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Universality for Orders and Graphs
Which Omit Large Substructures

Katherine Thompson

Abstract This paper will examine universality spectra for relational theories
which cannot be described in first-order logic. We will give a method using
functors to show that two types of structures have the same universality spectrum.
A combination of methods will be used to show universality results for certain
ordered structures and graphs. In some cases, a universal spectrum under GCH
will be obtained. Since the theories are not first-order, the classic model theory
result under GCH does not hold.

1 Introduction

This paper gives universality results for many different kinds of structures. These
structures are all relational structures which omit substructures of a certain size. Be-
cause of these omitted substructures, the structures cannot be defined from a first-
order theory. Thus, the classic general universality results from model theory do not
apply in these cases. This paper examines a number of methods for determining
universality for these types of structures. Universality results for related first-order
structures (such as linear orders) will also be mentioned for contrast.

To clarify our use of universality, we will present the basic definitions. In gen-
eral, the embeddings are injective “structure-preserving” functions where structure-
preserving can be interpreted in different ways. In this paper, we make a distinction
between weak embeddings, which preserve some structure, and strong embeddings,
which preserve all structure. Embeddings for ordered sets are normally injective
order-preserving maps and strong embeddings will also preserve incomparability.
For graphs (directed and undirected), an embedding is an injective function which
preserves edges (and directions in directed graphs) and strong embeddings also pre-
serve “nonedges” or the property that two nodes do not have an edge between them.
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Given a set of structures Aλ each of size λ, a (strong) universal model for Aλ

is one which (strongly) embeds all other structures in Aλ. If there does not exist
a universal model for Aλ, then we consider its complexity, or the smallest size of
a family of structures of Aλ which embeds the rest. This family of structures is
called a universal family. The universal spectrum for a class of structures A is the
family of cardinals for which A has a universal model (given a universe of set theory
and cardinal arithmetic assumptions). All of these notions have weak and strong
counterparts depending on the type of embedding used.

Another question one could ask when there does not exist a universal model is
what is the smallest size of a family of structures which do not embed into a single
element? This can be considered as the dual notion to complexity, which we call
the simplicity number. This notion was first considered in the context of cardinal
invariant; see, for instance, Mekler and Väänänen [6]. For consistency, we may set
the simplicity number of a family which has a universal element to ∞.

Throughout the paper, let κ and λ be infinite cardinals. For convenience, we
will use the following abbreviations for the structures considered in this paper. We
assume that these sets of structures are representatives under isomorphism.

1. C(λ, κ) = posets of size λ which omit chains of size κ .
2. wfpo(λ, κ) = well-founded posets of size λ which omit chains of size κ .
3. tree(λ, κ) = trees of size λ which omit branches of height κ .
4. OGp(λ, κ) = oriented graphs of size λ which omit paths of length κ .
5. OGi (λ, κ) = oriented graphs of size λ which omit independent sets of size

κ .
6. Gi (λ, κ) = undirected graphs of size λ which omit independent sets of size κ .
7. Gc(λ, κ) = undirected graphs of size λ which omit cliques of size κ .
8. LO(λ, κ) = linear orders of size λ which omit well-ordered suborderings of

size κ .
9. LO∗(λ, κ) = linear orders of size λ which omit suborderings which are the

inverse of well-orders of size κ .
An oriented graph in this context will be a directed graph which omits all cycles and
multi-edges.

Definition 1.1 A κ-path in an oriented graph is a κ-sequence 〈nα : α < κ〉 such
that the transitive closure of {(α, β) : R(nα, nβ)} is {(α, β) : α < β < κ} where
R(nα, nβ) indicates that there is a directed edge from nα to nβ . For convenience, for
any element a of the oriented graph, let (a, a) be a path of length 0.

We say path when we mean a κ-path for some κ . This notion of an infinite directed
graph path was considered in Brochet and Pouzet [1]. Note that for κ ≤ ω, these
paths are exactly the traditionally defined graph paths. Also, any finite subpath of a
κ-path is a path and behaves as expected.

The main results in this paper are as follows. In Section 2 we show that if there
exist functors with certain strong properties between two categories, then the two
categories have similar “model-counting” properties. For the next theorem, for struc-
tures X, Y , let X ↪→ Y denote that X embeds into Y using a definition of embedding
appropriate for these structures.

Theorem 1.2 Suppose C1 and C2 are categories each given as a type of ob-
ject with the embeddings as their morphisms. Further suppose there exist functors
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F : C1 → C2 and G : C2 → C1 which preserve the respective embeddings and the
size of the objects and have the following property. For X ∈ C1, Y ∈ C2 we have
that Y ↪→ F(G(Y )) and X ↪→ G(F(X)). Then,

1. the classes of objects have universal models in exactly the same cardinals;
moreover, they have the same complexity in each cardinal;

2. the classes of objects have the same simplicity number in each cardinal;
3. the classes of objects have prime models in exactly the same cardinals;
4. if the functors F and G are both injective maps, the two classes of objects

have the same number of pairwise nonisomorphic models in each cardinal.

The notion of a prime model is well known in a first-order model theoretic sense for
elementary embeddings. However, it can be generalized to include any set of objects
of a certain size and any type of embedding. Namely, we can say that a prime model
for a set of objects A is a structure in A which embeds into every other structure in
A.

As examples of the type of structures one can use in this context, we obtain the
following in Section 3.

Theorem 1.3

1. Oriented graphs and posets have the same universality spectrum.
2. OGp(λ, κ) has the same universality spectrum as C(λ, κ) for any cardinals

λ and κ .
3. LO(λ, κ) has the same universality spectrum as LO∗(λ, κ).

The first part of the theorem was already known. Both posets and oriented graphs
have the strict order property, so they have the same weak universality spectrum as
linear orders by Kojman and Shelah [3].

In the Brochet-Pouzet paper [1], directed graphs with various properties, such
as well-founded and scattered, are defined. For instance, a “well-founded directed
graph” is one whose transitive closure is well-founded. By the arguments above,
structures such as well-founded oriented graphs and well-founded posets have the
same universal spectra. Thus, the results in Thompson [10] (see also Džamonja and
Thompson [2]) giving the universal spectrum for well-founded posets as the same for
ordinals also apply to well-founded oriented graphs. These results are summarized
in Table 2.

In Section 4, the σ -functor is used to prove universality results. It was used in
Todorčević and Väänänen [12] to prove that there are no weak universal models for
certain types of ordered structures and graphs. We extend their results to show the
following.

Theorem 1.4 For λ<κ
= λ there is no universal model in C(λ, κ), wfpo(λ, κ), and

tree(λ, κ). By the results in Section 3, there is also no universal model in OGp(λ, κ)
under the above conditions.

Komjáth and Shelah [4] proved a universality result analogous to the one below for
graphs of size λ omitting cliques of size κ . In Section 5 we use similar methods to
prove the statements below.

Theorem 1.5 Assuming GCH, let λ be a (strong) limit cardinal with λ > κ ≥ ℵ0
and cf(κ) > cf(λ). Then there exists a strong universal in OGi (λ, κ), Gi (λ, κ),
tree(λ, κ), and wfpo(λ, κ).
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The commonality of the methods in Sections 3 and 4 is that in each case a tree is
constructed which gives a skeletal structure in order to build the rest of the structure.
In Section 6 we combine the results above to get the following universality spectra.

Theorem 1.6 Assuming GCH, the universality spectrum for structures tree(λ, κ)
and wfpo(λ, κ) is as follows: there is a strongly (and weakly) universal poset in
tree(λ, κ) or wfpo(λ, κ) if and only if λ is a (strong) limit cardinal with λ > κ ≥ ℵ0
and cf(κ) > cf(λ).

In order to show the context of the above results, there are below a number of known
results for related first-order structures.

Linear orders ∃ saturated model at λ iff λ = λ<λ

6 ∃ a universal at λ ∈ (ℵ1, 2ℵ0) (see [3])
Con(∃ universal at ℵ1 + ¬CH) (see Shelah [7])
Con(6 ∃ universal at ℵ1 + ¬CH) (see [7])

posets same as linear orders
oriented graphs same as linear orders
graphs ∃ saturated model at λ iff λ = λ<λ

Con(∃ universal at ℵ1 + ¬CH) (see Shelah [8])
Con(6 ∃ universal at ℵ1 + ¬CH) (see [7])

Table 1 Universality results for first-order relational structures

One can see from the above table that the first-order relational structures have quite
similar universality spectra. They all have a saturated model whenever λ = λ<λ by
a well-known model theory result. The results for graphs (or any universal relational
theory with the 3-amalgamation property) at ℵ1 extend to include any power λ such
that λ = λ<λ and 2λ > λ+. In contrast to the results above, Table 2 shows known
and new universality results for relational non-first-order theories.

C(λ, κ) 6 ∃ a universal if λ = λ<κ

OGp(λ, κ) same as C(λ, κ)

LO(λ, κ) 6 ∃ a universal if λ = λ<κ

LO∗(λ, κ) same as LO(λ, κ)

ordinals 6 ∃ a universal at any cardinal > 1 (see [2])
well-founded posets same as ordinals (see [2])
trees same as ordinals
wfpo(λ, κ) (GCH) ∃ universal iff λ > κ limit and cf(κ) > cf(λ)

tree(λ, κ) same as wfpo(λ, κ)

Gc(λ, κ) (GCH) ∃ universal iff λ > κ limit and cf(κ) > cf(λ) (see [4])
OGi (λ, κ) ∃ universal if cf(κ) > cf(λ)

Gi (λ, κ) ∃ universal if cf(κ) > cf(λ)

Table 2 Universality results for non-first-order relational structures
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One can see that the universality spectrum for relational structures which omit
large substructures is quite similar. There are no contradictory results, only gaps
in the classification. Under the assumption of GCH, it is unknown whether or not
there is a universal model if cf(κ) > cf(λ) for C(λ, κ), OGp(λ, κ), LO(λ, κ), and
LO∗(λ, κ). Note that these are exactly the theories considered which omit chains.
On the other hand, we do not know if there is a universal when cf(κ) ≤ cf(λ) for
OGi (λ, κ) and Gi (λ, κ). Both of these theories omit independent sets.

2 Embedding Preserving Functors

In this section, functors will be used to show that one can translate one type of struc-
ture into another in order to preserve certain embedding related “model-counting”
properties. These properties include universality, the existence of prime models, and
the number of pairwise nonisomorphic models.

Definition 2.1

1. A category C is a class Ob(C) of objects each of which is a set, together with
a class of functions known as morphisms, denoted Mor(C). The following
properties for the morphisms must hold:
(a) Mor(C) must contain the identity function,
(b) Mor(C) must be closed under the composition of functions.

2. A functor is a mapping between categories which preserves identities and the
composition of maps. That is, for two categories Ci = (Ob(Ci ), Mor(Ci )) for
i = 1, 2 a functor F : C1 → C2 maps Ob(C1) to Ob(C2) and Mor(C1) to
Mor(C2).

In this context, the morphisms will be a subclass of the class of all functions between
the objects. A category with this type of morphism is called a concrete category as
in Krishnan [5]. All of the categories in this chapter will be concrete and henceforth,
we shall omit this adjective. Also, functors as defined above are covariant functors,
but we shall omit this adjective as well as is standard in [5].

We can define a type of structure as a category with the appropriate embedding as
its morphism. Then the existence of size-preserving functors between two categories
shows that two types of structures have similar properties in the same cardinals as
we will demonstrate here.

Theorem 2.2 Suppose C1 and C2 are categories each given as a type of ob-
ject with the embeddings as their morphisms. Further suppose there exist functors
F : C1 → C2 and G : C2 → C1 which preserve the respective embeddings and the
size of the objects and have the following property. For X ∈ C1, Y ∈ C2 we have
that Y ↪→ F(G(Y )) and X ↪→ G(F(X)). Then,

1. the classes of objects have universal models in exactly the same cardinals;
moreover, they have the same complexity in each cardinal;

2. the classes of objects have the same simplicity number in each cardinal;
3. the classes of objects have prime models in exactly the same cardinals;
4. if the functors F and G are both injective maps, the two classes of objects

have the same number of pairwise nonisomorphic models in each cardinal.

Proof Fix a cardinal λ and assume that all structures defined in this proof have size
λ.
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1 For simplicity, we will prove this for the case of one universal model; however,
the proof is the same for any size of a universal family.

Assume that there is a universal model U for C2 in λ. We will show that G(U )
is universal for C1. For any object X ∈ C1, we have that F(X) is a C2-object so
F(X) ↪→ U . Now we have

X ↪→ G(F(X)) ↪→ G(U )

by the embedding preservation of G. The composition of two embeddings is itself an
embedding; thus G(U ) is universal for C1. The other direction proceeds in a similar
way.

2 Assume without loss of generality that the simplicity number of C2 is smaller
than that of C1. Let A2 ⊂ C2 witness the simplicity number of C2; that is, A2 has
minimal cardinality such that there does not exist Y ∈ C2 such that for all A ∈ A2, A
embeds into Y . Consider G(A) for all A ∈ A2. By the fact that the simplicity number
of C1 is greater than C2 there must exist X such that X embeds G(A) for all A ∈ A2.
Note here that |{G(A) : A ∈ A2}| ≤ |A2|. However, by the embedding preservation
of the functors, F(X) must embed all elements of A2, which is a contradiction.

3 Assume that there exists a prime model P in C2 of size λ. We will show that
G(P) is a prime model for C1. Suppose it is not, so there exists X ∈ C1 such
that X does not embed G(P). However, F(X) embeds P and the functors preserve
embeddings. This leads to a contradiction as above.

4 Trivial. �

3 Examples of Theories with Embedding Preserving Functors

We showed that if two categories have embedding preserving functors with strong
properties between them, then these categories have the same universal spectra. We
will demonstrate the existence of such functors for certain types of posets, oriented
graphs, and linear orders.

First we will define the specific categories that we will use. Let POS be the cate-
gory of all posets whose universes are sets together with all injective order-preserving
functions as morphisms. Let OG be the category of all oriented graphs whose uni-
verses are sets together with all injective directed edge-preserving functions as mor-
phisms. Hence, the embeddings considered here are weak embeddings.

It is easily seen that these are indeed categories using the definition above, as
embeddings are closed under composition of functions.

Lemma 3.1 There exists a size-preserving functor F : POS → OG.

Proof We will define F by specifying its value (Fp(P), FR(≤)) on each (P, ≤P )
in POS. Let Fp be the pointwise injective identity map from POS-objects to OG-
objects. That is, if P is the universe of a POS-object then Fp(P) is the universe of
an OG-object such that each a ∈ P maps to the same a in Fp(P). Thus, the size of
the object is preserved.

Define FR(≤) by letting (Fp(a), Fp(b)) be a directed edge if and only if a <P b.
For f : P1 → P2 an embedding, the following square commutes.
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(P1, ≤1) -
f

(P2, ≤2)

?

F

?

F

(Fp(P1), FR(≤1))
-

f (Fp(P2), FR(≤2))

We can see that if (a, b) is an edge in F(P1) then ( f (a), f (b)) is an edge in F(P2).
Also, if (a, b) is an edge in F(P1), then a <P1 b. Because f is an embedding, we
have f (a) <P2 f (b) and thus, ( f (a), f (b)) is an edge in F(P2). �

Lemma 3.2 There exists a size-preserving functor G : OG → POS.

Proof We shall define G by specifying its value (G p(D), G R(e)) on each (D, e) ∈

OG. Let G p be the pointwise injective identity map from OG-objects to POS-objects
as in the proof of Lemma 3.1. This preserves size as before.

To define G R we need to take the transitive closure of the relations e. So let
G R(e) = {(a, b) : a, b ∈ D and there is a finite path from a to b}.

Thus, for g : D1 → D2 an embedding, the following square commutes.

(D1, e1) -
g

(D2, e2)

?

G

?

G

(G p(D1), G R(e1))
-

g (G p(D2), G R(e2))

We can see that if (a, b) is a relation in G(D1) then (g(a), g(b)) is a relation in
G(D2). Also, if (a, b) is a relation in G(D1), then either (a, b) ∈ e(D1) or there is a
path in D1 from a to b. Because g is an embedding, we have (g(a), g(b)) ∈ e(D2)
or there is a path in D2 from g(a) to g(b) and thus by the transitive closure of the
relations, (g(a), g(b)) is a relation in G(D2). �

Lemma 3.3 Posets and oriented graphs have the same universal spectra under
weak embeddings.

Proof Given Lemmas 3.1 and 3.2, we must show that any POS or OG objects em-
bed into their image under the appropriate composition of the functors. First, given
X ∈ POS, we will show that X ↪→ G(F(X)). So F(X) is an OG object which is
constructed by mapping all poset relations into oriented graph relations. Thus, F(X)
is a transitively closed oriented graph. Applying G will not add any new relations to
F(X) as it is already transitively closed. Thus, G(F(X)) is isomorphic to X .

Now given Y ∈ OG, we will show that Y ↪→ F(G(Y )). By applying G to Y ,
we are taking the transitive closure of the relations of Y . Thus, relations are added,
but none are removed. Then F will simply map all poset relations into oriented
graph relations, which neither add nor subtract any relations. So as the embeddings
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are weak, the addition of relations will not affect any of the embeddings. Thus by
Theorem 2.2 posets and oriented graphs have the same universal spectra. �

We will demonstrate below that by a different argument, linear orders have weak
universal models in exactly the cardinals that posets have them. Another proof of
this can also be found in [3] using the fact that both linear orders and posets have the
strict order property.

The method that we will employ relies on Szpilrajn’s Theorem (in [9]) which
states that every partial order can be extended to a linear order with the same uni-
verse. Also recall that partial order embeddings and linear order embeddings are both
one-to-one functions which preserve order. These facts are crucial to the following
theorem.

Theorem 3.4 For any cardinal λ, the set of all posets of size λ has a universal
model if and only if the set of all linear orders of size λ has one.

Observation 3.5 This result is true for any complexity; that is, posets have the
same complexity in any given cardinal as linear orders. For simplicity, we will just
prove it for the case of one universal model. For complexity > 1, replace the word
“universal” with “universal family” in the proof below.

Proof First assume there exists a universal partial order P in cardinality λ. Extend
P to a linear order P ′ using Szpilrajn’s Theorem. The set of all partial orders of
size λ includes all linear orders of size λ, so P ′ is universal for linear orders of size
λ. Since the embeddings we are using are weak, and thus preserve order but not
incomparability, the extra relations on P ′ will not affect any of the embeddings of
the set of partial (or linear) orders. In other words, for f : L → P an embedding
from a linear order L into P , it is also the case that f when viewed as a function
from L to P ′ is an embedding.

By the argument given above, a universal linear order is automatically a universal
partial order, since a linear order is just a specific type of partial order. �

Thus by Lemma 3.3, we have that linear orders, posets, and oriented graphs all have
universals in exactly the same cardinals.

These results (including the Shelah-Kojman results in [3] for linear orders) are
stated for weak universal models, that is, universals under weak embeddings. We
cannot get a strongly universal linear order for posets, for instance, because there is
no incomparability in a linear order. Also, because we are taking the transitive clo-
sure of the oriented graphs, the functors do not preserve incomparability. Therefore,
this method will not suffice to show that oriented graphs and posets have the same
strong universal spectra.

However, we can extend these weak universality results to more restrictive types
of graphs and posets.

Fix a cardinal κ and a cardinal λ ≥ κ . Let POSκcc be the category of all posets
with universe a set of ordinals of size λ which omit chains of size κ , together with
all injective order-preserving functions. Let OGκcc be the category of all oriented
graphs with universe a set of ordinals of size λ for any λ, which omit paths of size
κ , together with all injective directed edge-preserving functions. These are indeed
categories for similar reasons as for POS and OG.
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Theorem 3.6 OG(λ, κ) has the same complexity as C(λ, κ) under weak embed-
dings.

Proof Let Fp and FR be as in Theorem 3.1. We know that these are functors by
that same theorem, so we only need to show that the chain condition is preserved.

If (P, ≤) is a POSκcc-object and (a, b) is a directed edge in FR(≤), then a <P b.
This means that any path in F(P) has a one-to-one correspondence to a chain in P .
So since there are no chains of forbidden size in P , there are no paths of forbidden
size in F(P).

Let G p and G R be as in Theorem 3.2. Again, we know these are functors so we
only need to show that the chain condition holds.

Suppose that 〈xα : α < κ〉 is a chain in G(D). In defining a poset G(D) from an
oriented graph D, we take the transitive closure of the graph relations. This can only
add relations to G(D) where a path is already present in D. So for any α, β < κ
there is a path in D connecting xα and xβ . Thus, 〈xα : α < κ〉 is a path in D.
Therefore, no new chains are added when the transitive closure is taken.

Thus, by Theorem 2.2 for any cardinal λ there exists a universal poset of size λ
which omits κ-chains if and only if there exists a universal oriented graph of size λ
which omits κ-paths. The complexities of these categories are also the same. �

The functor F given above is not injective, so this method says nothing about whether
the number of nonisomorphic models for these structures are the same. Below is an
example of functors which are injective.

Theorem 3.7 There exist size-preserving functors between LO(λ, κ) and LO∗(λ, κ).

Proof For both functors, one must simply reverse the order of the structure. �

4 The σ Functor

In this section, the functor considered will be used to map one object in a category
to another object in the same category.

The σ functor was first introduced by Kurepa to prove that a Suslin line exists if
and only if a Suslin tree exists. This functor can also be used to produce a coun-
terexample to any assumed universal. Todorčević [11] gives this definition of the σ
functor for general sets with a single binary relation.

Definition 4.1 For any structure (A, R) where A is a set with one binary relation
R, let (σ A, ⊆) be the set of all injective functions s from some ordinal δ into A such
that α < β < δ implies s(α)Rs(β), ordered by end-extension (which in this context
is equivalent to ⊆).

Note that σ A is a structure partially ordered by the subset relation. Based on this
definition, Todorčević gives the following general result. The proof is included here
as it is short and instructive.

Theorem 4.2 For any structure (A, R) where A is a set with one binary relation
R, σ A does not embed into A.

Proof Assume there is an embedding f : σ A → A. Define a function s recursively
on all ordinals by s(α) = f (s � α). This function is well-defined for all ordinals as
f preserves the relations and thus s �α ∈ σ A. However, ran(s) forms a proper class,
which contradicts A being a set. �
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Using this theorem, Todorčević and Väänänen in [12] prove that there are no weak
universal models for the following structures: LO(κ, ℵ1), LO∗(κ, ℵ1), posets of size
κ omitting increasing ℵ1-chains, and graphs of size κ omitting ℵ1-cliques, where
κ ≤ 2ℵ0 . These results can easily be extended to include structures of the same type
of size λ omitting substructures of size κ where λ = λ<κ (see similar proof below).

Using the same functor, we get similar results for tree(λ, κ) and C(λ, κ) where
λ = λ<κ . The proof is given below for C(λ, κ), but since the functor creates a tree
omitting κ branches and tree(λ, κ) ⊆ C(λ, κ), the same proof holds for tree(λ, κ).

Theorem 4.3 Assume λ = λ<κ . Then there is no weak universal model for C(λ, κ).

Proof Suppose λ and κ are cardinals as in the statement of the theorem.
Assume P ∈ C(λ, κ) is universal and we will construct a counterexample to its

universality. Let σ P be the tree whose elements are of the form p = 〈pi : i < i∗〉
for some i∗ < κ where each pi ∈ P and for i < j < i∗ we have pi <P p j , and
ordered by ⊂. That is, p̄ <σ P p̄′ if and only if p̄ ⊂ p̄′. (Note that as we identify
sequences of elements of P with functions from an ordinal into P , the subset relation
p̄ ⊂ p̄′ actually means that p̄ is an initial segment of p̄′.) Thus, σ P is as defined in
Definition 4.1. We will show that σ P ∈ C(λ, κ) and that P does not embed σ P .

Lemma 4.4 σ P is a tree of size λ which omits chains of size κ .

Proof Note first that σ P is partially ordered by ⊂. To see that σ P is a tree, we must
show that the predecessors of any element form a linear order and that the structure
is well-founded. To show the former, let p̄ ∈ σ P and consider q̄1, q̄2 ∈ σ P such
that q̄1, q̄2 <σ P p̄. Both are initial segments of p̄ so either dom(q̄1) ≥ dom(q̄1),
in which case q̄1 ≥σ P q̄2, or dom(q̄1) < dom(q̄1), indicating that q̄1 ≤σ P q̄2. So
{q̄ ∈ σ P : q̄ <σ P p̄} is totally ordered.

Now for contradiction suppose 〈 p̄n : n < ω〉 is a strictly decreasing chain in σ P .
For each p̄n let ln be the length of that sequence. Then 〈ln : n < ω〉 would form a
strictly decreasing sequence of ordinals, a contradiction.

The size of σ P is given as follows:

|σ P| ≤ |
<κ P| = λ<κ

= λ.

As for all p ∈ P we have 〈p〉 ∈ σ P , we also conclude that |σ P| ≥ λ, so |σ P| = λ.
Since σ P is a tree, a chain can only occur along a branch. So suppose that σ P

has a branch B of size κ . Each element of this branch is an increasing sequence in P .
If we choose a distinct element of P from each node in B, then this would form a κ-
chain in P . This can be done as follows. Let B have elements { p̄i : i < κ} such that
p̄i <σ P p̄ j for all i < j < κ . For each j < κ there exists a j ∈ ran( p̄ j+1) \ ran( p̄ j )
by the definition of σP . Then {a j : j < κ} forms a κ-chain in P . �

Lemma 4.5 There does not exist an embedding f : σ P → P.

Proof In fact, this is proved by Theorem 4.2, but we do not need the full strength
of the proof; therefore, we shall include the weaker version here. Suppose such an f
exists and consider the empty sequence 〈〉 ∈ σ P . If we set x0 = f (〈〉) ∈ P then we
have 〈〉 <σ P 〈x0〉. Now let x1 = f (〈x0〉) and thus, x0 <P x1 as f preserves order.
This also means that 〈x0〉 <σ P 〈x0, x1〉.

We can continue in this way, taking the union at limit ordinals. When we reach
stage κ , we have constructed {xα : α < κ} which is a κ-chain in P . �
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Therefore, for any assumed universal P there exists σ P , an element of C(λ, κ)
which does not embed into P . �

Corollary 4.6 Assume λ = λ<κ and κ is infinite. There are no universal oriented
graphs in OGp(λ, κ).

Proof By the functors in Section 3, OGp(λ, κ) has universal models in exactly the
same cardinals as C(λ, κ). By Theorem 4.3, C(λ, κ) has no universal model with
the hypotheses above. �

Corollary 4.7 Assume λ = λ<κ and κ is infinite. Then there is no weak universal
model for wfpo(λ, κ) or tree(λ, κ).

Proof The poset σ P as constructed in the proof of Theorem 4.3 is a well-founded
poset and a tree. We also have that tree(λ, κ) ⊆ wfpo(λ, κ) ⊆ C(λ, κ). So, it follows
that the same poset may be used as a counterexample to any universal in tree(λ, κ)
or wfpo(λ, κ). �

5 Strong Universals

The results in this section are considered “positive”; that is, it is proved that universal
models do exist in some circumstances.

Theorem 5.1 Assuming GCH, let λ be a (strong) limit cardinal with λ > κ ≥ ℵ0
and cf(κ) > cf(λ) > ω. Then there exists a strongly universal oriented graph in
OGi (λ, κ).

Proof Let 〈λα : α < cf(λ)〉 be a continuous sequence of regular cardinals increas-
ing to λ such that 2λα ≤ λα+1 with λ0 = 0 and λ1 > cf(λ). This is possible by the
definition of a strong limit cardinal. Let T be a rooted tree of height cf(λ) such that
each level, α of T for 1 ≤ α < cf(λ), has λα+2 nodes while every branch of T � α
has λα+2 extensions on the αth level.

One may construct such a tree by constructing T � α by induction on α. Level 0
of T is its root r . Having constructed T � α for 1 ≤ α < cf(λ), we may make the
following calculations. The number of nodes of the tree T �α is at most supβ<α λβ+2.
If α is a limit then the number of nodes of T �α is thus λα . If α = γ + 1 for some γ ,
then the number of nodes of T �α is λγ+2 = λα+1. The number of branches of T �α
is |

α(T � α)|. If α is a limit then the number of branches of T � α is λα
α which is λα

by GCH and the fact that for α ≥ 1, we set λα > cf(λ) and α < cf(λ). If α = γ + 1,
then λα

α+1 is λα+1 by GCH. In conclusion, there are at most λα+1 branches in T �α
for every α < cf(λ). Thus, if each branch of T � α has λα+2 extensions on the αth
level, then there are λα+2 · λα+1 = λα+2 nodes on the αth level.

The idea of this proof is to use the tree T to give a “skeletal structure” to the
universal model in the following way. In order to construct the embeddings of the
other members of the set, we will define partial embeddings which increase at each
successive level of the tree T . Each level α will code all the relevant possibilities
for the oriented graphs of size λα+1. To construct the full embedding, one can then
follow the appropriate T -branch through the oriented graph.

We will now define U ∈ OGi (λ, κ) such that it is universal in this set. Let A(r)
be the empty graph (recall that r is the root of the tree T ). On each level α of
T for α ≥ 1, the nodes t ∈ T will have attached to them oriented graphs A(t)
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whose universe is a subset of λα+2 of size λα+1 and which we will define to omit
independent sets of size κ . We will choose the A(t) by induction on α = height(t).
The induction hypothesis is that if t, t ′ ∈ T �α and t <T t ′, then A(t) is a subgraph
of A(t ′) and A(t ′) omits independent sets of size κ . The universe of U will be⋃

{A(t) : t ∈ T } after its construction as U =
⋃

α<cf(λ) Sα where 〈Sα : α < cf(λ)〉
are an increasing sequence of oriented graphs defined by induction on α as follows.

Let S0 be the empty graph. Coming to level α, by the induction hypothesis we
have constructed Sα as an oriented graph omitting independent sets of size κ whose
universe is

⋃
{A(t) : t ∈ T � α} where for each t ∈ T � α, if the height of t in T is

β ∈ [1, α) then the universe of A(t) is a subset of λβ+2 of size λβ+1. Note that this
implies that the universe of Sα is a subset of λα+2. As calculated above, the number
of nodes of T �α is at most λα+1 and for each such node t we have |A(t)| ≤ λα+1.
So |Sα| ≤ λα+1 · λα+1 = λα+1. Let 〈Bα

i : i < i∗(α)〉 for some i∗(α) ≤ λα+1 be an
enumeration of all branches of T �α of height α. Let {Hα

i : i < i∗(α)} be a disjoint
partition of λα+2 \ Sα into pieces of size λα+2, which is possible since |Sα| ≤ λα+1.
These sets will be the universes of various A(t) \ Sα for t ∈ T of height α.

We now consider all branches of T � α whose height is α. Let B = Bα
i for

some i < i∗(α) be such a branch. For β < α let tβ be the node of B of height β.
By the induction hypothesis, 〈tβ : β < α〉 gives a sequence 〈A(tβ) : β < α〉 of
oriented graphs such that β < γ < α implies A(tβ) is a subgraph of A(tγ ). Hence,
A(B) :=

⋃
{A(tβ) : β < α} is an oriented graph whose universe is a subset of λα+1

of size λα .
Note that A(B) has no independent sets of size κ . Namely, assume that it does,

so let K be an independent set of size κ . Since α < cf(κ) there must be β < α such
that K ∩ A(tβ) has size κ which is a contradiction with the induction hypothesis.

We will construct representatives under isomorphism of all possible oriented
graphs of size λα+1 that contain A(B) and that have no independent sets of size κ
and as their universes we shall take subsets of A(B) ∪ Hα

i . This type of oriented
graph exists; for example, one could make all new elements into a path and set them
all greater than all elements of A(B). Between every pair of distinct elements a, b in
this extension, there are three possibilities; a < b, a > b, or a >< b. Because of the
fact that the formation of independent sets of size κ is forbidden, not all choices can
be made. However, even if all choices were possible, we have ≤ λα+2 possibilities
as by the definition of the sequence, 2λα+1 ≤ λα+2.

We shall, in fact, for each relevant isomorphism type, choose some t ∈ T with
height(t) = α and B <T t and define an oriented graph A(t) of that type so that
the universes {A(t) \ A(B) : B <T t and height(t) = α} form a disjoint family
〈Hα

i, j : j < j∗(i)〉 of subsets of Hα
i for some j∗(i) ≤ λα+2 whose exact value

is determined by the number of isomorphism types needed. Thus, for t ∈ T with
height(t) = α that satisfy B <T t , we will let A(t) = Hα

i, j ∪ A(B) for some j and
let the ordering extend A(B) and form no independent sets of size κ according to the
isomorphism type in question.

Before finishing this step of the induction, we shall totally order level α of
T by a relation <′

α . Now we define Sα+1 to extend Sα , have the universe
Sα ∪

⋃
{A(t) : t ∈ T and height(t) = α} and satisfy a < b in Sα+1 if and

only if one of the following holds:
1. a, b ∈ Sα and a < b holds in Sα ,
2. for some t ∈ T of height α we have a, b ∈ A(t) and a < b holds in A(t),
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3. for some t, t ′ ∈ T both of height α we have t <′
α t ′ and a ∈ A(t) \ Sα while

b ∈ A(t ′) \ Sα .
Note that Sα+1 is a well-defined oriented graph. Consequently, the oriented graph
U =

⋃
α<cf(λ) Sα defined at the end of the induction is a well-defined oriented graph.

Claim 5.2 The oriented graph U defined above is a universal oriented graph of
size λ omitting independent sets of size κ .

Proof The cardinality of U is supα<cf(λ) |Sα| ≤ supα<cf(λ) λα+2 = λ. On the other
hand, it will follow from the universality of U for OGi (λ, κ) that the size of U is
≥ λ. To see that there are no independent sets of size κ , assume there is one, call
it A. Because cf(κ) > cf(λ), there must be α such that |A ∩ (Sα+1 \ Sα)| = κ . In
other words, |A ∩

⋃
height(t)=α A(t) \ Sα| = κ . Since for t 6= t ′ of height α in T we

have that all elements of A(t) \ Sα are connected to all elements of A(t ′) \ Sα and
A is an independent set, there is at most one t of height α such that A(t) \ Sα 6= ∅.
However, A cannot be contained in a single A(t) \ Sα as this set was constructed to
avoid independent sets of size κ .

Now we will show that given any G ∈ OGi (λ, κ), we can find a strong embed-
ding from G to U . The idea is to follow the appropriate branch of T to get the
embedding. Let G =

⋃
α<cf(λ) Gα be a decomposition of G into an increasing union

of subgraphs Gα ⊆ G with |Gα| ≤ λα+1. We will find the appropriate branch
B = {tα : α < cf(λ)} of T by choosing tα by induction on α, matching Gα with
A(tα). Here tα is the node of B of height α. Assume we have matched everything
up to α; that is, there exists a strong embedding

⋃
β<α Gβ ↪→

⋃
β<α A(tβ). Now

we want to extend the embedding to Gα while preserving the previous embedding.
Because {A(t) : height(t) = α} contains isomorphism types of all the possible ex-
tensions of

⋃
β<α A(tβ) to oriented graphs of size λα+1 omitting independent sets of

size κ , there exists tα > tβ for all β < α such that A(tα) strongly embeds Gα . �

The same proof works for undirected graphs and so there exists a strong universal in
Gi (λ, κ) whenever cf(κ) > cf(λ).

Creating a similar tree structure to the one above, we can get an analogous result
for tree(λ, κ) and wfpo(λ, κ).

Theorem 5.3 Assuming GCH, let λ be a (strong) limit cardinal with λ > κ ≥ ℵ0
and cf(κ) > cf(λ). Then there exists a strong universal in tree(λ, κ) and wfpo(λ, κ).

Proof We will concentrate on well-founded posets, but the proof for trees will be
similar. Define the tree T as in Theorem 5.1 with ∅ as the root. The construction of
the universal in wfpo(λ, κ) using the skeletal structure of T will be almost exactly
that of the proof of Theorem 5.1 except that we want to ensure that as we build
the poset through increasing levels of T , the rank of the well-founded poset will
also increase. So, in connecting the elements of A(tα) to those of A(tα+1) where
rkT (tα) = α and rkT (tα+1) = α + 1, all the relations in the poset will be increasing.
This will prevent chains from forming along each level of T . Also, the T -nodes will
not be ordered in the end.

As before, we will construct a poset U =
⋃

α<cfλ Sα by induction on α. Assume
that we have constructed Sα , a well-founded poset omitting chains of size κ whose
universe is

⋃
{A(t) : t ∈ T � α}. By the same calculations as before, |Sα| ≤ λα+1.

Let 〈Bα
i : i < i∗(α)〉 and {Hα

i : i < i∗(α)} be as before.
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Choose an arbitrary branch B = Bα
i of T �α. For β < α let tβ be the node of B

of height β. By the induction hypothesis, assume that 〈A(tβ) : β < α〉 is a sequence
of well-founded posets such that β < γ < α implies that

1. A(tβ) is a subposet of A(tγ ),
2. if a ∈ A(tβ) and b ∈ A(tγ ) then rkSα (a) ≤ rkSα (b).

Note the A(B) =
⋃

{A(tβ) : β < α} omits κ-chains as before.
We will construct representatives under isomorphism of all possible well-founded

posets of size λα+1 which extend A(B), have no κ-chains and such that for tα ∈ T
of height α the elements of A(tα) \ A(B) have rank greater or equal to the rank of
the elements of A(B).

Define Sα+1 to extend Sα with universe Sα ∪
⋃

{A(t) : t ∈ T heightT (t) = α} and
if a, b ∈ Sα+1 then a <Sα+1 b if and only if either a <Sα b or there is t ∈ T of height
α such that a <A(t) b. Note that Sα+1 is a well-founded poset as Sα is assumed to be
well-founded and for all t ∈ T A(t) is a well-founded poset.

If U =
⋃

α<cfλ Sα then the calculations for the size of U are the same as before;
namely, |U | = λ. To show that U is well-founded, assume not, so there exists
〈pi : i < ω〉 such that pi > p j for all i < j < ω. The sequence could not exist in
a single Sα as these were defined to be well-founded. Since cf(λ) > ω, there must
exist an α such that 〈pi : i < ω〉 ⊆ Sα , which is a contradiction.

We need to show that U omits κ-chains. Assume there is one; call it A. Since
cf(κ) > cf(λ), there exists α such that |A ∩ (Sα+1 \ Sα)| = κ . We will show that
for t, t ′ ∈ T both of height α, if t is incomparable to t ′ in T then any element
a ∈ A(t) \ A(B) is incomparable in Sα+1 to any element b ∈ A(t ′) \ A(B ′) where
B, B ′ are the branches of T of which t, t ′ are top members, respectively. It can only
happen that a < b if there exists c ∈ A(tβ) for some β < α such that a < c < b.
However, if a < c this implies rk(a) ≤ rk(c) which cannot happen by the construc-
tion of Sα+1. So all elements of Sα+1 \ Sα are incomparable. There also cannot be a
κ-chain in a single A(t) \ A(B) by construction of A(t). So A cannot exist.

Now we will see that U embeds any P ∈ wfpo(λ, κ). Let P =
⋃

α<cf(λ) Pα be
such that |Pα| = λα and for all β < α < cf(λ) we have Pβ ⊆ Pα . Furthermore,
for a ∈ Pβ , b ∈ Pα with β < α require rkP (a) ≤ rkP (b). Then we may find
the appropriate branch through T as in the proof of Theorem 5.1. Assume that there
exists a strong embedding

⋃
β<α Pβ ↪→

⋃
β<α A(tβ). We will extend the embedding

to Pα while preserving the rest of the embedding. We have defined the decomposition
of P such that for a ∈ Pβ and b ∈ Pα it is the case that rkP (a) ≤ rkP (b) This is also
the case for well-founded partial orders extending

⋃
A(tβ). So there exists a t ∈ T

with heightT (t) = α and t > tβ for β < α such that Pα ↪→ A(t). �

6 Conclusions and Open Questions

The result in this section combines the results in the previous two sections to give a
picture of what what these methods have accomplished.

Theorem 6.1 Assuming GCH, there is a strongly (and weakly) universal poset in
wfpo(λ, κ) and tree(λ, κ) if and only if λ is a (strong) limit cardinal with λ > κ ≥ ℵ0
and cf(κ) > cf(λ).

Proof All limits are strong limits under GCH and λ<κ
= λ implies that

cf(κ) ≤ cf(λ). All the the cases where cf(κ) ≤ cf(λ) are covered by Corollary 4.7
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which says there are no weak universal models. The cases where cf(κ) > cf(λ) are
covered by Theorem 5.3 where strong universals are constructed. �

It is unknown what happens in the case when cf(κ) > cf(λ) for C(λ, κ), LO(λ, κ),
and LO∗(λ, κ). The proofs in Section 5 do not work as the construction would
produce a forbidden chain along any one level of the tree T .

Also, the σ functor in Section 4 does not give a means for proving the nonexis-
tence of universals for structures such as OGi (λ, κ) or Gi (λ, κ). In particular, one
cannot use this method to inductively build a graph without large independent sets
by taking the independent sets from another graph as elements.
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