
Notre Dame Journal of Formal Logic
Volume 46, Number 4, 2005

On Lovely Pairs and the (∃ y ∈ P) Quantifier

Anand Pillay and Evgueni Vassiliev

Abstract Given a lovely pair P ≺ M of models of a simple theory T , we
study the structure whose universe is P and whose relations are the traces on P
of definable (in L with parameters from M) sets in M . We give a necessary and
sufficient condition on T (which we call weak lowness) for this structure to have
quantifier-elimination. We give an example of a non-weakly-low simple theory.

1 Introduction

In [1] Baisalov and Poizat introduce and discuss the notion of the elimination of the
∃y ∈ P quantifier in elementary pairs P ≺ M of models of a complete first-order
theory T . If T is stable, then (by definability of types) all pairs eliminate ∃y ∈ P .
They prove that the same is true if T is o-minimal and M is saturated over P . They
also state that “belle paires” of the theory of the random graph do not eliminate
∃y ∈ P . However, for T a simple theory, it is natural to consider lovely pairs rather
than belles paires. In this paper we investigate whether lovely pairs of a simple theory
eliminate ∃y ∈ P . In the process we come up with another combinatorial property
of forking, which we call “weak-lowness”.

Let us now give some more precise definitions. T will denote a complete first-
order theory in a language L. For a subset B of a model of T , L(B) denotes L
together with constants for elements of B.

By a pair of models of T we will mean an elementary pair P ≺ M of models.
We can view it as a structure (M, P) in the language LP obtained by adding a new
unary predicate symbol P to the language L of T . To specify the smaller model in
the pair (M, P), we will often use notation P(M) (rather than P). If A ⊂ M , P(A)
denotes A ∩ P(M), the P-part of A. When we write (M, P) ⊂ (N , P), we mean
M ⊂ N and M ∩ P(N ) = P(M).
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Definition 1.1

(i) The pair P ≺ M of models of T is said to eliminate the ∃y ∈ P quantifier,
if for every L-formula ϕ(x, y, z) and a in M there is an L-formula ψ(x, w)
and b in M such that for all c ∈ P , M |H ψ(c, b) if and only if there is d ∈ P
such that M |H ϕ(c, d, a).

(ii) We say that the ∃y ∈ P quantifier is uniformly eliminable for P ≺ M if in
(i) above, ψ(x, w) can be chosen to depend only on ϕ(x, y, z) (not a).

Remark 1.2 Let P ≺ M be a pair of models of T . For each L-formula ϕ(x, y)
and a ∈ M , let Rϕ,a(x) be a new predicate symbol. Let L∗ be the resulting language
(which depends of course on M). Let P∗ denote the structure in the language L∗,
with universe P , where each predicate Rϕ,a(x) is interpreted by ϕ(P, a). In other
words, P∗ is the structure induced on P by L-formulas with parameters in M . Let
T ∗

= Th(P∗). Then P ≺ M eliminates the ∃y ∈ P quantifier if and only if T ∗ has
quantifier-elimination in the language L∗.

We will assume knowledge of the basics of stability/simplicity theory, for which the
reader is referred to Wagner [4]. We first recall the notions of lowness and lovely
pairs which will play a role in this paper. The “low” property was introduced by
Buechler and Shami. Lovely pairs appear in Ben-Yaacov et al. [2].

Suppose now T to be a simple theory and work in a saturated model M̄ . We say
that T is low if for any L-formula ϕ(x, y) and possibly infinite tuple z of variables,
the condition (on (y, z)) that ϕ(x, y) forks over z is type-definable. Equivalently
for any formula ϕ(x, y) there is k < ω such that for any indiscernible sequence
(bi : i < ω), {ϕ(x, bi ) : i < ω} is inconsistent if and only if it is k-inconsistent.

A (κ-)lovely pair of models of T is a pair P ≺ M of models of T such that for
any A ⊂ M of cardinality ≤ |L| (< κ) and complete L-type p(x) over A,

(i) some nonforking extension of p(x) over A ∪ P is realized in M , and
(ii) if, moreover, p(x) does not fork over P(A) then p(x) is realized in P .

If T is stable, lovely pairs coincide with Poizat’s belles paires.

Definition 1.3 T is said to be weakly low if for any complete finitary type tp(a/B),
and any L(B)-formula ϕ(x, y, z) there is some L(aB)-formula ψ(y) such that for
b independent from a over B, |H ψ(b) holds if and only if ϕ(a, b, z) does not fork
over Bb.

Note that any low theory is weakly low.

Remark 1.4 The following are equivalent:

(i) T is weakly low;
(ii) for all a, B and L-formula ϕ(x, y, z) there is k < ω such that, whenever a is

independent from b over B, and (ai : i < ω) is a Morley sequence over Bb in
tp(a/Bb) such that {ϕ(ai , b, z) : i < ω} is k-consistent, {ϕ(ai , b, z) : i < ω}

is consistent;
(iii) for any a, B, L-formula ϕ(x, y, z) and Morley sequence (ai : i < ω)

in tp(a/B), there is k < ω such that whenever a is independent from b
over B, and (ai : i < ω) is also a Morley sequence in tp(a/Bb) and
{ϕ(ai , b, z) : i < ω} is k-consistent, then it is consistent.
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Proof

(i) implies (ii): Given a, B and L-formula ϕ(x, y, z) let ψ(y) be the L(aB) for-
mula given by weak lowness. Now the condition “y is independent from a over B and
(xi : i < ω) is a Morley sequence in tp(a/By)” is given by a partial type 6(y, xi )i
over aB. By Kim’s lemma (that a formula χ(z, c) does not fork over B if and only
if for some (any) Morley sequence (ci : i < ω) in tp(c/B), {χ(x, ci ) : i < ω} is
consistent), we have the implication

6(y, xi )i |H “{ϕ(xi , y, z) : i < ω} is consistent” ⇔ ψ(y).

By compactness we find the required k.

(ii) implies (iii) is immediate.

(iii) implies (i): Assume (iii). To prove weak lowness of T , we may assume
in Definition 1.3 that ϕ(x, y, z) is an L-formula (as we can incorporate any pa-
rameters from B in b). Fix a Morley sequence (ai : i < ω) in tp(a/B). Let
r(xi )i<ω = tp((ai )i<ω/B). Let k be as given by (iii) (for the given choice of
ϕ). Note that for any b which is independent from a over B there is a realization
(a′

i : i < ω) of r such that (a′

i : i < ω) is a Morley sequence in tp(a/Bb). By virtue
of Kim’s lemma again, we have that for any b which is independent from a over B,
the following are equivalent:

(a) ϕ(a, b, z) does not fork over Bb;
(b) there is a realization (a′

i : i < ω) of r which is a Morley sequence in
tp(a/Bb) and such that {ϕ(a′

i , b, z) : i < ω} is consistent;
(c) it is not the case that there is a realization (a′

i : i < ω) of r which is a Morley
sequence in tp(a/Bb) such that {ϕ(a′

i , b, z) : i < k} is consistent.

As the relevant expressions are type-definable over aB, it follows by compactness
that there is an L(aB) formula ψ(y) such that for b independent of a over B,
ϕ(a, b, z) does not fork over bB if and only if |H ψ(b). �

In Section 2 we will show that (for T simple) T is weakly low if and only if some
(any) lovely pair P ≺ M eliminates the ∃y ∈ P quantifier. (This will be more or
less tautological.) We will show that in this case any theory T ∗ (as described in
Remark 1.2) is simple. Namely, the P-part of a lovely pair P ≺ M , when equipped
with traces of definable sets in M , has a simple theory. We also show that when T is
low then lovely pairs uniformly eliminate the ∃y ∈ P quantifier.

In Section 3 we recall an example due to Casanovas of a simple nonlow theory
and point out that this example is weakly low.

In Section 4, we give an example of a non-weakly-low simple theory. The exam-
ple will be a parametrized version of Casanovas’s example.

2 Quantifier Elimination, Weak Lowness, and Simplicity

We continue with the conventions and notation of Section 1. So T is a complete
simple theory in language L. Let P ≺ M be a lovely pair of models of T , and let
L∗, P∗, and T ∗ be as in Remark 1.2.

Proposition 2.1 T is weakly low if and only if T ∗ has quantifier-elimination.
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Proof First assume T to be weakly low. Let ϕ(x, y, z) be an L-formula, and
a ∈ M . We want to find an L(M)-formula ψ(y) such that for b ∈ P , |H ψ(b)
if and only if there is c ∈ P such that |H ϕ(a, b, c).

Let B ⊂ P be of cardinality ≤ |L| such that tp(a/P) does not fork over B. Let
ψ(y) be the L(aB)-formula given (for tp(a/B) and ϕ(x, y, z)) by weak lowness
of T . Suppose b ∈ P . Then a is independent from b over B. Moreover, by the
second clause in the definition of lovely pairs (the “coheir property”) ϕ(a, b, z) does
not fork over Bb if and only if ϕ(a, b, z) is realized in P . Hence |H ψ(b) if and only
if ϕ(a, b, z) is realized in P .

Conversely, suppose that T ∗ has quantifier-elimination. Let ϕ(x, y, z) ∈ L and
let a, B be from some big model M̄ of T . Clearly we may assume B to be of
cardinality ≤ |L|. As P ≺ M is a lovely pair we may also assume that B ⊂ P and a
is independent from P over B. Let ψ(y) be the L(M)-formula which is equivalent,
on P , to ∃z ∈ P(ϕ(a, y, z)). Write ψ(y) as ψ ′(d, y) for ψ ′(w, y) an L-formula and
d ∈ M .

Claim 2.2 For b independent from ad over B, ϕ(a, b, z) does not fork over Bb if
and only if |H ψ ′(d, b).

Proof of Claim If b (in M̄) is independent from ad over B, then as P ≺ M is a
lovely pair we may realize tp(b/ad B) in P and so may assume b ∈ P . But then we
have, by loveliness of P ≺ M , that ϕ(a, b, z) does not fork over Bb if and only if it
is realized in P . By choice of ψ ′(d, y), we get the claim. �

The only problem with deducing weak lowness of T is the additional parameter d in
Claim 2.2. But this is easily dealt with. As the condition “ϕ(a, y, z) does not fork
over By” is type-definable over aB (for y independent of a over B) we only have to
show that for y independent of a over B, the condition “ϕ(a, y, z) forks over y B” is
type-definable over aB. If not, there is some index set I and for each i ∈ I some bi
which is independent from a over B such that ϕ(a, bi , z) forks over Bbi , but there
is b′ realizing some ultraproduct of (tp(bi/aB))i such that ϕ(a, b′, z) does not fork
over aB. Without loss of generality bi is independent from ad over B and b′ realizes
the corresponding ultraproduct of (tp(bi/ad B))i . So b′ is also independent from ad
over B. But, by Claim 2.2, ¬ψ ′(d, bi ) for all i ; hence ¬ψ ′(d, b′); hence again by
the claim, ϕ(a, b′, z) forks over b′ B, a contradiction. �

Proposition 2.3 If T is low, then T ∗ has uniform QE.

Proof Let T be low, P ≺ M be a lovely pair of models of T , and let T ∗ be
the corresponding L∗-theory. Since T is low, then, as shown in [2], a saturated
(LP -)elementary extension (N , P) of (M, P) has the “coheir property” (the second
clause in the definition of a lovely pair). Note that from the proof of Proposition 2.1
it follows that for a weakly low T and any pair of models of T satisfying the coheir
property (not necessarily lovely), the corresponding theory T ∗ has QE. Thus P(N )
with the structure induced by N has QE, that is, for any ϕ(x, y, z) in L and a ∈ N
there is an L-formula ψa(x, t, y) and a parameter d ∈ N such that

∃z ∈ P ϕ(a, P(N ), z) = ψa(a, d, P(N )).

By (LP -)saturation of (N , P) and compactness, there are L-formulas

ψ1(x, t, y), . . . , ψn(x, t, y)
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such that for any a ∈ N there is 1 ≤ k ≤ n such that

∃z ∈ P ϕ(a, P(N ), z) = ψk(a, d, P(N ))

for some parameter d . Let z1, . . . , zk+1 be new variables of the same sort, and let

ψ(x, t, z1, . . . , zn, zn+1, y) =

n∧
k=1

(zk = zn+1 → ψk(x, t, y)).

Then for any a ∈ N there is d ∈ N and e1, . . . , en+1 ∈ N such that

∃z ∈ P ϕ(a, P(N ), z) = ψ(a, d, e1, . . . , en+1, P(N ))

(simply choose distinct e1, . . . , en , and let en+1 = ek for a suitable k).
But then it holds, in particular, for any a ∈ M . Since (M, P) ≺ (N , P), for any

a ∈ M there are d, e1, . . . , en+1 ∈ M such that

∃z ∈ P ϕ(a, P(M), z) = ψ(a, d, e1, . . . , en+1, P(M)).

Thus P(M) with the structure induced by M (and the corresponding theory T ∗) has
uniform QE. �

Finally in this section, we look at the question of preservation of simplicity when
passing to the “externally induced” structure.

Theorem 2.4 Let T be a simple weakly low theory. Then the theory T ∗ is simple.

Proof Let P ≺ M be a lovely pair of models of T , and T ∗ the corresponding L∗-
theory. As shown in [2], we can embed (M, P) in a κ-lovely pair (M1, P) of models
of T , for a sufficiently large κ , so that M |^P(M)P(M1), and such an embedding is al-
ways LP -elementary. Take a sufficiently saturated LP -elementary extension (N , P)
of (M1, P). So also (M, P) ≺ (N , P), and thus also M |^P(M)P(N ). Considering
the structure induced on P(N ) by parameters from M , we can view P(N ) as an L∗-
structure. Then clearly P(M) is an L∗-elementary substructure of P(N ), and P(N )
is a saturated model of T ∗.

Since T is weakly low, T ∗ has quantifier elimination. Therefore the L∗-type of
any a ∈ P(N ) is determined by the L-type of a over M (and vice versa). We will
show that for A ⊂ B ⊂ P(N ) and a ∈ P(N ), p∗(x, B) = tpL∗(a/B) does not
divide over A (in the sense of T ∗) if and only if p(x, B M) = tpL(a/B M) does not
divide over AM (in the sense of T ). Note that only the “if ” direction is needed to
show simplicity of T ∗. First note that for Bi ⊂ P(N ), B0 = B, (Bi : i ∈ ω) is
L∗-indiscernible over A if and only if (Bi : i ∈ ω) is L-indiscernible over AM , and
for a′

∈ P(N ), a′
|H

⋃
p∗(x, Bi ) if and only if a′

|H
⋃

p(x, Bi M).
Now, assume p(x, B M) = tpL(a/B M) does not divide over AM . Let

(Bi : i ∈ ω) be an L∗-indiscernible over A sequence in P(N ), with B0 = B.
Since M |^P(M)P(N ), tpL((Bi : i ∈ ω)/M) does not fork over P(M), so by the
coheir property and the characterization of L∗-types in P(N ), we may assume that
Bi are all in P(M1). Since p(x, B M) = tpL(a/B M) does not divide over AM ,
(Bi : i ∈ ω) is AM-indiscernible, and M1 is sufficiently saturated as an L-structure,
we can find a′

∈ M1 such that a′
|H

⋃
p(x, Bi M) and a′ |^AM M ∪

⋃
Bi . Since

a ∈ P(N ), B ⊂ P(N ), and P(N ) |^P(M)M , p(x, B M) does not divide over
B P(M). Thus a′ |^B P(M)M ∪

⋃
Bi . So, by the coheir property again, we may

assume that a′
∈ P(M1). But then, by the characterization of L∗-types in P(N ),
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a′
|H

⋃
p∗(x, Bi ). So p∗(x, B) does not divide over A. Simplicity of T ∗ now

follows from simplicity of T .
For the converse, assume that p∗(x, B) does not divide over A. Since B ⊂ P(N )

and P(N ) |^P(M)M , we may assume (by the coheir property) that B ⊂ P(M1). Let
(Bi : i ∈ ω) ⊂ N be a Morley sequence in tpL(B/AM), with B0 = B. Then
since B |^AP(M)AM , we have

⋃
Bi |^AP(M)AM . Again, by the coheir property,

we may assume that all the Bi are in P(M1). In particular, Bi ⊂ P(N ) for all
i . Note that (Bi : i ∈ ω) is L∗-indiscernible over A. So there is a′

∈ P(N )
realizing

⋃
p∗(x, Bi ). But then, by characterization of L∗-types in P(N ), a′ realizes⋃

p(x, Bi M). By Kim’s lemma, p(x, B M) does not divide over AM . �

3 Weak Lowness of the Casanovas Example

We will show that an example of a simple nonlow theory, due to Casanovas [3],
satisfies the weak lowness property.

First, we recall the construction. The structure consists of two sorts: P (points)
and I (indexes), unary predicates In , 0 < n < ω and a binary predicate R ⊂ I × P
such that In define disjoint infinite subsets of I such that

(1) ∀p ∈ P∃
=ni ∈ In R(i, p);

(2) if A, B ⊂ I are disjoint and finite and |A ∩ In| ≤ n for all n, then there is
p ∈ P such that R(i, p) holds for all i ∈ A and does not hold for all i ∈ B
(in particular, this implies that P is infinite);

(3) if A, B ⊂ P are disjoint and finite, then there is i ∈ I such that R(i, p) holds
for all p ∈ A and does not hold for all p ∈ B.

The theory T axiomatized by these statements is simple and nonlow. The algebraic
closure is given by acl(A) = A ∪

⋃
n{i ∈ In : ∃a ∈ AR(i, a)}, so, in particu-

lar, is disintegrated. The independence relation is given by A |^BC ⇐⇒ acl(AB)
∩ acl(C B) ⊂ acl(B). Any formula in one variable over an algebraically closed set
A is equivalent to a quantifier-free formula over A.

For a variable p of sort P and 1 ≤ n < ω, let (pn
1 , . . . , pn

n ) be a tuple of new
variables. For a tuple of variables x̄ , let x̄n be an extension of the tuple x̄ obtained
by adding new variables (pm

1 , . . . , pm
m ), 1 ≤ m ≤ n, for each variable p in x̄ of sort

P . Now, for any formula ψ(w̄, z) (where z is a single variable) and a tuple ā there
is 1 ≤ n < ω and a quantifier-free formula θ(w̄n, z) such that ψ(ā, z) is equivalent
to θ(ān, z). By compactness, we can choose one θ and n which will work for all
choices of ā.

We will show that T is weakly low. Note that for quantifier elimination in T ∗,
it is enough to show elimination of a single existential quantifier. Thus, since the
proof of Proposition 2.1 is done on a formula-by-formula basis, in the weak lowness
condition it is enough to consider formulas ϕ(x̄, ȳ, z) where z is a single variable.
Let (M, R, P, I, In)1≤n<ω be a saturated model of the theory T , ϕ(x̄, ȳ, z) an L(T )-
formula where z is a single variable, B ⊂ M (āk : k < ω) a Morley sequence over
B. We need to find n ∈ ω such that for any b̄ |^B ā0 such that (āk : k < ω) is a
Morley sequence over Bb̄, if the family (ϕ(āi , b̄, z) : i < ω) is n-consistent, then it
is consistent.

Augmenting b̄s with a fixed tuple from B (if needed), we may assume that āk are
disjoint from each other and from B. Let 1 ≤ m < ω and θ(x̄m, ȳm, z) be such
that θ is quantifier free, and for any ā and b̄, ϕ(ā, b̄, z) is equivalent to θ(ām, b̄m, z).
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Changing āk to ām
k and B to acl(B), and considering b̄m instead of b̄, we may assume

that ϕ is quantifier free. Also note that if ϕ1(x̄, ȳ, z) and ϕ2(x̄, ȳ, z) both satisfy the
weak lowness condition relative to n1 and n2, respectively, then so does ϕ1 ∨ ϕ2,
relative to n1 + n2. So we may assume that ϕ(x̄, ȳ, z) is a conjunction of atomic
formulas or their negations. We may also assume that we consider only such b̄ that
|H ∃zϕ(ā0, b̄, z).

Case 1: z is of sort P . If ϕ(x̄, ȳ, z) contains positively a formula of the form z = x j
or z = y j , then it is easy to see that the family (ϕ(āk, b̄, z) : k ∈ ω) is either 2-
inconsistent or consistent. Assume if ϕ(x̄, ȳ, z) contains positively a formula of the
form R(x j , z) where ā0 j (the j th component of the tuple ā0) is in In for some n. Let
N be the maximal of such ns. Then (ϕ(āk, b̄, z) : k ∈ ω) is N -inconsistent, and N
does not depend on the choice of b̄. If ϕ(x̄, ȳ, z) does not contain (positively) formu-
las of the form R(x j , z) where ā0 j ∈ In for some n or of the form z = x j , z = y j ,
then it is of the form ∧

j∈J0

R(x j , z) ∧

∧
j∈J1

¬R(x j , z)

∧

∧
j∈K0

R(y j , z) ∧

∧
j∈K1

¬R(y j , z) ∧

∧
j∈L0

z 6= x j ∧

∧
j∈L1

z 6= y j ∧ ξ(x̄, ȳ),

where for any j ∈ J0, ā0 j is not in In for any n, J0 ∩ J1 = ∅, K0 ∩ K1 = ∅,
and |H θ(āk, b̄) (since |H ∃zϕ(ā0, b̄, z), and (āk : k ∈ ω) is b̄-indiscernible). Then
(ϕ(āk, b̄, z) : k ∈ ω) is consistent.

Case 2: z is of the sort I . Since there are only finitely many Ims occurring in ϕ,
and Ims are disjoint, we may assume that

ϕ(x̄, ȳ, z) = z ∈ Im ∧ θ(x̄, ȳ, z)

or
ϕ(x̄, ȳ, z) = z 6∈ In1 ∪ · · · ∪ Inr ∧ θ(x̄, ȳ, z),

where θ(x̄, ȳ, z) is a conjunction of atomic formulas or their negations. Similarly to
Case 1, if θ has positive occurrences of z = x j or z = y j , then in both cases, the
family (ϕ(āk, b̄, z) : k ∈ ω) is either consistent or 2-inconsistent. If no such formulas
occur, then the only occurrences of z in θ(x̄, ȳ, z) are of the form R(z, x j ), R(z, y j ),
¬R(z, x j ), ¬R(z, y j ), ¬z = x j , ¬z = y j . Therefore, by disjointness of aks and the
axioms of T , (z 6∈ In1 ∪ · · · ∪ Inr ∧ θ(āk, b̄, z) : k ∈ ω) is consistent. Now, it is
easy to see that any definable subset of Im is either finite or cofinite. So in the case
when ϕ(x̄, ȳ, z) = z ∈ Im ∧ θ(x̄, ȳ, z), there is N such that for any parameters ā, b̄,
ϕ(ā, b̄, z) is either cofinite, or of size ≤ N . The existence of n now easily follows.

4 A Non-weakly-low Simple Theory

In this section we will give an example of a non-weakly-low simple theory, which
is, in some sense, a parametrized version of the Casanovas example. Our proofs are
similar to the ones in [3], with some modifications.

Our language L has 3 sorts: P (points), K (classes), and I (indices), unary func-
tion f : P → K , binary relations In ⊂ I × K , 1 ≤ n < ω, and a binary relation
R ⊂ I × P . The axioms are as follows.
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First we define an L-theory T0, axiomatized as follows.

(1) I , K , and P are infinite.
(2) For any b ∈ K , f −1(b) is infinite and f (P) = K (so P is divided into

infinitely many infinite classes by the relation f (x) = f (x ′), and K is the set
of “names” of these classes).

(3) For any b ∈ K , In(−, b) define infinite disjoint subsets of I .
(4) For any 1 ≤ n < ω, ∀y ∈ K∀z ∈ f −1(y)∃=n x(In(x, y) ∧ R(x, z)).

Note that the theory T0 is inductive (∀∃-axiomatizable).
Let (M, I, K , P, R, In)1≤n<ω be an existentially closed model of T0.

Lemma 4.1 M satisfies the following axiom schemes.

(5) For any b ∈ K , and any finite disjoint A0, A1 ⊂ I such that
|{i ∈ A0 : In(i, b)}| ≤ n for all n, there is c ∈ f −1(b) such that R(a, c)
holds for all a ∈ A0, and ¬R(a, c) holds for all a ∈ A1. Moreover, there are
infinitely many such c.

(6) For any n1, . . . , nm and distinct a1, . . . , am ∈ I there exists b ∈ K such that
In1(a1, b), . . . , Inm (am, b). Moreover, there are infinitely many such b.

(7) For any 1 ≤ n1, . . . , nm, n < ω, distinct b1, . . . , bm, bm+1, . . . , bl ∈ K , and
disjoint finite sets C0,C1 ⊂ P such that f −1({b1, . . . , bm}) ∩ C0 = ∅, there
exists a ∈ I such that

In1(a, b1), . . . , Inm (a, bm),

n∧
k=1

¬Ik(a, bm+1), . . . ,

n∧
k=1

¬Ik(a, bl),

R(a, c) for all c ∈ C0 and ¬R(a, c) for all c ∈ C1. Moreover, there are
infinitely many such a.

Proof Easy. �

Note that the axiom schemes (1 – 7) are first-order. Let T be axiomatized by (1 – 7).
So, any existentially closed model of T0 satisfies T . We will show that T is complete.

Let M be a model of T0. For A ⊂ M , let cl(A) = A ∪ {i ∈ I : In(i, b) ∧ R(i, c)
for some b ∈ A ∩ K , c ∈ f −1(b) and 1 ≤ n < ω}. Note that cl is a disintegrated
closure operator and cl(A) ⊂ acl(A).

For convenience, by Iω(−, b)we denote the partial type {¬In(−, b) : 1 ≤ n < ω}.

Lemma 4.2 Let M and N be ω1-saturated models of T , A = cl(A) ⊂ M,
A′

= cl(A′) ⊂ N countable, and let g : A → A′ be a partial isomorphism. Let
a ∈ M. Then there is a′

∈ N and a partial isomorphism g′
: cl(a A) → cl(a′ A′)

extending g ∪ {(a, a′)}.

Proof If a ∈ A, there is nothing to prove. So assume a 6∈ A = cl(A).

Case 1: a ∈ I . Let C0 = {c ∈ A ∩ P : R(a, c)}, C1 = {c ∈ A ∩ P : ¬R(a, c)}.
Since a 6∈ cl(A) = A, for any c ∈ C0, we have Iω(a, f (c)). So we need to find
a′

∈ N\A′ realizing R(x, g(c)) for all c ∈ C0, ¬R(x, g(c)) for all c ∈ C1, and
In(x, g(b)) or ¬In(x, g(b)) for b ∈ A ∩ K and 1 ≤ n < ω such that we have
In(a, b) or ¬In(a, b), respectively. Since for any c ∈ C0, In(a, f (c)) does not hold
for any n < ω, it follows from axiom scheme (7) that such type is consistent. By
saturation, we can find such a′. Finally, note that Aa = cl(Aa) and A′a′

= cl(A′a′).
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Case 2: a ∈ K . For any i ∈ A ∩ I let 1 ≤ ni < ω + 1 be such that we
have Ini (i, a). By axiom scheme (6), we can find a′

∈ N\A′ such that we have
Ini (g(i), a′) for all i ∈ A ∩ I (if ni = ω, we use the fact that In+1(x, b) implies
¬I1(x, b) ∧ · · · ∧ ¬In(x, b) plus compactness). Then g ∪ {(a, a′)} is a partial iso-
morphism. Note again that cl(Aa) = Aa and cl(A′a′) = A′a′.

Case 3: a ∈ P . By Cases 1 and 2, we may assume that cl(a)\{a} ⊂ A (so,
cl(Aa) = Aa. Let A0 = {i ∈ A ∩ I : R(i, x)}, A1 = {i ∈ A ∩ I : ¬R(i, x)}.
Note that for any 1 ≤ n < ω, |{i ∈ A0 : In(i, f (a))}| ≤ n (and f (a) ∈ A). So,
for any 1 ≤ n < ω, |{i ∈ g(A0) : In(i, g( f (a)))}| ≤ n. Also, g(A0) and g(A1)
are disjoint. So, by axiom scheme (5) and saturation, we can find a′

∈ N\A such
that f (a′) = g( f (a)), R(a′, i) holds for i ∈ g(A0), and R(a′, i) does not hold
for i ∈ g(A1). Then cl(A′a′) = A′a′, and g ∪ {a, a′

} is a partial isomorphism, as
needed. �

Proposition 4.3

(i) T is complete.
(ii) The complete type of a single element a over a cl-closed set A in a model of

T is determined by the quantifier-free type of a over A.
(iii) In T , acl = cl.

Proof (i) and (ii) follow easily from Lemma 4.2. For (iii), note that if a 6∈ A = cl(A),
then by the axiom schemes, there are infinitely many realizations of the quantifier
free type of a over A. �

Our next goal is to show simplicity of T . We are working inside a saturated model
of T . As in [3], we define an independence relation

A |^C B ⇐⇒ acl(AC) ∩ acl(BC) ⊂ acl(C),

and note that it is easy to check that |^ is invariant under automorphisms and sat-
isfies local and finite character, monotonicity, transitivity, symmetry, and extension,
and it suffices to show the independence theorem over an algebraically closed set.
Exactly as in Lemma 5.4 of [3], we can see that in our case it suffices to check the
independence theorem for types of single elements. So let C = acl(C) ⊂ A, B,
A |^C B, a |^C A, b |^C B, a ≡C b. We need to find c such that c ≡A a, c ≡B b
and c |^C AB. Since acl is disintegrated, the latter will follow from a |^C A, b |^C B,
so it suffice to find c such that c ≡A a, c ≡B b. We may assume that A, B are
algebraically closed, and a 6∈ A, b 6∈ B. Note that A ∩ B = C . We need to show that
q f tp(a/A) ∪ q f tp(b/B) is consistent. Let AK , AP , AI denote A ∩ K , A ∩ P , and
A ∩ I , respectively, and similarly for C and B.

Case 1: a, b ∈ I . Then q f tp(a/A) ∪ q f tp(b/B) is of the form

{Ink (x, k) : k ∈ AK
0 } ∪

⋃
k∈AK

1

Iω(x, k)∪

{Imk (x, k) : k ∈ BK
0 } ∪

⋃
k∈BK

1

Iω(x, k)∪

{R(x, p) : p ∈ AP
0 } ∪ {¬R(x, p) : p ∈ AP

1 }

∪{R(x, p) : p ∈ B P
0 } ∪ {¬R(x, p) : p ∈ B P

1 } ∪ x 6∈ A ∪ B,
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where AK is a disjoint union of AK
0 and AK

1 , BK is a disjoint union of BK
0

and BK
1 , and AK

0 ∩ C = BK
0 ∩ C (so also AK

1 ∩ C = BK
1 ∩ C). Clearly

f (AP
0 ∪ B P

0 ) ∩ (AK
0 ∪ BK

0 ) = ∅ (since a 6∈ acl(A) = A and b 6∈ acl(B) = B), by
axiom scheme (7) (and its “moreover” part), this type is consistent.

Case 2: a, b ∈ K . Then q f tp(a/A) ∪ q f tp(b/B) is of the form

{Ini (i, x) : i ∈ AI
0} ∪

⋃
i∈AI

1

Iω(i, x)∪

{Ini (i, x) : i ∈ B I
0 } ∪

⋃
i∈B I

1

Iω(i, x) ∪ x 6∈ A ∪ B

where AI is a disjoint union of AI
0 and AI

1 , B I is a disjoint union of B I
0 and B I

1 , and
AI

0 ∩ C = B I
0 ∩ C (so also AI

1 ∩ C = B I
1 ∩ C). Similarly to Case 2 in the proof of

Lemma 4.2, consistency follows from the axiom scheme (6).

Case 3: a, b ∈ P . Note that in this case, f (a) = f (b) = k0 ∈ C K . Also, if we
have In(i, k0) and R(i, a) or R(i, b), then i ∈ C I . Then q f tp(a/A) ∪ q f tp(b/B) is
of the form

{ f (x) = k0} ∪ {R(i, x) : i ∈ AI
0} ∪ {¬R(i, x) : i ∈ AI

1}

{R(i, x) : i ∈ B I
0 } ∪ {¬R(i, x) : i ∈ B I

1 } ∪ x 6∈ A ∪ B

where AI is a disjoint union of AI
0 and AI

1 , B I is a disjoint union of B I
0 and B I

1 ,
and AI

0 ∩ C = B I
0 ∩ C (so also AI

1 ∩ C = B I
1 ∩ C), and for any 1 ≤ n < ω,

{i ∈ AI
0 : In(i, k0)} = {i ∈ B I

0 : In(i, k0)} is a subset of C I of size ≤ n. Consistency
now follows from the axiom scheme (5).

Thus we have proved the following proposition.

Proposition 4.4 T is simple, with independence given by A |^C B ⇐⇒ acl(AC)
∩ acl(BC) ⊂ acl(C).

Note that T is not supersimple, since for any point p ∈ P , acl(P)\{p} is infinite but
not finite generated in the sense of acl.

Proposition 4.5 T is not weakly low.

Proof Let (al : l ∈ ω) be a sequence of distinct elements of I , and let 1 ≤ n < ω.
Note that (al : l ∈ ω) is a Morley sequence in the unique 1-type of sort I over ∅.
Let ϕ(x, y, z) = R(x, z) ∧ y = f (z). We can find b ∈ K such that In(al , b) holds
for any l. Then (al : l ∈ ω) is still a Morley sequence over b, and b |^∅a0. But
(ϕ(al , b, z) : i ∈ ω) is clearly n-inconsistent. Since n was arbitrary, this shows that
T is not weakly low. �
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