by Frink [6] and more recently (left-sided
only) by set theorists and knot theorists, as surveyed by Dehornoy [5].) For such an
operator (assuming also associativity),

v1X
i1D0

t1 C � � � C

vkX
ikD0

tk

D

v1X
i1D0

t1 C � � � C

vk�1X
ik�1D0

tk�1 C tk.ik j 0/C � � � C tk.ik j vk/

D

� v1X
i1D0

t1 C � � � C

vk�1X
ik�1D0

tk�1 C tk.ik j 0/
�

C � � � C

� v1X
i1D0

t1 C � � � C

vk�1X
ik�1D0

tk�1 C tk.ik j vk/
�
;

which bears a certain resemblance to the act of cutting a hydra’s head and having
many isomorphic copies of its subtree regrow.
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