
Notre Dame Journal of Formal Logic
Volume 48, Number 4, 2007

A Sound and Complete Proof Theory for
Propositional Logical Contingencies

Charles Morgan, Alexander Hertel, and Philipp Hertel

Abstract There are simple, purely syntactic axiomatic proof systems for both
the logical truths and the logical falsehoods of propositional logic. However,
to date no such system has been developed for the logical contingencies, that is,
formulas that are both satisfiable and falsifiable. This paper formalizes the purely
syntactic axiomatic proof systems for the logical contingencies and proves its
soundness as well as completeness.

1 Motivation

Truth-preserving inference rules are useful in science and mathematics for drawing
legitimate conclusions from hypotheses. On the other hand, falsehood-preserving in-
ference rules allow one to derive hypotheses from observations so that the hypotheses
logically entail the observations. In this sense, falsehood-preserving rules constitute
a logic of discovery [3]. However, if the system of falsehood preserving rules is
complete, then among the hypotheses generated will be all logical falsehoods.

By contrast, it is the goal of science to produce hypotheses that are neither logi-
cally true nor logically false, but to produce ones that are logically contingent, that is,
formulas which are both satisfiable and falsifiable. In science we want our theories
to be logically contingent formulas that account for our observations. We may well
ask: Is there a “logic” which captures these formulas? [2]

As shown in the Venn diagram below in Figure 1, the logical contingencies (LC)
constitute the intersection between satisfiable and falsifiable formulas. The noncon-
tingent formulas are either logically true, (LT), meaning that they are true under all
truth assignments or logically false, (LF), meaning that they are false under all truth
assignments.

Received June 26, 2006; accepted April 9, 2007; printed October 22, 2007
2000 Mathematics Subject Classification: Primary, 03B05
Keywords: logical contingencies, logically contingent formulas, classical propositional

logic, purely syntactic proof systems
c©2007 University of Notre Dame

521

http://www.nd.edu/~ndjfl
http://www.nd.edu

522 Charles Morgan, Alexander Hertel, and Philipp Hertel

"!

"!

LT LC LF

Satisfiable formulas Falsifiable formulas

Figure 1 Logical Contingencies

To show that a formula is not LT (i.e., falsifiable), one need simply provide a
single row on the truth table which assigns it the value False. To show that a formula
is not LF (i.e., satisfiable), one only needs to provide a single row on the truth table
which assigns it the value True. However, to show that a formula is not LC, one
must provide the entire truth table. In contrast, showing that a formula is LT or LF
requires the entire table, whereas showing one to be LC requires two rows; one row
is not sufficient. These observations suggest that in some way the LC formulas are
different from the LT or LF formulas. The sets LT and LF are both coNP -complete,
whereas the set of satisfiable formulas, the set of falsifiable formulas, LC, are each
NP -complete. LC is interesting because it is an NP -complete set which does not
intersect LT or LF. In addition, there are several other differences between LC and
LT/LF. For instance, LC is not closed under uniform substitutions and is closed under
taking negations, whereas the others are not.

The set of satsifiable formulas and the set of falsifiable formulas are each also
NP -complete. Clearly, the set of satisfiable formulas contains LT and the set of
falsifiable formulas contains LF. A major open problem of complexity theory has
been to compare NP and coNP . Emphasis has been placed on studying the sets of
satsifiable and falsifiable formulas. But since each contains a very natural coNP -
complete set, LC might be of greater interest because its intersection with LT and LF
is empty.

Both LT as well as LF have simple, syntactically-based axiomatic proof systems
that make no use of formal semantics. However, to date no such system seems to
have been developed for the logical contingencies. It is possible to formulate a sim-
ple proof system for LC that does make use of formal semantics. For example, a
proof can just be a pair of truth assignments, one that satisfies the formula and one
that falsifies it. In this paper we develop a sound and complete proof theory for log-
ical contingencies which is purely syntactic. We will call this system LC. Further
motivation for this research is described in Section 5, “Future Work.”

2 Proof System

Definition 2.1 Define R(A, B, C) as the set of formulas which result from replac-
ing as many or as few occurrences of A by B in C as we like. The definition is a
simple recursion defined on the complexity of C :

I. If C is A, then R(A, B, C) = {C, B}.
II. If C is not the same as A, then

(a) if C is a sentence letter, then R(A, B, C) = {C};
(b) if C is of the form ¬D, then R(A, B, ¬D) =

{¬D′
: D′

∈ R(A, B, D)};
(c) if C is of the form D ∧ E , then R(A, B, D ∧ E) =

{D′
∧ E ′

: D′
∈ R(A, B, D) and E ′

∈ R(A, B, E)};
(d) if C is of the form D ∨ E , then R(A, B, D ∨ E) =

Propositional Logical Contingencies 523

{D′
∨ E ′

: D′
∈ R(A, B, D) and E ′

∈ R(A, B, E)}.

The system LC LC is formulated as a set of 18 rules. Rules 1–15 transform
propositional formulas into any equivalent form [1] using replacement and should
be familiar to the reader. Rules 16–18 are what set this system apart and make it
specific to logical contingencies. They can be thought of as implication rules, and
apart from Rule 16 which is just an infinite set of axioms, they produce new logical
contingencies from existing ones.

Double negation rule

Rule 1 If E ′
∈ R(A, ¬¬A, E) then ` E if and only if ` E ′.

Commutative rules

Rule 2 If E ′
∈ R(A ∧ B, B ∧ A, E) then ` E if and only if ` E ′.

Rule 3 If E ′
∈ R(A ∨ B, B ∨ A, E) then ` E if and only if ` E ′.

Associative rules

Rule 4 If E ′
∈ R((A ∧ B) ∧ C, A ∧ (B ∧ C), E) then ` E if and only if ` E ′.

Rule 5 If E ′
∈ R((A ∨ B) ∨ C, A ∨ (B ∨ C), E) then ` E if and only if ` E ′.

DeMorgan’s laws

Rule 6 If E ′
∈ R(¬(A ∧ B), ¬A ∨ ¬B, E) then ` E if and only if ` E ′.

Rule 7 If E ′
∈ R(¬(A ∨ B), ¬A ∧ ¬B, E) then ` E if and only if ` E ′.

Distributive rules

Rule 8 If E ′
∈ R(A ∧ (B ∨ C), (A ∧ B) ∨ (A ∧ C), E) then ` E if and only if

` E ′.

Rule 9 If E ′
∈ R(A ∨ (B ∧ C), (A ∨ B) ∧ (A ∨ C), E) then ` E if and only if

` E ′.

Idempotent rules

Rule 10 If E ′
∈ R(A, A ∧ A, E) then ` E if and only if ` E ′.

Rule 11 If E ′
∈ R(A, A ∨ A, E) then ` E if and only if ` E ′.

Identity rules

Rule 12 If E ′
∈ R(A, A ∧ (B ∨ ¬B), E) then ` E if and only if ` E ′.

Rule 13 If E ′
∈ R(A, A ∨ (B ∧ ¬B), E) then ` E if and only if ` E ′.

Domination rules

Rule 14 If E ′
∈ R(A ∧ ¬A, B ∧ (A ∧ ¬A), E) then ` E if and only if ` E ′.

Rule 15 If E ′
∈ R(A ∨ ¬A, B ∨ (A ∨ ¬A), E) then ` E if and only if ` E ′.

524 Charles Morgan, Alexander Hertel, and Philipp Hertel

Introduction & elimination rules

Rule 16 If p is a sentence letter, then ` p.

Rule 17 If ` A, then ` ¬A

Rule 18 If ` A and p is a sentence letter that does not occur in A, then
` (A ∧ p) ∨ (B ∧ ¬p) and ` (A ∧ ¬p) ∨ (B ∧ p), where B is any well-formed
formula.

3 Proof of Soundness

Theorem 3.1 LC is sound.

Proof In order to prove the soundness of LC, we will show that each of its rules
preserves logical contingency.

(1) Rules 1–15 are standard logical equivalences and, therefore, preserve logical
contingency.

(2) Rule 16 is sound because, clearly, every sentence letter is logically contingent.

(3) Rule 17 is sound because if A is a logical contingency, then ¬A is also a logical
contingency.

(4) Rule 18 is sound: Let A be a logical contingency and p be a sentence letter that
does not occur in A. Then there exists a truth assignment that assigns True to A, and
there exists a truth assignment that assigns False to A. Let τ be any arbitrary truth
assignment which sets A to True. Then we can extend τ to set p to True, which sets
(A∧ p)∨(B ∧¬p) to True, where B is any well-formed formula. On the other hand,
let τ be any arbitrary truth assignment which sets A to False. Then we can extend τ
to set p to True, which sets (A ∧ p) ∨ (B ∧ ¬p) to False. Therefore, in either case,
τ can be extended to retain the same value that it assigned to A. Since τ is arbitrary,
this holds for all truth assignments. Therefore, since A is logically contingent so is
(A ∧ p) ∨ (B ∧ ¬p). An analogous argument applies to ` (A ∧ ¬p) ∨ (B ∧ p), so
both applications of Rule 18 result in logical contingencies, as required. Since every
rule of LC preserves logical contingency, the system is sound, as required. �

4 Proof of Completeness

We begin by providing some definitions and proving three lemmas which will aid us
in our proof of completeness.

Definition 4.1 A term is a conjunction of distinct sentence letters or their negations
in which all parentheses are associated to the left. We say that a term is an even term
if it contains an even number of unnegated sentence letters and we say that a term is
an odd term if it contains an odd number of unnegated sentence letters. It is possible
for a term to contain both positive and negative occurrences of the same sentence
letters.

Definition 4.2 A propositional formula A is in disjunctive normal form (DNF) if
A is a disjunction of some number of terms in which all parentheses are associated
to the left.

Propositional Logical Contingencies 525

Definition 4.3 A propositional formula A over n sentence letters is in perfect DNF
if A is in DNF and each of its terms contains exactly one occurrence of each of the n
sentence letters.

Note that all elementary truth functions over n sentence letters can be expressed as
perfect DNF formulas, where each term corresponds to one of the rows on the truth
table for which the function is True. For each sentence letter p that is made True in
the row, the term will contain p, and for each sentence letter q that is made False
in that row, the term will contain ¬q . For example, the even function on n sentence
letters is encoded by the perfect DNF formula which consists of the 2n−1 unique
terms of n sentence letters that each contain an even number of unnegated sentence
letters. The following perfect DNF formula represents the even function over the
three sentence letters p, q , and r :(((

((p ∧ q) ∧ ¬r) ∨ ((p ∧ ¬q) ∧ r)
)
∨ ((¬p ∧ q) ∧ r)

)
∨ ((¬p ∧ ¬q) ∧ ¬r)

)
.

When we describe a perfect DNF formula as encoding an elementary truth function
on n sentence letters, there is an assumed ordering underlying the letters. That is, the
order of the sentence letters in each term is assumed to be the same.

Definition 4.4 Let A be a logical contingency in perfect DNF; then B is a subcon-
tingency of A if and only if B is a logical contingency formed by removing some
sentence letter p (and its negation) from every term in A and removing any resulting
duplicate terms.

Lemma 4.5 If A is a logically contingent elementary truth function over n ≥ 2
sentence letters expressed in perfect DNF and A contains no subcontingency, then A
must have at least 2n−1 terms.

Proof Let A be any arbitrary logically contingent elementary truth function over
n ≥ 2 sentence letters expressed in perfect DNF such that A contains no subcon-
tingency. Suppose for the sake of contradiction that A has fewer than 2n−1 terms.
Removing every occurrence of some sentence letter as well as its negation from A
certainly cannot increase the number of terms that A contains. The perfect DNF for-
mula representing the tautology on n −1 sentence letters has exactly 2n−1 terms, one
for every row on the truth table. It is therefore impossible to turn A into a tautology
by removing every occurrence of some sentence letter as well as its negation. Since
the resulting formula is not the tautology on n − 1 sentence letters or the logically
false empty perfect DNF formula (since n ≥ 2), it is a logical contingency, which
means that A contained a subcontingency. This is a contradiction. Therefore, A
must have at least 2n−1 terms. Since A was arbitrary, we can conclude that every
logically contingent elementary truth function over n ≥ 2 sentence letters with no
subcontingency must have at least 2n−1 terms, as required. �

Lemma 4.6 If S is a set containing 2n−1 distinct n-bit binary strings such that
at least one contains an even number of 1s (i.e., has even parity) and at least one
contains an odd number of 1s (i.e., has odd parity), then there are at least two strings
in S that differ by exactly one bit.

526 Charles Morgan, Alexander Hertel, and Philipp Hertel

Proof (By induction on n)

Basis For our basis, n = 2, so |S| = 2. The only possibilities are S = {00, 01},
S = {00, 10}, S = {11, 01}, and S = {11, 10}, all of which contain strings which
differ by exactly one bit, so our statement holds for the base case.

Induction hypothesis Suppose that our statement holds for n − 1; that is, if
|S| = 2n−2 and S contains at least one string of each parity, then at least two of the
strings in S differ by exactly one bit.

Induction step We want to show that our statement holds for n, so |S| = 2n−1, and
S contains at least one string of each parity. Split S into two sets: take all strings in
S starting with a ‘0’, delete this first bit, and put them into set S0. Similarly, take all
strings in S starting with a ‘1’, delete this first bit, and put them into set S1. Since
|S0| + |S1| = |S|, we know that at least one of |S0| and |S1| contains at least 2n−2

strings. Let us call this set Si . Either Si contains at least one string of each parity or
it does not. If it does, then by our induction hypothesis, Si must contain at least two
strings which differ by exactly one bit, so when we add the deleted bits back onto
the front of each string in Si , they still differ by exactly one bit, and these strings
came from S, so S contains two strings which differ by exactly one bit, as required.
On the other hand, suppose that all of the strings in Si have the same parity. Since
there are only 2n−2 strings of length n − 1 of each parity, we can conclude that
|Si | = |S0| = |S1| = 2n−2. There are two subcases which we must consider: If all
of the strings in S0 and S1 have the same parity, then S0 = S1, so when we replace
the first bits that we deleted, we will be left with at least two strings which differ by
exactly one bit, and our statement holds for n as required. If the strings in S0 and S1
have opposite parities, then when we replace the first bits, we will end up with all
resulting 2n−1 strings having the same parity. However, there are only 2n−1 length-n
strings of each parity, implying that S does not contain strings of each parity, which
violates our definition of S, so we need not consider this case. Therefore, in all
relevant cases, our statement holds for n.

Therefore, by induction, all sets containing 2n−1 distinct n-bit binary strings
where at least one string of each parity is present contain at least two strings which
differ by exactly one bit, as required. �

Lemma 4.7 If A is a logically contingent elementary truth function over n ≥ 2
sentence letters expressed in perfect DNF such that A has no subcontingency and A
has exactly 2n−1 terms, then A must represent the even function or the odd function
over n sentence letters.

Proof Let A be any arbitrary logically contingent elementary truth function over
n ≥ 2 sentence letters expressed in perfect disjunctive normal form such that A con-
tains no subcontingency and A has exactly 2n−1 terms. For the sake of contradiction,
suppose that A neither represents the even function nor the odd function over n sen-
tence letters. Because there are only 2n−1 even terms and 2n−1 odd terms over n
sentence letters, A must contain at least one even term, and at least one odd term.
Each term has length n. Therefore, each term t can be mapped to an n-bit string s
such that the i th bit of s is 1 if the i th sentence letter is unnegated, and the i th bit of s
is 0 if the i th sentence letter is negated. A therefore encodes a set S of exactly 2n−1

n-bit strings. We may therefore apply Lemma 4.6, which allows us to conclude that

Propositional Logical Contingencies 527

there are at least two strings in S that differ by exactly one bit, and therefore also con-
clude that there are at least two terms t1 and t2 in A that differ by exactly one literal,
call it p. Removing p from A therefore results in a formula which still has exactly
2n−1 terms, but t1 and t2 are now identical. Removing one of these duplicate terms
results in an equivalent perfect DNF formula, call it A′, with at most 2n−1

− 1 terms.
The tautology on n − 1 sentence letters is encoded by a perfect DNF formula which
consists of 2n−1 distinct terms. A′ therefore cannot be a tautology. Since n ≥ 2, we
know that A′ also cannot be the logically false empty disjunction. Therefore, A′ is
logically contingent. This means that A has a subcontingency, namely, A′, which is
a contradiction. Therefore, A must represent the even function or the odd function
over n sentence letters, as required. �

Theorem 4.8 LC is complete.

Proof We will now show that LC can produce every logically contingent proposi-
tional formula and thereby prove the completeness of LC. Given some propositional
formula A, Rules 1 through 15 can transform A into any equivalent propositional for-
mula [1]. To prove completeness, it therefore suffices to show that for all n, LC can
construct all 22n

− 2 logically contingent elementary truth functions over n sentence
letters in perfect DNF. We do this by induction on the number n of sentence letters
in the formula.

Basis (n = 1) Let p be any arbitrary sentence letter. The only DNF formulas
representing logically contingent truth functions involving only the sentence letter
p are p and ¬p. LC can produce p through the use of Rule 16. LC can produce
¬p from p through the use of Rule 17. LC can therefore produce every logically
contingent truth function involving only the sentence letter p. Since p is arbitrary,
LC can produce perfect DNF formulas representing all logically contingent truth
functions involving a single sentence letter. As stated above, we can then use Rules 1
through 15 to produce any well-formed formula on one sentence letter.

Induction Hypothesis Assume that LC can produce every logically contingent
propositional formula on n − 1 sentence letters.

Induction step Let A be any logically contingent elementary truth function over n
sentence letters expressed in perfect DNF. Either A has a subcontingency or A does
not.

Case 1 Suppose A has a subcontingency B. Let p be a sentence letter which can
be removed from A to form the subcontingency. We now have three cases. Either p
occurs in A but ¬p does not, or ¬p occurs in A but p does not, or both p and ¬p
occur in A. In all three cases, we shall show how to derive A by starting with A and
applying the rules of LC in reverse until we reach a formula which is derivable by
the induction hypothesis.

Cases 1a and 1b Consider the case when p occurs in A but ¬p does not. In this
case, every term of A contains p, so working backward, we can use the commuta-
tive, associative, and distributive rules to factor the p out of A to create the formula
B ∧ p. Again working backward, we can use Rule 13 to form (B ∧ p) ∨ (C ∧ ¬C),
where C is any formula. We can then use Rule 14 and commutativity to produce
(B ∧ p) ∨ ((C ∧ ¬C) ∧ ¬p). We can then apply Rule 18 which leaves us with B,
a logical contingency over n − 1 sentence letters. By the induction hypothesis, we

528 Charles Morgan, Alexander Hertel, and Philipp Hertel

know that LC can produce B. The same argument holds for ¬p. In either case,
LC can be used to derive A by first deriving B and then performing these steps in
reverse.

Case 1c Consider the case when both p and ¬p occur in A. In this case we can
work in reverse and use the commutative and associative rules to rearrange all of
the terms of A so that the terms containing p are next to each other and the terms
containing ¬p are next to each other. We can then use the distributive rules to factor
each out of A to form the formula (C ∧ p) ∨ (D ∧ ¬p) where the subcontingency B
is C ∨ D. In this case, C and D must both be nonempty because we know that both p
and ¬p occur in A. C must also be a logical contingency: it is nonempty so it cannot
be logically false, and if it were logically true then C ∨ D would also be logically
true. By the induction hypothesis LC can produce C , so then we can apply Rule 18
to produce (C ∧ p) ∨ (D ∧ ¬p), which can then be converted to its equivalent form
A.

Case 2 Suppose, on the other hand, that A has no subcontingency. Then by
Lemma 4.5, either A has 2n−1 terms or A has more than 2n−1 terms.

Case 2a Consider the case in which A has more than 2n−1 terms. Since A repre-
sents a logically contingent elementary truth function f expressed in perfect DNF,
the terms of A represent the rows of the truth table for which f is true. Let B be
the perfect DNF formula which represents the rows of the truth table for which f is
false. Then, clearly, A is logically equivalent to ¬B, and B consists of all the terms
over n sentence letters which do not appear in A. Since A has more than 2n−1 terms
and there are a total of only 2n terms over n sentence letters, B must have fewer
than 2n−1 terms. By Lemma 4.5, B must therefore have a subcontingency. LC can
therefore construct B as described in Case 1. We can then apply Rule 17 to form ¬B
from B. Rules 1 through 15 then allow us to convert ¬B to its equivalent form A.
LC can therefore produce A.

Case 2b Consider the case in which A has exactly 2n−1 terms. In this case Lemma
4.7 states that A must either represent the even function or the odd function over n
sentence letters. Suppose A represents the odd function over n sentence letters. Let
p be an unused sentence letter. In order to build the perfect DNF formula represent-
ing the odd function on n sentence letters without using LC, we would group all
the even terms from the perfect DNF formula representing the tautology on n − 1
sentence letters and add p to each, and we would group all of the odd terms from the
perfect DNF formula and add ¬p to each. The same result can be achieved using
only the rules of LC without the use of any tautology as follows. By our induction
hypothesis, LC can produce the perfect DNF formula representing the even function
on n − 1 sentence letters, call it E . Consider E ′, the result of negating every oc-
currence of some sentence letter in E . Clearly, E ′ (once any double negations have
been removed by Rule 1) is the perfect DNF formula representing the odd function
on n − 1 sentence letters. Therefore, E ∨ E ′ is the tautology on n − 1 sentence
letters and (E ∧ p) ∨ (E ′

∧ ¬p) is equivalent to A as argued above. The formula
(E ∧ p)∨ (E ′

∧¬p) can then be converted to A using the commutative, distributive,
and associative rules. As we have already noted, LC can produce E . We can there-
fore apply Rule 18 to E to produce (E ∧ p)∨(E ′

∧¬p) from E . The same argument
allows us to produce the perfect DNF formula representing the even function on n

Propositional Logical Contingencies 529

sentence letters from the perfect DNF formula representing the odd function on n−1
sentence letters, which is also logically contingent. Therefore, in either subcase of
Case 2, LC can produce A.

As shown above, LC can produce A in all cases. Since A represents an arbitrary
logically contingent elementary truth function over n sentence letters, LC can pro-
duce all logically contingent elementary truth functions over n sentence letters. We
can apply Rules 1 through 15 to any of these to produce any propositional formula
on n sentence letters, as required. �

5 Future Work

The system LC is hopefully just the first step to an interesting avenue of research
into syntactically-based axiomatic proof systems for logical contingencies. Just as
there are simple, purely syntactic axiomatic proof systems for the logical truths and
logical falsehoods in the propositional calculus, so are there simple, purely syntactic
axiomatic proof systems for the logical truths of first-order predicate calculus. This
shows that the logical truths of first-order logic are semi-decidable. Likewise, there
are simple, purely syntactic axiomatic proof systems for the logical falsehoods of
first-order predicate calculus, similarly showing that they are semi-decidable. How-
ever, since first-order predicate calculus is not decidable [5], this means that the class
of first-order logical contingencies is not even semi-decidable. That is, there can be
no proof system for the logical contingencies of first-order logic.

The first-order logical contingencies, therefore, appear to be radically different
from the logical truths and the logical falsehoods [4]. In addition to its intrinsic
interest, at least part of the reason for developing a proof system for the propositional
contingencies is to see to what extent such a system may be extended by adding
various quantifier rules. Clearly, it will not be possible to formulate strong quantifier
rules such as existential quantifier introduction or existential quantifier elimination,
but it may be possible to formulate weaker quantifier rules. The hope is that we
will be able to obtain a tighter characterization of an interesting class of undecidable
formulas.

References

[1] Gindikin, S. G., Algebraic Logic, Problem Books in Mathematics. Springer-Verlag,
New York, 1985. Translated from the Russian by R. H. Silverman. Zbl 0591.94031.
MR 808965. 523, 527

[2] Morgan, C. G., “Hypothesis generation by machine,” Artificial Intelligence, vol. 2 (1971),
pp. 179–87. Zbl 0227.68045. MR 0311163. 521

[3] Morgan, C. G., “Sentential calculus for logical falsehoods,” Notre Dame Journal of
Formal Logic, vol. 14 (1973), pp. 347–53. Zbl 0198.01301. MR 0319696. 521

[4] Morgan, C. G., “Truth, falsehood, and contingency in first-order predicate calculus,”
Notre Dame Journal of Formal Logic, vol. 14 (1973), pp. 536–42. Zbl 0265.02007.
MR 0329855. 529

http://www.emis.de/cgi-bin/MATH-item?0591.94031
http://www.ams.org/mathscinet-getitem?mr=808965
http://www.emis.de/cgi-bin/MATH-item?0227.68045
http://www.ams.org/mathscinet-getitem?mr=0311163
http://www.emis.de/cgi-bin/MATH-item?0198.01301
http://www.ams.org/mathscinet-getitem?mr=0319696
http://www.emis.de/cgi-bin/MATH-item?0265.02007
http://www.ams.org/mathscinet-getitem?mr=0329855

530 Charles Morgan, Alexander Hertel, and Philipp Hertel

[5] Turing, A. M., “On computable numbers, with an application to the Entscheidungsprob-
lem,” Proceedings of the London Mathematical Society, Second Series, vol. 42 (1936),
pp. 230–65. Correction in vol. 43 (1937), pp. 544–46. Zbl 0016.09701 Zbl 0018.19304
Zbl 62.1059.03 Zbl 63.0823.02. 529

Acknowledgments

We would like to thank the anonymous reviewer for his/her valuable remarks and sugges-
tions. We would also like to thank Alasdair Urquhart for his much-appreciated input. The
first author’s contribution to this research was supported by SSHRC and the remaining au-
thors were supported by NSERC and the University of Toronto Department of Computer
Science.

Philosophy Department
University of Victoria
Victoria BC
CANADA
charlesgmorgan@yahoo.com

Department of Computer Science
University of Toronto
Toronto ON
CANADA
ahertel@cs.toronto.edu

Department of Computer Science
University of Toronto
Toronto ON
CANADA
philipp@cs.toronto.edu

http://www.emis.de/cgi-bin/MATH-item?0016.09701
http://www.emis.de/cgi-bin/MATH-item?0018.19304
http://www.emis.de/cgi-bin/MATH-item?62.1059.03
http://www.emis.de/cgi-bin/MATH-item?63.0823.02
mailto:charlesgmorgan@yahoo.com
mailto:ahertel@cs.toronto.edu
mailto:philipp@cs.toronto.edu

	1. Motivation
	2. Proof System
	The system LC
	Double negation rule
	Commutative rules
	Associative rules
	DeMorgan's laws
	Distributive rules
	Idempotent rules
	Identity rules
	Domination rules
	Introduction & elimination rules

	3. Proof of Soundness
	4. Proof of Completeness
	5. Future Work
	References
	Acknowledgments

