Factorization of the Shoenfield-like Bounded Functional Interpretation

Jaime Gaspar

Abstract

We adapt Streicher and Kohlenbach's proof of the factorization $S=K D$ of the Shoenfield translation S in terms of Krivine's negative translation K and the Gödel functional interpretation D, obtaining a proof of the factorization $U=K B$ of Ferreira's Shoenfield-like bounded functional interpretation U in terms of K and Ferreira and Oliva's bounded functional interpretation B.

1 Introduction

In 1958, Gödel [5] presented a functional interpretation D of Heyting arithmetic HA^{ω} into itself (actually, into a quantifier-free theory, for foundational reasons). When composed with a negative translation N of Peano arithmetic PA^{ω} into HA^{ω} (Gödel [4]), it results in a two-step functional interpretation $N D$ of PA^{ω} into HA^{ω} [5]. Nine years later, Shoenfield [9] presented a one-step functional interpretation S of PA^{ω} into HA^{ω}.

In 2007, Streicher and Kohlenbach [11], and independently Avigad [1], proved the factorization $S=K D$ of S in terms of D and a negative translation K due to Streicher and Reus [10], inspired by Krivine [8].

In 2005, Ferreira and Oliva [3] presented a functional interpretation B of Heyting arithmetic with majorizability $\mathrm{HA}_{\unlhd}^{\omega}$ into itself. Like D, when composed with a negative translation N of Peano arithmetic with majorizability $\mathrm{PA}_{\unlhd}^{\omega}$ into $\mathrm{HA}_{\unlhd}^{\omega}$, it results in a two-step functional interpretation $N B$ of $\mathrm{PA}_{\unlhd}^{\omega}$ into $\mathrm{HA}_{\unlhd}^{\omega}[3]$. Two years later, Ferreira [2] presented a one-step functional interpretation U of $\mathrm{PA}_{\unlhd}^{\omega}{ }^{\text {into }} \mathrm{HA}_{\unlhd}^{\omega}$.

By adapting Streicher and Kohlenbach's proof, we obtain the factorization $U=K B$.

2 Framework

Definition 2.1 ([3], [12]) The Heyting arithmetic HA^{ω} that we consider is the usual Heyting arithmetic in all finite types but with a minimal treatment of equality and no extensionality, following Troelstra [12].

The Heyting arithmetic with majorizability $\mathrm{HA}_{\unlhd}^{\omega}$ is obtained from HA^{ω} by

1. adding new atomic formulas $t \unlhd_{\rho} q$ for all finite types ρ (where t and q are terms of type ρ);
2. adding syntactically new bounded quantifications $\forall x \unlhd_{\rho} t A$ and $\exists x \unlhd_{\rho} t A$ (where A is a formula and the variable x does not occur in the term t);
3. adding the axioms

$$
\forall x \unlhd t A \leftrightarrow \forall x(x \unlhd t \rightarrow A), \quad \exists x \unlhd t A \leftrightarrow \exists x(x \unlhd t \wedge A)
$$

governing the bounded quantifications;
4. adding the axioms and rule

$$
\begin{gathered}
x \unlhd_{0} y \leftrightarrow x \leq_{0} y, \quad x \unlhd y \rightarrow \forall u \unlhd v(x u \unlhd y v \wedge y u \unlhd y v), \\
\frac{A_{b} \wedge u \unlhd v \rightarrow t u \unlhd q v \wedge q u \unlhd q v}{A_{b} \rightarrow t \unlhd q}
\end{gathered}
$$

governing the majorizability symbol \unlhd (where \leq_{0} is the usual inequality between terms of type $0, A_{b}$ is a bounded formula, that is, a formula with all quantifications bounded, and in the rule the variables u and v do not occur free in the formula A_{b} neither in the terms t and q);
5. extending the induction axiom to the new formulas.

This system is presented in detail in [3].
We will need the following notation.
Notation 2.2 ([3]) An underlined letter \underline{t} means a tuple (possibly empty) of terms t_{1}, \ldots, t_{n}. We use the abbreviations

$$
\begin{array}{rlrl}
\underline{t} \unlhd \underline{t} & \equiv t_{1} \unlhd t_{1} \wedge \cdots \wedge t_{n} \unlhd t_{n}, & & \\
\forall \underline{x} A & \equiv \forall x_{1} \cdots \forall x_{n} A, & \exists \underline{x} A & : \equiv \exists x_{1} \cdots \exists x_{n} A, \\
\forall \underline{x} \unlhd \underline{t} A & \equiv \forall x_{1} \unlhd t_{1} \cdots \forall x_{n} \unlhd t_{n} A, & \exists \underline{x} \unlhd \underline{t} A & : \equiv \exists x_{1} \unlhd t_{1} \cdots \exists x_{n} \unlhd t_{n} A, \\
\tilde{\forall} \underline{x} A & \equiv \forall \underline{x}(\underline{x} \unlhd \underline{x} \rightarrow A), & \tilde{\exists} \underline{x} A: \equiv \exists \underline{x}(\underline{x} \unlhd \underline{x} \wedge A), \\
\tilde{\forall} \underline{x} \unlhd \underline{t} A & \equiv \forall \underline{x} \unlhd \underline{t}(\underline{x} \unlhd \underline{x} \rightarrow A), & \tilde{\exists} \underline{x} \unlhd \underline{t} A & : \equiv \exists \underline{x} \unlhd \underline{t}(\underline{x} \unlhd \underline{x} \wedge A) .
\end{array}
$$

We consider two logical principles.
Definition 2.3 The law of excluded middle for bounded formulas B-LEM is the principle

$$
A_{b} \vee \neg A_{b},
$$

where A_{b} is a bounded formula.

Definition 2.4 ([2]) The monotone bounded choice B-mAC is the principle

$$
\tilde{\forall} \underline{x} \tilde{\tilde{y}} \underline{y} A_{b}(\underline{x}, \underline{y}) \rightarrow \tilde{\tilde{y}} \underline{Y} \underline{\tilde{\theta}} \underline{x} \underline{\tilde{y}} \underline{y} \unlhd \underline{Y} \underline{x} A_{b}(\underline{x}, \underline{y})
$$

where A_{b} is a bounded formula.

3 Negative Translation and Bounded Functional Interpretations

For the convenience of the reader, we recall the definitions of K, B, and U.
Definition 3.1 ([1], [8], [10], [11]) Krivine's negative translation (extended to arithmetic with majorizability) ${ }^{1} A^{K}$ of a formula A of $\mathrm{PA}_{\unlhd}^{\omega}$ based on $\neg, \vee, \forall \unlhd, \forall$ is $A^{K}: \equiv \neg A_{K}$, where A_{K} is defined by induction on the complexity of formulas.

1. If A is an atomic formula, then $A_{K}: \equiv \neg A$;
2. $(\neg A)_{K}: \equiv \neg A_{K}$;
3. $(A \vee B)_{K}: \equiv A_{K} \wedge B_{K}$;
4. $(\forall x \unlhd t A)_{K}: \equiv \exists x \unlhd t A_{K}$;
5. $(\forall x A)_{K}: \equiv \exists x A_{K}$.

If we consider \wedge a primitive symbol, then
6. $(A \wedge B)_{K}: \equiv A_{K} \vee B_{K}$.

Definition 3.2 ([3]) The bounded functional interpretation A^{B} of a formula A of $\mathrm{HA}_{\unlhd}^{\omega}$ based on $\perp, \wedge, \vee, \rightarrow, \forall \unlhd, \exists \unlhd, \forall, \exists$ is defined by induction on the complexity of formulas.

1. If A is an atomic formula, then $A^{B}: \equiv \tilde{\mathcal{G}} \underline{\tilde{\forall}} \underline{y} A_{B}(\underline{x}, \underline{y}): \equiv A$, where \underline{x} and \underline{y} are empty tuples.
If $A^{B} \equiv \tilde{\exists} \underline{x} \underline{\tilde{\forall}} \underline{y} A_{B}(\underline{x}, \underline{y})$ and $B^{B} \equiv \tilde{\exists} \underline{x^{\prime}} \tilde{\forall} \underline{y^{\prime}} B_{B}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right)$, then
2. $(A \wedge B)^{B}: \equiv \tilde{\exists} \underline{x}, \underline{x^{\prime}} \tilde{\forall} \underline{y}, \underline{y^{\prime}}(A \wedge B)_{B}\left(\underline{x}, \underline{x^{\prime}}, \underline{y}, \underline{y^{\prime}}\right): \equiv$ $\tilde{\exists} \underline{x}, \underline{x^{\prime}} \tilde{\forall} \underline{y}, \underline{y^{\prime}}\left[A_{B}(\underline{x}, \underline{y}) \wedge B_{B}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right)\right] ;$
3. $(A \vee B)^{B}: \equiv \tilde{\exists} \underline{x}, \underline{x^{\prime}} \tilde{\forall} \underline{y}, \underline{y^{\prime}}(A \vee B)_{B}\left(\underline{x}, \underline{x^{\prime}}, \underline{y}, \underline{y^{\prime}}\right): \equiv$ $\tilde{\exists} \underline{x}, \underline{x}^{\prime} \tilde{\tilde{y}} \underline{y}, \underline{y^{\prime}}\left[\underline{\tilde{\forall}} \underline{\tilde{y}} \unlhd \underline{y} A_{B}(\underline{x}, \underline{\tilde{y}}) \vee \underline{\tilde{\forall}} \underline{\tilde{y}^{\prime}} \unlhd \underline{y^{\prime}} B_{B}\left(\underline{x^{\prime}}, \underline{\tilde{y}^{\prime}}\right)\right] ;$
4. $(A \rightarrow B)^{B}: \equiv \underline{\tilde{\exists}} \underline{X^{\prime}}, \underline{Y} \underline{\tilde{\gamma}} \underline{x}, \underline{y^{\prime}}(A \rightarrow B)_{B}\left(\underline{X^{\prime}}, \underline{Y}, \underline{x}, \underline{y^{\prime}}\right): \equiv$ $\tilde{\exists} \underline{X^{\prime}}, \underline{Y} \underline{\forall} \underline{x}, \underline{y^{\prime}}\left[\underline{\forall} \underline{y} \unlhd \underline{Y} \underline{x} \underline{y^{\prime}} A_{B}(\underline{x}, \underline{y}) \rightarrow B_{B}\left(\underline{X^{\prime}} \underline{x}, \underline{y^{\prime}}\right)\right] ;$
5. $(\forall z \unlhd t A)^{B}: \equiv \tilde{\exists} \underline{x} \underline{\forall} \underline{y}(\forall z \unlhd t A)_{B}(\underline{x}, \underline{y}): \equiv \tilde{\exists} \underline{x} \underline{\tilde{\forall}} \underline{y} \forall z \unlhd t A_{B}(\underline{x}, \underline{y})$;
6. $(\exists z \unlhd t A)^{B}: \equiv \tilde{\exists} \underline{x} \underline{\tilde{\forall}} \underline{y}(\exists z \unlhd t A)_{B}(\underline{x}, \underline{y}): \equiv \tilde{\exists} \underline{x} \underline{\tilde{\forall}} \underline{y} \exists z \unlhd t \underline{\tilde{\forall}} \underline{\tilde{y}} \unlhd \underline{y} A_{B}(\underline{x}, \underline{\tilde{y}})$;

7. $(\exists z A)^{B}: \equiv \tilde{\exists} w, \underline{x} \tilde{\forall} \underline{y}(\exists z A)_{B}(w, \underline{x}, \underline{y}): \equiv \tilde{\exists} w, \underline{x} \tilde{\forall} \underline{y} \exists z \unlhd w \tilde{\forall} \underline{\tilde{y}} \unlhd \underline{y} A_{B}(\underline{x}, \underline{\tilde{y}})$.

Remark 3.3 ([3]) From (1) and (4) we conclude that if $A^{B} \equiv \tilde{\exists} \underline{x} \tilde{\forall} \underline{y} A_{B}(\underline{x}, \underline{y})$, then $(\neg A)^{B} \equiv \tilde{\exists} \underline{Y} \tilde{\forall} \underline{x}(\neg A)_{B}(\underline{Y}, \underline{x}) \equiv \tilde{\exists} \underline{Y} \underline{\tilde{\gamma}} \underline{x} \neg \neg \underline{\tilde{\theta}} \underline{y} \unlhd \underline{Y} \underline{x} A_{B}(\underline{x}, \underline{y})$.
Remark 3.4 ([3]) We can prove by induction on the complexity of formulas that $A_{B}(\underline{x}, \underline{y})$ is a bounded formula.

Definition 3.5 ([2]) The Shoenfield-like bounded functional interpretation A^{U} of a formula A of $\mathrm{PA}_{\unlhd}^{\omega}$ based on $\neg, \vee, \forall \unlhd, \forall$ is defined by induction on the complexity of formulas.

1. If A is an atomic formula, then $A^{U}: \equiv \tilde{\forall} \underline{x} \underline{\tilde{y}} \underline{y} A_{U}(\underline{x}, \underline{y}): \equiv A$, where \underline{x} and \underline{y} are empty tuples.
If $A^{U} \equiv \tilde{\forall} \underline{x} \underline{\tilde{\exists}} \underline{y} A_{U}(\underline{x}, \underline{y})$ e $B^{U} \equiv \tilde{\forall} \underline{x^{\prime}} \tilde{\exists} \underline{y^{\prime}} B_{U}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right)$, then
2. $(\neg A)^{U}: \equiv \tilde{\forall} \underline{Y} \underline{\tilde{\exists}}(\neg A)_{U}(\underline{Y}, \underline{x}): \equiv \tilde{\tilde{\forall}} \underline{Y} \underline{\underline{x}} \underline{\tilde{\exists} \underline{\tilde{x}}} \unlhd \underline{x} \neg A_{U}(\underline{\tilde{x}}, \underline{Y} \underline{\tilde{x}})$;
3. $(A \vee B)^{U}: \equiv \tilde{\forall} \underline{x}, \underline{x}^{\prime} \underline{\tilde{y}} \underline{y}, \underline{y^{\prime}}(A \vee B)_{U}\left(\underline{x}, \underline{x^{\prime}}, \underline{y}, \underline{y^{\prime}}\right): \equiv$

$$
\tilde{\forall} \underline{x}, \underline{x}^{\prime} \underline{\tilde{\exists}} \underline{y}, \underline{y}^{\prime}\left[A_{U}(\underline{x}, \underline{y}) \vee B_{U}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right)\right] ;
$$

4. $(\forall z \unlhd t A)^{U}: \equiv \tilde{\forall} \underline{x} \tilde{\exists} \underline{y}(\forall z \unlhd t A)_{U}(\underline{x}, \underline{y}): \equiv \tilde{\forall} \underline{x} \tilde{\exists} \underline{y} \forall z \unlhd t A_{U}(\underline{x}, \underline{y})$;
5. $(\forall z A)^{U}: \equiv \tilde{\forall} w, \underline{x} \underline{\tilde{y}} \underline{(}(\forall z A)_{U}(w, \underline{x}, \underline{y}): \equiv \tilde{\forall} w, \underline{x} \tilde{\exists} \underline{y} \forall z \unlhd w A_{U}(\underline{x}, \underline{y})$.

If we consider \wedge a primitive symbol, then

$$
\text { 6. } \begin{aligned}
& (A \wedge B)^{U}: \equiv \tilde{\tilde{\theta}} \underline{x}, \underline{x^{\prime}} \tilde{\tilde{y}} \underline{y}, \underline{y}^{\prime}(A \wedge B)_{U}\left(\underline{x}, \underline{x^{\prime}}, \underline{y}, \underline{y^{\prime}}\right): \equiv \\
& \tilde{\forall} \underline{x}, \underline{x}^{\prime} \underline{\exists} \underline{y}, \underline{y^{\prime}}\left[A_{U}(\underline{x}, \underline{y}) \wedge B_{U}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right)\right] .
\end{aligned}
$$

Remark 3.6 ([2]) We can also prove by induction on the complexity of formulas that $A_{U}(\underline{x}, \underline{y})$ is a bounded formula.
U is monotone on the second tuple of the variables in the following sense.
Lemma 3.7 (monotonicity of U [2]) $\quad \mathrm{HA}_{\unlhd}^{\omega} \vdash \forall \underline{x} \forall \underline{y} \forall \underline{\tilde{y}} \unlhd \underline{y}\left[A_{U}(\underline{x}, \underline{\tilde{y}}) \rightarrow A_{U}(\underline{x}, \underline{y})\right]$.

4 Factorization

We want to prove $A^{U} \leftrightarrow\left(A^{K}\right)^{B}$ by induction on the complexity of formulas. Because it isn't A^{K} but A_{K} that is defined by induction on the complexity of formulas, it would be better to write $A^{U} \leftrightarrow\left(\neg A_{K}\right)^{B}$. If $A^{U} \equiv \tilde{\forall} \underline{x} \tilde{\exists} \underline{y} A_{U}(\underline{x}, \underline{y})$ and $\left(A_{K}\right)^{B} \equiv \tilde{\exists} \underline{x^{\prime}} \tilde{\forall} \underline{y}^{\prime}\left(A_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right)$, then using B-mAC in the first equivalence and the monotonicity of \bar{U} in the second equivalence, we have

$$
\begin{align*}
A^{U} & \equiv \tilde{\forall} \underline{x} \tilde{\exists} \underline{y} A_{U}(\underline{x}, \underline{y}) \\
& \leftrightarrow \tilde{\exists} \underline{\tilde{Y}} \underline{\tilde{\theta}} \underline{\tilde{\exists} \underline{y} \unlhd \underline{Y} \underline{x} A_{U}(\underline{x}, \underline{y})} \\
& \leftrightarrow \tilde{\tilde{\xi}} \underline{Y} \tilde{\forall} \underline{x} A_{U}(\underline{x}, \underline{Y} \underline{x}), \tag{1}\\
\left(\neg A_{K}\right)^{B} & \equiv \tilde{\exists} \underline{Y^{\prime}} \tilde{\forall} \underline{x^{\prime}} \neg \underline{\tilde{\theta}} \underline{y^{\prime}} \unlhd \underline{Y^{\prime}} \underline{x^{\prime}}\left(A_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right) . \tag{2}
\end{align*}
$$

The comparison of formulas (1) and (2) suggests that we first prove $A_{U}(\underline{x}, \underline{Y} \underline{x}) \leftrightarrow$ $\neg \tilde{\forall} \underline{y} \unlhd \underline{Y} \underline{x}\left(A_{K}\right)_{B}(\underline{x}, \underline{y})$, or even better, $A_{U}(\underline{x}, \underline{y}) \leftrightarrow \neg \tilde{\tilde{\forall}} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}})$. Then, by the above argument, we would have $A^{U} \leftrightarrow\left(A^{K}\right)^{B}$.

The factorization proof is almost the straightforward adaptation of Streicher and Kohlenbach's proof but with two tweaks.

1. Instead of proving $A_{U}(\underline{x}, \underline{y}) \leftrightarrow \neg\left(A_{K}\right)_{B}(\underline{x}, \underline{y})$, along the lines of Streicher and Kohlenbach's proof, we prove $A_{U}(\underline{x}, \underline{y}) \leftrightarrow \neg \tilde{\forall} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}})$, where the appearance of the quantification $\tilde{\forall} \underline{\tilde{y}} \unlhd \underline{y}$ is explained by the above argument.
2. In proving $A_{U}(\underline{x}, \underline{y}) \leftrightarrow \neg \tilde{\forall} \tilde{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}})$ we need the hypothesis $\underline{x} \unlhd \underline{x} \wedge \underline{y} \unlhd \underline{y}$ for technical reasons explained in notes.

Theorem 4.1 (factorization $U=K B$) We have

$$
\begin{align*}
\mathrm{HA}{ }_{\unlhd}^{\omega} & +\mathrm{B}-\mathrm{LEM} \vdash \tilde{\forall} \underline{Y}, \underline{x}\left[A_{U}(\underline{x}, \underline{Y} \underline{x}) \leftrightarrow\left(A^{K}\right)_{B}(\underline{Y}, \underline{x})\right], \tag{3}\\
\mathrm{HA}_{\unlhd}^{\omega}+\mathrm{B}-\mathrm{LEM} & +\mathrm{B}-\mathrm{mAC} \vdash A^{U} \leftrightarrow\left(A^{K}\right)^{B} . \tag{4}
\end{align*}
$$

Proof

Step 1 First we prove

$$
\begin{equation*}
\mathrm{HA}_{\unlhd}^{\omega}+\mathrm{B}-\mathrm{LEM} \vdash \tilde{\forall} \underline{x}, \underline{y}\left[A_{U}(\underline{x}, \underline{y}) \leftrightarrow \neg \tilde{\tilde{\theta}} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}})\right] \tag{5}
\end{equation*}
$$

by induction on the complexity of formulas.
Let us consider the case of atomic formulas A. Using B-LEM in the equivalence, we have

$$
\begin{aligned}
A_{U} & \equiv A \\
& \leftrightarrow \neg \neg A \\
& \equiv \neg\left(A_{K}\right)_{B} .
\end{aligned}
$$

Let us now consider the case of negation $\neg A$. Assume $\underline{Y} \unlhd \underline{Y}$ and $\underline{x} \unlhd \underline{x}$. Using the induction hypothesis in the first equivalence and B-LEM in the second equivalence, we have

$$
\begin{aligned}
(\neg A)_{U}(\underline{Y}, \underline{x}) & \equiv \tilde{\exists} \underline{\tilde{x}} \unlhd \underline{x} \neg A_{U}(\underline{\tilde{x}}, \underline{Y} \underline{\tilde{x}}) \\
& \leftrightarrow \tilde{\exists} \underline{\tilde{x}} \unlhd \underline{x} \neg \neg \tilde{\forall} \underline{y} \unlhd \underline{Y} \underline{\tilde{x}}\left(A_{K}\right)_{B}(\underline{\tilde{x}}, \underline{y}) \\
& \leftrightarrow \neg \tilde{\tilde{\theta}} \tilde{\tilde{x}} \unlhd \underline{x} \neg \tilde{\forall} \underline{y} \unlhd \underline{Y} \underline{\tilde{x}}\left(A_{K}\right)_{B}(\underline{\tilde{x}}, \underline{y}) \\
& \equiv \neg \tilde{\forall} \underline{\tilde{x}} \unlhd \underline{x}\left[(\neg A)_{K}\right]_{B}(\underline{Y}, \underline{\tilde{x}}) .
\end{aligned}
$$

Let us now consider the case of disjunction $A \vee B$. Assume $\underline{x} \unlhd \underline{x}, \underline{x^{\prime}} \unlhd \underline{x^{\prime}}, \underline{y} \unlhd \underline{y}$, and $\underline{y}^{\prime} \unlhd \underline{y^{\prime}}$. Using the induction hypothesis in the first equivalence, B-LEM in the second equivalence, and intuitionistic logic in the third equivalence, ${ }^{2}$ we have

$$
\begin{aligned}
(A \vee B)_{U}\left(\underline{x}, \underline{x^{\prime}}, \underline{y}, \underline{y^{\prime}}\right) & \equiv A_{U}(\underline{x}, \underline{y}) \vee B_{U}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right) \\
& \leftrightarrow \neg \tilde{\tilde{y}} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \vee \neg \tilde{\tilde{\theta}} \tilde{y}^{\prime} \unlhd \underline{y^{\prime}}\left(B_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{\tilde{y}^{\prime}}\right) \\
& \leftrightarrow \neg\left[\tilde{\tilde{\forall}} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \wedge \tilde{\forall} \underline{\tilde{y}^{\prime}} \unlhd \underline{y}^{\prime}\left(B_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{\tilde{y}^{\prime}}\right)\right] \\
& \leftrightarrow \neg \tilde{\tilde{y}} \underline{\tilde{y}}, \underline{\tilde{y}^{\prime}} \unlhd \underline{y}, \underline{y^{\prime}}\left[\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \wedge\left(B_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{\tilde{y}^{\prime}}\right)\right] \\
& \equiv \neg \tilde{\tilde{\theta}} \underline{\tilde{y}}, \underline{\tilde{y}^{\prime}} \unlhd \underline{y}, \underline{y^{\prime}}\left[(A \vee B)_{K}\right]_{B}\left(\underline{x}, \underline{x^{\prime}}, \underline{\tilde{y}}, \underline{\tilde{y}^{\prime}}\right) .
\end{aligned}
$$

Let us now consider the case of bounded universal quantification $\forall z \unlhd t A$. Assume $\underline{x} \unlhd \underline{x}$ and $\underline{y} \unlhd \underline{y}$. Using the induction hypothesis in the first equivalence and
intuitionistic logic in the second and third ${ }^{3}$ equivalences, we have

$$
\begin{aligned}
(\forall z \unlhd t A)_{U}(\underline{x}, \underline{y}) & \equiv \forall z \unlhd t A_{U}(\underline{x}, \underline{y}) \\
& \leftrightarrow \forall z \unlhd t \neg \tilde{\forall} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \\
& \leftrightarrow \neg \exists z \unlhd t \tilde{\forall} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \\
& \leftrightarrow \neg \tilde{\forall} \hat{y} \unlhd \underline{y} \exists z \unlhd t \tilde{\forall} \underline{\tilde{y}} \unlhd \underline{\hat{y}}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \\
& \equiv \neg \tilde{\forall} \hat{y} \unlhd \underline{y}\left[(\forall z \unlhd t A)_{K}\right]_{B}(\underline{x}, \underline{\hat{y}}) .
\end{aligned}
$$

Finally, let us consider the case of unbounded universal quantification $\forall z A$. Assume $w \unlhd w, \underline{x} \unlhd \underline{x}$ and $\underline{y} \unlhd \underline{y}$. Using the induction hypothesis in the first equivalence and intuitionistic logic in the second and third equivalences, we have

$$
\begin{aligned}
(\forall z A)_{U}(w, \underline{x}, \underline{y}) & \equiv \forall z \unlhd w A_{U}(\underline{x}, \underline{y}) \\
& \leftrightarrow \forall z \unlhd w \neg \tilde{\tilde{y}} \tilde{y} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \\
& \leftrightarrow \neg \exists z \unlhd w \tilde{\forall} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \\
& \leftrightarrow \neg \tilde{\forall} \hat{y} \unlhd \underline{y} \exists z \unlhd w \tilde{\forall} \tilde{y} \unlhd \underline{\hat{y}}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \\
& \equiv \neg \tilde{\forall} \hat{y} \unlhd \underline{y}\left[(\forall z A)_{K}\right]_{B}(w, \underline{x}, \underline{\hat{y}}) .
\end{aligned}
$$

In case we consider \wedge a primitive symbol, let us now see the case of conjunction $A \wedge B$. Assume $\underline{x} \unlhd \underline{x}, \underline{x^{\prime}} \unlhd \underline{x^{\prime}}, \underline{y} \unlhd \underline{y}$, and $\underline{y}^{\prime} \unlhd \underline{y}^{\prime}$. Using the induction hypothesis in the first equivalence and intuitionistic logic in the second and third equivalences, we have

$$
\begin{aligned}
& (A \wedge B)_{U}\left(\underline{x}, \underline{x^{\prime}}, \underline{y}, \underline{y^{\prime}}\right) \equiv A_{U}(\underline{x}, \underline{y}) \wedge B_{U}\left(\underline{x^{\prime}}, \underline{y^{\prime}}\right) \\
& \leftrightarrow \neg \tilde{\tilde{\forall}} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \wedge \neg \underline{\tilde{\forall}} \underline{\tilde{y}^{\prime}} \unlhd \underline{y^{\prime}}\left(B_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{\tilde{y}^{\prime}}\right) \\
& \leftrightarrow \neg\left[\tilde{\forall} \underline{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \vee \underline{\tilde{V}}^{\tilde{y}^{\prime}} \unlhd \underline{y^{\prime}}\left(B_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{\tilde{y}^{\prime}}\right)\right] \\
& \leftrightarrow \neg \tilde{\forall} \underline{\hat{y}}, \underline{\hat{y}^{\prime}} \unlhd \underline{y}, \underline{y^{\prime}}\left[\underline{\tilde{V}} \underline{\tilde{y}} \unlhd \underline{\hat{y}}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \vee\right. \\
& \left.\tilde{\forall} \underline{\tilde{y}^{\prime}} \unlhd \underline{\hat{y}^{\prime}}\left(B_{K}\right)_{B}\left(\underline{x^{\prime}}, \underline{\tilde{y}^{\prime}}\right)\right] \\
& \equiv \neg \tilde{\forall} \underline{\hat{y}}, \underline{\hat{y}^{\prime}} \unlhd \underline{y}, \underline{y^{\prime}}\left[(A \wedge B)_{K}\right]_{B}\left(\underline{x}, \underline{x^{\prime}}, \underline{\hat{y}}, \underline{\hat{y}^{\prime}}\right) \text {. }
\end{aligned}
$$

Step 2 Now we prove (3). Assume $\underline{Y} \unlhd \underline{Y}$ and $\underline{x} \unlhd \underline{x}$. Using (5) in the equivalence, we have

$$
\begin{aligned}
A_{U}(\underline{x}, \underline{Y} \underline{x}) & \leftrightarrow \neg \tilde{\forall} \underline{y} \unlhd \underline{Y} \underline{x}\left(A_{K}\right)_{B}(\underline{x}, \underline{y}) \\
& \equiv\left(\neg A_{K}\right)_{B}(\underline{Y}, \underline{x}) \\
& \equiv\left(A^{K}\right)_{B}(\underline{Y}, \underline{x}) .
\end{aligned}
$$

Step 3 Finally, we prove (4). Using B-mAC in the first equivalence, the monotonicity of U in the second equivalence, and (3) in the third equivalence, we have

$$
\begin{aligned}
A^{U} & \equiv \tilde{\forall} \underline{x} \tilde{\exists} \underline{y} A_{U}(\underline{x}, \underline{y}) \\
& \leftrightarrow \tilde{\exists} \underline{Y} \tilde{\forall} \underline{x} \tilde{\exists} \underline{y} \unlhd \underline{Y} \underline{x} A_{U}(\underline{x}, \underline{y}) \\
& \leftrightarrow \tilde{\exists} \underline{Y} \tilde{\forall} \underline{x} A_{U}(\underline{x}, \underline{Y} \underline{x}) \\
& \leftrightarrow \tilde{\exists} \underline{Y} \tilde{\forall} \underline{x}\left(A^{K}\right)_{B}(\underline{Y}, \underline{x}) \\
& \equiv\left(A^{K}\right)^{B} .
\end{aligned}
$$

Notes

1. It still holds a soundness theorem $\mathrm{PA}_{\unlhd}^{\omega} \vdash A \Rightarrow \mathrm{HA}_{\unlhd}^{\omega} \vdash A^{K}$ and a characterization theorem $\mathrm{PA}_{\unlhd}^{\omega} \vdash A \leftrightarrow A^{K}$.
2. The rule for conversion to prenex normal form $\forall u \unlhd v(C \wedge D) \rightarrow \forall u \unlhd v C \wedge D$ (where the variable u does not occur free in the formula D), despite its innocuous look, does not hold without the hypothesis $v \unlhd v$. So we need to use the hypothesis $\underline{x} \unlhd \underline{x} \wedge \underline{y} \unlhd \underline{y}$ in the proof.
3. Probably the easiest way to prove the third equivalence is to prove

$$
\exists z \unlhd t \underline{\tilde{\forall}} \tilde{\tilde{y}} \unlhd \underline{y}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) \leftrightarrow \tilde{\forall} \underline{\hat{y}} \unlhd \underline{y} \exists z \unlhd t \underline{\tilde{\forall}} \tilde{\tilde{y}} \unlhd \underline{\hat{y}}\left(A_{K}\right)_{B}(\underline{x}, \underline{\tilde{y}}) .
$$

To prove the right-to-left implication, we just take $\underline{\hat{y}}=\underline{y}$, which we can do because $\underline{y} \unlhd \underline{y}$. So here again we need to use the hypothesis $\underline{x} \unlhd \underline{x} \wedge \underline{y} \unlhd \underline{y}$.

References

[1] Avigad, J., "A variant of the double-negation translation," Carnegie Mellon Technical Report, CMU-PHIL-179 (2006), pp. 1-3. 53, 55
[2] Ferreira, F., "Injecting uniformities into Peano arithmetic," forthcoming in Annals of Pure and Applied Logic. 53, 55, 56
[3] Ferreira, F., and P. Oliva, "Bounded functional interpretation," Annals of Pure and Applied Logic, vol. 135 (2005), pp. 73-112. Zbl 1095.03060. MR 2156133. 53, 54, 55
[4] Gödel, K., "Zur intuitionistischen Arithmetik und Zahlentheorie," Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 34-38. Translation to English: "On intuitionistic arithmetic and number theory," in [6], pp. 286-95. Zbl 0007.19304. 53
[5] Gödel, K., "Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes," Dialectica, vol. 12 (1958), pp. 280-87. Translation to English: "On a hitherto unutilized extension of the finitary standpoint," in [7], pp. 240-51. Zbl 0090.01003. MR 0102482. 53, 60
[6] Gödel, K., Collected Works. Vol. I, edited by Solomon Feferman et al., Oxford University Press, New York, 1986. Zbl 0592.01035. MR 831941. 59
[7] Gödel, K., Collected Works. Vol. II, edited by Solomon Feferman et al., Oxford University Press, New York, 1990. Zbl 0698.01023. MR 1032517. 59, 60
[8] Krivine, J.-L., "Opérateurs de mise en mémoire et traduction de Gödel," Archive for Mathematical Logic, vol. 30 (1990), pp. 241-67. Zbl 0712.03009. MR 1080590. 53, 55
[9] Shoenfield, J. R., Mathematical Logic, Addison-Wesley Publishing Co., Reading, 1967. Zbl 0155.01102. MR 0225631. 53
[10] Streicher, T., and B. Reus, "Classical logic, continuation semantics and abstract machines," Journal of Functional Programming, vol. 8 (1998), pp. 543-72. Zbl 0928.68074. MR 1678817. 53, 55
[11] Streicher, T., and U. Kohlenbach, "Shoenfield is Gödel after Krivine," Mathematical Logic Quarterly, vol. 53 (2007), pp. 176-79. Zbl pre05152286. MR 2308497. 53, 55
[12] Troelstra, A. S., "Introductory note to 1958 and 1972," introductory note in [7] to [5], 1990, pp. 217-41. 54

Acknowledgments

I am grateful for the suggestions of Ulrich Kohlenbach, Fernando Ferreira, and an anonymous referee. This work was financially supported by the Fundação para a Ciência e a Tecnologia.

Fachbereich Mathematik
Technische Universität Darmstadt
Schlossgartenstrasse 7
64289 Darmstadt GERMANY
mail@jaimegaspar.com
http://www.jaimegaspar.com

