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On Interpretations of Arithmetic and Set Theory

Richard Kaye and Tin Lok Wong

Abstract This paper starts by investigating Ackermann’s interpretation of fi-
nite set theory in the natural numbers. We give a formal version of this inter-
pretation from Peano arithmetic (PA) to Zermelo-Fraenkel set theory with the
infinity axiom negated (ZF−inf) and provide an inverse interpretation going the
other way. In particular, we emphasize the precise axiomatization of our set
theory that is required and point out the necessity of the axiom of transitive con-
tainment or (equivalently) the axiom scheme of ∈-induction. This clarifies the
nature of the equivalence of PA and ZF−inf and corrects some errors in the lit-
erature. We also survey the restrictions of the Ackermann interpretation and its
inverse to subsystems of PA and ZF−inf, where full induction, replacement, or
separation is not assumed. The paper concludes with a discussion on the prob-
lems one faces when the totality of exponentiation fails, or when the existence
of unordered pairs or power sets is not guaranteed.

1 Introduction

The work described in this article starts with a piece of mathematical “folklore” that
is “well known” but for which we know no satisfactory reference.

Folklore Result The first-order theories Peano arithmetic and ZF set theory with
the axiom of infinity negated are equivalent, in the sense that each is interpretable in
the other and the interpretations are inverse to each other.

This would make an excellent starting point for any beginning research student work-
ing in the area of models of Peano arithmetic, since an understanding of how these
interpretations work enables all coding techniques from set theory to be employed in
arithmetic in a uniform way, and also places PA “on the map” (in the sense of con-
sistency and interpretation strength) relative to set theory. This, combined with the
lack of suitable references, permits us, we trust, to omit any apology for investigating
such folklore. In fact, when the details were finally uncovered, there were surprises
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for both authors—this is the reason for the quotation marks when we said that the
folkloric result above is “well known.”

We should be more precise and highlight exactly where the imprecision in the
folkloric result lies. There are two places: first, the notion of “ZF set theory with the
axiom of infinity negated” turns out to be dependent in quite an important way on the
preferred choice of the initial presentation of ZF; second, the idea of interpretations
being “inverse to each other” admits important variations. For example, Chang and
Keisler [4], §A.31, specify one particular choice of axiomatization of ZF; for this ax-
iomatization a weak form of interpretation-equivalence of “ZF with infinity negated”
and PA can be proved, but for stronger notions of interpretation-equivalence a differ-
ent axiomatization of ZF seems to be required.

Our notation and terminology is standard. For a text on set theory we have used
Drake [6], though many others would be suitable. For background on Peano arith-
metic we refer the reader to Kaye [10], and especially Chapter 10 for background on
subsystems of PA.

2 Interpretations

The first issue to address here is what we shall mean by “interpretation” and when
interpretations are “inverse” to one another. In fact, for the folkloric result we are
addressing, the notion of interpretation required is very straightforward and concrete,
but in general the word “interpretation” is used in many contexts and with many
different meanings in logic and model theory.

As pointed out elsewhere, notably by Visser [15], notions of interpretation can be
best brought together using a category theoretic framework, though in this paper we
use category theory simply as a notational device. For us, an interpretation i of a
theory T2 in a theory T1 is a morphism i : T2 → T1 in a particular category being
studied.

To define the particular category we will use in this paper, let us agree that an L-
theory is a consistent set of L-sentences (not necessarily complete or closed under
deduction) and we make the convenient assumptions that all languages are purely
relational, equality (=) being one of the relation symbols, and a further unary rela-
tion Dom() for the domain is always present. Full first-order logic is assumed, includ-
ing all the rules for equality and the additional logical axiom ∀x Dom(x). For us here,
an interpretation i : T2 → T1 of an L2-theory T2 in an L1-theory T1 is given by a
mapping of atomic formulas R(x1, x2, . . . , xn) of L2 to formulas R(x1, x2, . . . , xn)

i

of L1 in the same free variables. In particular, the domain and equality on this do-
main are defined by Dom(x)i and (x = y)i. The mapping extends to all first-order
formulas in the natural way by setting (¬θ(x̄))i to be ¬ θ(x̄)i, (ϕ(x̄) → ψ(x̄))i to
be ϕ(x̄)i → ψ(x̄)i, and (∀y θ(x̄, y))i to be ∀y (Dom(y)i → θ(x̄, y)i). For this to
define an interpretation, we shall insist that T1 ` ∃x Dom(x)i and T1 ` σ i for every
axiom σ ∈ T2. Visser calls such interpretations relative interpretations.

The category of theories and interpretations is obtained by taking theories as ob-
jects and such mappings i as morphisms, where we choose to say that f : T2 → T1
and g : T2 → T1 are equal if T1 ` ∀x̄ (R(x̄)f ↔ R(x̄)g) for all R in L2. This
makes a category, where the identity interpretation 1 = 1T : T → T is the mor-
phism given up to this equality by the mapping R(x̄)1 = R(x̄) for all R. The com-
position gf : T3 → T1 of morphisms f : T3 → T2 and g : T2 → T1 is given by
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(R(x̄))(gf)
= (R(x̄)f)g, and associativity holds as can easily be checked. (It is some-

what annoying that the convenient notation of writing interpretation-applications as
superscripts is at odds with the usual maps-on-left convention for morphisms.) As
usual, two morphisms f : T → S and g : S → T are said to be inverse to each other
if fg = 1S and gf = 1T . An interpretation is then a morphism in this category, that
is, a mapping as described in the last paragraph modulo the equivalence given by this
notion of equality.

As for many kinds of interpretations, ours respects derivability in first-order logic
because of the way our mappings were defined on nonatomic formulas. Thus we
have the following proposition.

Proposition 2.1 Let f : T2 → T1 and suppose T2 ` σ . Then T1 ` σ f. �

The next proposition follows from the definitions just given and an induction on
formulas.

Proposition 2.2 Let f : T2 → T1 and g : T2 → T1 be equal as interpretations. Then
for each formula θ(x̄) of L2 we have T1 ` ∀x̄ (θ(x̄)f ↔ θ(x̄)g). In particular, for
each sentence σ of L2, T1 ` σ f if and only if T1 ` σ g. �

3 The Ackermann Interpretation

By ZF−inf we mean the theory in the first-order language L∈ of set theory with all
the usual axioms of ZF except infinity, which is negated. More specifically, and fol-
lowing Baratella and Ferro [2], let the set theory EST have the usual axioms or axiom
schemes of extensionality, existence of the empty set, pair set, sum set, separation
and replacement;1denote the axiom of power set by Pow, the axiom of foundation,
expressed as ∀x (x 6= ∅ → ∃y ∈ x ∀z ∈ x z 6∈ y), by Found, and the usual axiom
of infinity, that is, ∃w (∅ ∈ w ∧ ∀x ∈ w (x ∪ {x} ∈ w)), by Inf. Then ZF−inf is
EST together with Pow,Found,¬Inf.

It was observed in 1937 by Ackermann [1] that N with the membership relation
defined by

n ∈ m iff the nth digit in the binary representation of m is 1

satisfies ZF−inf. This interpretation, formalized in ZF with ω in place of N yields a
bijection between ω and the collection Vω of hereditarily finite sets.

This interpretation has been given extensive treatment in the literature. Working
in PA (or a suitable fragment of PA) one may define the interpretation by setting
Dom(x)a to be ‘Dom(x)’, (x = y)a to be ‘x = y’, and (x ∈ y)a to be

∃w < y ∃p 6 y ∃r < p ( p = 2x
∧ y = (2w + 1)p + r ).

We will refer to this interpretation throughout the rest of the paper as the Ackermann
interpretation.

All that is required for this to work is a suitable formula p = 2x that represents
‘p is the x th power of 2’. In fact, many such formulas are known which have the
necessary inductive definition

1 = 20
∧ ∀x ∀p (p = 2x

→ 2p = 2x+1) (1)

and partial-function nature

∀x ∀p ∀q (p = 2x
∧ q = 2x

→ p = q) (2)
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provable in PA or even much weaker systems, including 10 formulas p = 2x for
which the above statements are provable in the subsystem of PA with induction on
10 formulas only (see Gaifman and Dimitracopoulos [8] or Hájek and Pudlák [9],
§I.1(b)).

Making extensive use of the axiom scheme of induction, it is straightforward to
check that every model of PA with this binary relation defined satisfies ZF−inf.

Theorem 3.1 a : ZF−inf → PA. �

More information on this interpretation in subsystems of PA is given in Section 7
below.

4 The Ordinal Interpretation

The finite ordinals in the standard model of ZFC resemble the usual natural numbers.
In a world without infinite numbers, one would expect the class of all ordinals to
satisfy the ordinary rules of arithmetic.

Definition 4.1 Trans(x) (‘x is transitive’) is the formula

∀y, z (z ∈ y ∧ y ∈ x → z ∈ x),

and x ∈ On (‘x is an ordinal’) is

Trans(x) ∧ ∀y, z ∈ x (y ∈ z ∨ y = z ∨ z ∈ y).

Most ordinal theory can be done inside our theory of sets just as it is in ZF. See,
for example, Chapter 2 of Drake [6] for details. However, as an easy consequence
of ¬Inf, every nonzero ordinal is a successor ordinal—there are no limit ordinals in
ZF−inf.

Theorem 4.2 ZF−inf ` ∀x
(
x ∈ On ↔ x = ∅ ∨ ∃y ∈ On (x = y ∪ {y})

)
. �

As a corollary, every set of ordinals in ZF−inf has a maximum element.

Corollary 4.3 ZF−inf ` ∀x ⊆ On (x 6= ∅ →
⋃

x ∈ x). �

Arithmetic of ordinals can be defined in the usual way, and there is no problem at
all in showing that the ordinals with usual arithmetic yield an interpretation of PA in
ZF−inf.

Definition 4.4 Let Dom(x)o be ‘x ∈ On’, (x = y)o be ‘x = y’, (x < y)o be
‘x ∈ y’, (x + y = z)o be ‘x + y = z’ (ordinal addition), and (x · y = z)o be
‘x × y = z’ (ordinal multiplication).

Theorem 4.5 o : PA → ZF−inf. �

Thus PA and ZF−inf have the same consistency strength, but this interpretation is
clearly not inverse to the Ackermann interpretation.

5 Epsilon Induction and Transitive Containment

In order to define an inverse to the Ackermann interpretation we shall need to con-
sider the principle of ∈-induction.

Definition 5.1 For an L∈-formula ϕ(x, ȳ), I∈ϕ is the sentence

∀ȳ
(
∀x (∀w ∈ x ϕ(w, ȳ) → ϕ(x, ȳ)) → ∀x ϕ(x, ȳ)

)
.

∈-Ind denotes the scheme {I∈ψ : ψ(x, ȳ) is an L∈-formula}.
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It turns out that not every model of ZF−inf admits ∈-induction. This is proved using
the closely related notion of the transitive closure of a set.

Definition 5.2 Define y = TC(x) (‘y is the transitive closure of x’) to be

y ⊇ x ∧ Trans(y) ∧ ∀y′ (y′
⊇ x ∧ Trans(y′) → y′

⊇ y).

TC is the axiom ∀x ∃u ⊇ x Trans(u).

It is easy to check (using extensionality) that the transitive closure y = TC(x) of a
set x , if it exists, is unique. The L∈-sentence TC says that every set is contained in
a transitive set. This turns out to be equivalent to the apparently stronger statement
that every set has a transitive closure over a weak fragment of ZF−inf, because the
transitive closure of a set x can alternatively be defined as the intersection of all
transitive sets containing x .

Lemma 5.3 EST ` ∀x (∃y (y ⊇ x ∧ Trans(y)) → ∃y (TC(x) = y)). �

Over EST + Found, the axiom of transitive containment or closure is equivalent to
∈-induction. In fact, a single instance of ∈-induction is enough to prove the whole
schema ∈-Ind.

Proposition 5.4 For all V � EST + Found,

V � ∈-Ind ⇔ V � TC.

Sketch of proof Let V � EST ∪ ∈-Ind. We prove the equivalent statement

V � ∀x ∃y (y = TC(x))

by ∈-induction on x in V .
Let x ∈ V such that every element of x has a transitive closure. By the axioms of

EST and the induction hypothesis, the set⋃ {
z : ∃x ′

∈ x (z = TC(x ′))
}

∪ x

exists and is a transitive superset of x . So Lemma 5.3 implies x has a transitive
closure, completing the induction.

The proof of the converse requires the axiom of foundation but is the same as the
standard proof of ∈-induction in ZF. See, for example, Chapter 2 of Drake [6]. �

The statement TC is not, however, provable from ZF−inf. We sketch a proof here
due to Mancini. (See Mancini and Zambella’s article [12] for more details.)

Theorem 5.5 ZF−inf ∪ {¬TC} is consistent.

Sketch of proof Consider the hereditarily finite sets (Vω,∈) and the set of ordinals
ω in Vω. Let

ω∗
= {{x ∪ {x}} ∈ Vω : x ∈ ω},

the set of singletons of nonzero elements of ω. Define F : Vω → Vω by

F(x) = {x ∪ {x}} and F({x ∪ {x}}) = x

for x ∈ ω and F(x) = x for x 6∈ ω ∪ ω∗. Thus, F is an involution, that is, a
permutation of Vω which is a disjoint product of 2-cycles. Now define the binary
relation ∈F by

∀x, y ∈ Vω (x ∈F y ⇔ x ∈ F(y)).
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It can be verified that (Vω,∈F ) � ZF−inf. In addition, (Vω,∈F ) � ¬TC. In particu-
lar,

(Vω,∈F ) � ¬∃u (u ⊇ ∅ ∧ Trans(u))
since any such set is necessarily infinite. �

Thus, one really needs to add the extra hypothesis TC for the ∈-induction argument
to work.

It seems that this result, or ones like it, were known before Mancini and Zam-
bella’s paper. Kunen [11], p. 149(29), attributes a result like this to Barwise though
this model fails to satisfy the power set axiom, it seems. And Baratella and Ferro [2],
p. 345, point out that the independence of transitive containment relative to other
axioms of finite set theory was proved in the context of the Alternative Set Theory
by Sochor. They also construct a related model (which they attribute to Kunen) in
which transitive containment fails, but one in which the axiom of foundation also
fails.

The following easy but important proposition shows that any inverse to the Ack-
ermann interpretation must use TC in some form, even for rather weak systems of
arithmetic.

Proposition 5.6 Let a : ZF−inf → PA be the Ackermann interpretation. Then
I10 ` TCa.

Proof For x ∈ M � I10, let y ∈ M be one less than the smallest power of 2 that
is bigger than x . (Such a y exists by 10 induction as there must be a greatest u such
that the10 formula ∃z 6 x 2u

= z holds.) If M � (u ∈ v ∧ v ∈ y)a then u < v < y
so the uth binary digit of y is 1. �

In other words, a : ZF−inf + TC → PA. If b : PA → ZF−inf is inverse to a then
we would have ZF−inf ` (TCa)b hence ZF−inf ` TC by Proposition 2.2, which is
impossible. Thus we must consider the theory ZF−inf∗ = ZF−inf + TC rather than
ZF−inf itself.

6 The Inverse Ackermann Interpretation

Equipped with ∈-induction, we obtain an inverse interpretation b : PA → ZF−inf∗.
The plan is to define a natural bijection p : V → On between the whole universe
and the ordinals. The required interpretation can then be obtained by composing this
map with the map o defined on On.

At first, it appears difficult to see how to use ∈-induction at all, since the required
inductive definition of p is p(x) =

∑
y∈x 2p(y) and this seems to need a separate

induction on the cardinality of x—just the sort of induction we don’t yet have and
are trying to justify. However, there is a way round this problem using ordinal sum-
mation.

Definition 6.1 Working in V � ZF−inf, let P(On) denote the class of sets of
ordinals, and let 6̂ : On × P(On) → On be the function defined recursively by

6̂(0, x) = 0

for all x ∈ P(On), and

6̂(c ∪ {c}, x) =

{
6̂(c, x), if c ∪ {c} 6∈ x ,
6̂(c, x)+ (c ∪ {c}), if c ∪ {c} ∈ x,
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for all c ∈ On and x ∈ P(On). Also, let 6 : P(On) → On be the function defined
by

∀x ⊆ On 6(x) = 6̂
( ⋃

x, x
)
.

Informally, this defines
6(x) =

∑
y∈x

y

for a set of ordinals x , where the summation on the right-hand side of the equation
refers to ordinal addition. Using induction on the ordinals, it can be proved that both
6̂ and 6 are class functions definable over ZF−inf. The following definition is the
place where TC comes in.

Definition 6.2 In V � ZF−inf∗, define p : V → On recursively by

p(x) = 6
(
{2p(y)

∈ On : y ∈ x}
)
.

As indicated, p is again a class function that can be defined by ∈-recursion on all sets
over ZF−inf∗. Informally, in ZF−inf∗ we have

p(x) =

∑
y∈x

2p(y).

This is precisely the bijection we are looking for.

Proposition 6.3 ZF−inf∗ proves that p is a bijective class function V → On.

Proof The injectivity part is proved by ∈-induction on all sets. The surjectivity part
is proved by ∈-induction on the ordinals. �

Definition 6.4 Define a mapping b of atomic sentences of arithmetic into set theory
by saying Dom(x)b is ‘Dom(x)’, (x = y)b is ‘x = y’, (x < y)b is ‘p(x) < p(y)’,
(x + y = z)b is ‘p(x) + p(y) = p(z)’, and (x · y = z)b is ‘p(x) × p(y) = p(z)’,
where the target relations and operations of <, +, and × are the usual operations on
the ordinals.

Theorem 6.5 b : PA → ZF−inf∗.

Proof This follows from Theorem 4.5 and Propositions 5.6 and 6.3. �

It remains to prove the following.

Theorem 6.6 The interpretations a : ZF−inf∗ → PA and b : PA → ZF−inf∗ are
inverse to each other.

Proof We must show that ab = 1PA and ba = 1ZF−inf∗ , that

PA ` ∀x̄ ((σ (x̄)b)a ↔ σ(x̄))

and
ZF−inf∗ ` ∀x̄ ((τ (x̄)a)b ↔ τ(x̄))

for all atomic formulas σ(x̄) of LA and τ(x̄) of L∈. The details are routine; we make
only a few comments on them here.

Note first that both interpretations preserve the logical symbols (they map do-
mains to domains and do not alter equality); thus we need only look at nonlogical
symbols.
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To see ab = 1PA, work in PA and write x <′ y for (x < y)(ab), 0′ for the <′-least
number, 1′ for the <′-least number not equal to 0′, x +

′ y for the unique z such that
(x + y = z)(ab), and x ·

′ y for the unique w such that (x · y = w)(ab). It can be
checked that 0′

= 0, 1′
= 1, and ∀x x + 1 = x +

′ 1′, and by an induction on y
this implies that ∀x, y x + y = x +

′ y. Since x < y ↔ ∃z y = x + z + 1 and
x <′ y ↔ ∃z x = y +

′ z +
′ 1′, it follows that ∀x, y (x < y ↔ x <′ y). Similarly,

x · (y + 1) = (x · y)+ x and x ·
′ (y +

′ 1′) = (x ·
′ y)+

′ x , so by induction on y we
can show that ∀x, y x · y = x ·

′ y, as required.
To see ba = 1ZF−inf∗ , work in ZF−inf∗ and write x ∈

′ y for (x ∈ y)(ba). Then by
∈-induction we may show ∀x ∀y (x ∈ y ↔ x ∈

′ y) and the result then follows. �

7 Fragments of Arithmetic and Set Theory

As with many results for models of Peano arithmetic, the results presented above
have hierarchical variations for subsystems of PA and ZF. It seems worthwhile to
briefly survey what one can say about this here. Our results along these lines are not
really new since they were essentially already worked out by Ressayre [14].

First, we fix a 10 formula for p = 2x which defines a partial-function (for-
mula (2) above), and for which the recursive definition (formula (1) above) and its
“downward” version,

∀x ∀p (p = 2x+1
→ ∃q (p = 2q ∧ q = 2x )) (3)

are all provable in I10. This latter sentence appears necessary and more than just
a convenience. But we cannot think of a natural example where the upward recur-
sion holds but the downward one fails. However, the additional assumption is quite
mild, for if a formula θ(x, y) for y = 2x satisfies (1) and (2) provably in I10, then
θ(x, y) ∧ ∀u<x ∃v<y θ(u, v) satisfies (1), (2), and (3) provably in I10, as the
reader may check.

With such a definition of exponentiation chosen, the domain of definition of the
exponentiation operation y 7→ 2y is an initial segment of the model of I10, neces-
sarily closed under successor and addition, but not in general closed under multipli-
cation. We can prove in I10 that for each x there is a power of two, 2y , that is greater
than x , and in fact there is a least such power of two. With a slight misuse of notation
we denote the least y such that 2y > x by log x .

It is fairly straightforward to see that I10 proves the Ackermann interpretation
of many set theory axioms including extensionality, empty set, sum set, foundation,
transitive closure, and the negation of the axiom of infinity.

Adding the further arithmetic axiom exp, ∀x ∃y y = 2x , stating the totality of the
function x 7→ 2x we may prove the Ackermann interpretation of the pair set axiom
and the power set axiom. Moreover, exp is necessary as well as sufficient for these:
to show I10 ` Paira

→ exp and I10 ` Powa
→ exp, take a number y and 2x ,

the smallest power of two greater than y. Then as 2x codes the set {x}, by pair set
or power set the set {{x}, {}} must also be coded, and this code can only be 22x

+ 1.
Thus 22x

exists and so therefore does 2y .
To study the remaining axioms for set theory, we introduce a hierarchy of for-

mulas related to Lévy’s but more convenient for weak systems where the power
set axiom may fail. Say a formula of the language of set theory is 1P

0 if it is
formed from atomic formulas by Boolean operations and bounded quantifiers of
the form Qx ∈ y . . . and Qx ⊆ y . . .. A formula is 6P

n (respectively, 5P
n ) if it
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is ∃x̄1 ∀x̄2 . . . Qx̄n θ (respectively, ∀x̄1 ∃x̄2 . . . Q∗ x̄n θ ) where θ is 1P
0 . With a

symbol for power set, the quantifier Qx ⊆ y . . . can be replaced by Qx ∈ P(y) . . .
and as the power set of a set x is 51-definable (in the sense of Lévy) this means that
the 6P

n / 5P
n hierarchy agrees with the Lévy hierarchy for n > 2 in the presence of

the power set axiom.
With these definitions in place, we can readily prove by induction that I10 proves

the Ackermann interpretation of the 1P
0 -separation axiom scheme, 1P

0 –Sep, and for
n > 1, I6n proves both 6P

n –Sepa and 5P
n –Sepa. Also, using the least number

principle we have that I10 proves 1P
0 –Inda, the Ackermann interpretation of the

1P
0 -epsilon induction axiom scheme

∀ā (∀y (∀x ∈ y θ(x, ā) → θ(y, ā)) → ∀y θ(y, ā))

for θ in 1P
0 , and, similarly, I6n proves 6P

n –Inda and 5P
n –Inda.

The collection and replacement axiom schemes are a little more delicate. Let
6P

n –Coll be the scheme

∀a, c̄ (∀x ∈ a ∃y θ(x, y, c̄) → ∃b ∀x ∈ a ∃y ∈ b θ(x, y, c̄))

for θ in 6P
n , and so on. To justify the Ackermann interpretation of axioms like this,

we need fast growing functions. For example, taking a ⊇ {l − 1} where l = log a
and letting θ(x, y) be the10 formula y = {x} we trivially have (∀x ∈ a ∃y θ(x, y))a

in all models of I10, but the code for any b with (∃b ∀x ∈ a ∃y ∈ b θ(x, y))a must
be at least as large as 22l−1

≈ 2a so exponentiation is required. On the other hand, it
is straightforward to see that (6P

n –Coll)a is provable in I10 + exp +B6n . Similar
remarks apply to the replacement axioms, which we might as well take here to be

∀a, c̄ (∀x ∈ a ∃y θ(x, y, c̄) → ∃ f ∀x ∈ a θ(x, f (x), c̄)).

Then (6P
n –Rep)a is provable in I6n , for each n > 1, but for n = 0 the best result

seems to be I10 + exp +B61 ` (1P
0 –Rep)a.

The inverse b to the Ackermann interpretation is a somewhat more complicated
affair, and we make no effort here to even attempt to say what happens here in the
absence of the axioms corresponding to exponentiation, namely, pair set and power
set. We shall simply state our results, which are based on a straightforward but rather
tedious analysis of the proofs given in Sections 4, 5, and 6, and leave the verification
to the reader. (The presentation of Kripke-Platek set theory given in Chapter 1 of
Barwise [3] may be found helpful.) It turns out that for the results that follow, the
usual Lévy hierarchy (where bounded quantifiers take the form Qx ∈ y . . . only)
gives the sharpest result. We denote the levels in this hierarchy by 1L

n , 6L
n , and 5L

n .
The first stage is to define the ordinals, in particular, the arithmetic structure on

the ordinals, and to define the bijection p : V → On between the universe and the
ordinals. We take as our base theory the set theory consisting of the axioms of
extensionality, empty set, sum set, and the negation of the axiom of infinity, and the
axiom schemes of1L

0 -separation,1L
0 -collection, and both6L

1 -epsilon induction and
5L

1 -epsilon induction. With this base theory, the class of ordinals is defined (as the
transitive sets linearly ordered by ∈) by a 1L

0 formula, and the arithmetic operations
on the ordinals including +, ×, exp are all functions with 1L

1 graph. Moreover, the
scheme of 6L

1 -induction proves the axiom of foundation and the axiom of transitive
containment, and hence we may define the bijection p : V → On, also with 1L

1
graph, and that this map is inverse to the Ackermann interpretation of sets from the
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ordinals. The base axioms for arithmetic, that is, the axioms for nonnegative parts of
discretely ordered rings, can then be shown to hold in the ordinals.

To prove the induction scheme we need somewhat stronger axioms showing that
the ordinals satisfy I6n , and so on. Perhaps the simplest option is to take stronger
instances of the separation scheme. Given a 6n-definable subclass A of the ordinals
containing 0 and closed under successor, and given n ∈ On, let a be the set of
ordinals in A less than n, by 6L

n -separation. Then by ordinal induction a = n so, as
n was arbitrary, A = On.

Putting all this together, we have the following.

Theorem 7.1 Let n > 1 and let 6L
n –Sep denote the set theory consisting of 6L

n -
separation together with base theory Ext, Emp, Sum, ¬Inf, 1L

0 –Coll, 6L
1 –Ind, and

5L
1 –Ind. Then the Ackermann interpretation a and its inverse b are defined for I6n

and 6L
n –Sep, with

a : 6L
n –Sep → I6n

and
b : I6n → 6L

n –Sep

and these are inverse to each other. �

Thus, the Ackermann interpretation behaves well for the “traditional” subtheories
I6n of PA. For weaker theories the pair set and power set axioms behave like the
axiom exp expressing the totality of exponentiation.

To close this section, we should remark that for systems of arithmetic without exp,
there are other choices of interpretations of set theory. The Ackermann interpreta-
tion is of course valid, and in some sense represents the smallest collection of sets or
smallest model of set theory one might take, but we could transform a model M of
I10 to a different model of set theory by taking as sets all bounded10-definable sub-
sets of M , and identifying an a ∈ M with the set of x ∈ M such that M � (x ∈ a)a.
In the (apparent) absence of a formalized notion of truth for 10 formulas in I10
(this itself an open problem) this does not appear to be an interpretation in the formal
sense used above. It is essentially the approach taken by Diaconescu and Kirby [5]
and, as they point out, counting principles and pigeonhole principles become highly
relevant. (It is still not known if I10 alone can prove the pigeonhole principle for
10 functions.) Of course, if M � exp this interpretation and the Ackermann one
coincide since

I10 + exp ` ∀a ∃y ∀x<a ((x ∈ y)a ↔ θ(x))

for each 10 formula θ(x), possibly with further parameters.

8 Conclusions for Finite Set Theories and Arithmetic

Perhaps the first and most obvious conclusion is that statements concerning the
equivalence of “Peano Arithmetic” and “ZF with the axiom of infinity negated” re-
quire some care to formulate and prove. It is certainly true that PA and “ZF with the
axiom of infinity negated” are equiconsistent for just about any sensible axiomati-
zation of the latter, in the sense that interpretations exist in both directions. Proba-
bly this is the “folklore result” that most people remember. But for the finer result
with interpretations inverse to each other, careful axiomatization of the set theory



Interpretations of Arithmetic and Set Theory 507

is required. A category theoretic framework for interpretations is useful to direct
attention to these refinements.

The reader will have noticed that the axiom of choice (AC) has been completely
absent from the discussion here. It wasn’t necessary at all for the inverse Ackermann
interpretation, though it comes for free with the Ackermann interpretation itself:
a : ZF−inf∗ + AC → PA. This shows ZF−inf∗ ` AC. In fact, AC can be proved in
much less than this, as Baratella and Ferro [2] point out.

The universe of hereditarily finite sets has been an important source of analo-
gies, inspiration, and axioms for set theory with infinite sets from the time of Cantor
onward. In the case of the work here we have learned that models of ZF−inf∗ are
categorical with respect to their ordinals in the sense that the model of set theory can
be reconstructed from the ordinals as a model of arithmetic. The analogous case for
models of full ZF is a result due to Friedman [7] that characterizes ZF + V =L as the
first-order theory extending ZF in which any two models with the same ordinals are
isomorphic. (See Friedman’s paper for a precise statement of this result.)

Results like this provide evidence that models of ZF in which V =L holds are
actually the “uninteresting” models of ZF, and a similar remark holds for models of
finite set theory too. Arguably, the uninteresting models of ZF−inf are the ones in
which the axiom of transitive containment holds, and the interesting ones are those
for which TC fails. It would be nice to know more about such models, but very few
have appeared in the literature. Note that every model M of ZF−inf has a transitive
submodel V ⊆ M , V � ZF−inf + TC, with the same ordinals, defined to be the
image of the function f : On → V given by the recursion on ordinals

f (x) = { f (y) : On � (y ∈ x)a}.

One way to think about the submodel V ⊆ M is that this is the collection of sets in
M with a rank; that is, they are the sets in the cumulative hierarchy. (Hence the name
V we have used for this submodel.)

Whether the theory of models with M 6= V will have any consequence for arith-
metic itself is not clear, as the ordinals in models of ZF−inf + ¬TC are, of course,
just the usual models of PA.

Finite set theories in which the axiom of power set fails are an altogether more
difficult proposition—apparently for some very good reasons possibly related to the
coding problems and complexity theory issues one gets with models of arithmetic
without exponentiation.

It is not quite clear to us exactly how this might arise from the point of view of
the Ackermann interpretation considered here. However, one view of the inverse
Ackermann interpretation in a model M of some fragment of finite set theory is that
it sets out to define suitable arithmetic structure for + and · on the whole universe
of sets, in a way that is compatible with the Ackermann interpretation that maps
ordinals to sets in the cumulative hierarchy V ⊆ M . (V will in general be a subclass
of the class of all sets because the transitive containment axiom may fail in M .) But it
is clear that if one did have a general process for achieving this, or even for defining
+ and · on a significant part of the whole universe, this arithmetic model would
have to be an end-extension of the image of the ordinals given by the Ackermann
interpretation.
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Such a general method for producing end-extensions of models of arithmetic
might be very significant for models of I10 + ¬ exp. There are several open ques-
tions concerning when models of I10 + ¬ exp have end-extensions [17]. More sig-
nificantly, success in the naïve attempt at producing an inverse Ackermann interpre-
tation would give end-extensions M ⊆e K of M � I10 + ¬ exp where each element
x ∈ M has an exponential y = 2x

∈ K . Such a construction might be applied in
the case when the model of finite set theory is of the type studied by Diaconescu and
Kirby [5], that is formed from 10-definable bounded subsets. This would in turn
have consequences for the 51-theory of the base model M . In particular, this would
have consequences for the51-theory provable in I10 with a single application of ex-
ponentiation. This51-theory contains some statements not known in I10 itself such
as the 10 pigeonhole principle, and also contains consistency statements such as the
tableau consistency of Q, known not to be provable in I10 alone. (See, for example,
papers by Pudlák [13] and Paris and Wilkie [16] for much more information.)

Finally, leaving arithmetic aside, the Axiom of Choice becomes interesting for
systems of finite set theory that do not have the power set axiom. Apparently power
set is required for the equivalence of the well-ordering principle (WO) and AC,
though WO → AC can be proved by the usual proof without power set. How-
ever, we were unable to find a model of AC + ¬WO. Using the notation of Baratella
and Ferro introduced above, we can ask the following.

Question 8.1 Does EST + ¬Inf + Found ` AC?

Note that, as Baratella and Ferro point out, EST + ¬Inf + Pow ` WO by a straight-
forward argument mapping sets bijectively onto ordinals. They also provide a model
of EST + ¬Inf + ¬WO.

Note

1. The axiom scheme of separation is redundant in the presence of replacement.
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