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Expressive Logics for Coalgebras via
Terminal Sequence Induction

Dirk Pattinson

Abstract This paper presents a logical characterization of coalgebraic behav-

ioral equivalence. The characterization is given in terms of coalgebraic modal

logic, an abstract framework for reasoning about, and specifying properties of,

coalgebras, for an endofunctor on the category of sets. Its main feature is the

use of predicate liftings which give rise to the interpretation of modal operators

on coalgebras. We show that coalgebraic modal logic is adequate for reasoning

about coalgebras, that is, behaviorally equivalent states cannot be distinguished

by formulas of the logic. Subsequently, we isolate properties which also ensure

expressiveness of the logic, that is, logical and behavioral equivalence coincide.

1 Introduction

Coalgebras for an endofunctor on the category of sets can be used to model a large

class of state-based systems including Kripke models, labeled transition systems,

Moore and Mealy machines, and deterministic automata (see Rutten [19] for an

overview). This raises the question of a uniform logical framework, which can be

used to reason about, and specify properties of, coalgebraically modeled systems.

It was Moss [13] who first suggested to use modal logic as language for reasoning

about coalgebras. In his coalgebraic logic, one expresses assertions about succes-

sor states using functor application. This has the advantage of being applicable to a

large class of endofunctors at the expense of a language, which is nonstandard, as

it lacks the usual modal operators and instead uses functor application to formulate

assertions about successor states. Other approaches, including Jacobs [8], Kurz [10],

and Rößiger [17] and [18], restrict attention to a syntactically defined class of endo-

functors. This has the advantage of providing a standard language at the expense of

being applicable only to an a priori restricted class of functors.
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By investigating semantical structures, which generalize the interpretation of

multimodal logic from Kripke models to arbitrary coalgebras, our approach tries

to bridge the gap between the two previously mentioned frameworks: coalgebraic

modal logic is based on the observation that predicate liftings can be used to interpret

both modal operators and atomic propositions on coalgebras. If T is an endofunctor

on the category of sets, a predicate lifting for T maps predicates on (subsets of) a set

X to predicates on the set T X , uniformly in X . If we think of T X as the observations

which can be made of a system with carrier set X after one transition step, predicate

liftings thus allow us to formulate properties of successor states. We demonstrate

by means of example that predicate liftings generalize modal operators and atomic

propositions from Kripke models to coalgebras for arbitrary endofunctors.

After having settled the preliminaries, we introduce the framework of coalgebraic

modal logic along with two construction principles for predicate liftings. We show

that coalgebraic modal logic is adequate, that is, behaviorally equivalent states cannot

be distinguished by formulas of the logic (Theorem 3.10). For the converse, we need

to analyze the notion of behavioral equivalence in detail. This is done in Section 4,

where the proof principle of terminal sequence induction is discussed. This principle

(Theorem 4.1, due to Worrell [20]) asserts that—if the underlying signature functor

is κ-accessible—two states are behaviorally equivalent if and only if they have the

same α-step behavior for all α < κ . Formally, this means that their projections

into the terminal sequence, defined by the underlying endofunctor, coincide for all

ordinals α < κ .

In the sequel, this proof principle is exploited to establish conditions on the set

of modal operators (given by a set of predicate liftings) which ensure expressiveness

of coalgebraic modal logic. That is, any two states with the same logical theory are

indeed behaviorally equivalent. This is the content of Theorem 5.9, which is proved

by terminal sequence induction: Given any state, one associates to each ordinal α

less than the accessibility degree of the underlying endofunctor a formula which is

satisfied by all states with the same α-step behavior.

2 Preliminaries and Notation

Throughout the paper, T denotes an endofunctor on the category Set of sets and

functions. We often require T to be accessible. That is, the action of T on a set X is

determined by the action of T on subsets of X which are of cardinality< κ for some

regular cardinal κ .

Formally, a functor is accessible if it preserves κ-filtered colimits for some regular

cardinal κ . In this situation, the cardinal κ is the accessibility degree of T and T

is called κ-accessible. Two standard references for accessibility are Borceux [4]

and Makkai and Paré [12]. The class of accessible functors is an attractive class

of (signature) functors for coalgebras since it contains nearly all of the signature

functors considered in the literature (with the exception of the unbounded powerset

functor) and enjoys numerous closure properties: the class of κ-accessible functors

is closed under composition, colimits, limits of cardinality less than κ and contains

all κ ′-accessible functors for κ ′ < κ . In particular, the bounded powerset functor

Pκ , defined by Pκ(X) = {x ⊆ X | card(x) < κ}, is κ-accessible. These closure

properties are proved, for example, in [4] and can be used to show that—in the

terminology of Rutten [19]—all polynomial functors with finite exponents are ω-

accessible.
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Given a (not necessarily accessible) endofunctor T : Set → Set, the definition of

T -coalgebras dualizes that of algebras for an endofunctor.

Definition 2.1 A T -coalgebra is a pair (C, γ ) where C is a set and γ : C → T C is

a function. A morphism of coalgebras f : (C, γ ) → (D, δ) is a function f : C → D

such that T f ◦ γ = δ ◦ f .

It is easy to see that T -coalgebras, together with their morphisms, form a category

which we denote by CoAlg(T ). Given a T -coalgebra (C, γ ) we often refer to C as

the carrier set and to γ as its transition structure.

The generality of the above definition (achieved through the parametricity in the

endofunctor T ) allows us to model a large variety of systems in the coalgebraic

framework. We give some examples of structures, which naturally arise as coalge-

bras and which we will use as examples later; more examples can be found in [19].

Example 2.2 (1) Suppose L is a set (of labels) and T X = L × X . Then every

T -coalgebra (C, γ ) defines a set of streams: If γ = 〈hd, tl〉 : C → L × C , we

associate the infinite stream (hd(c), hd ◦ tl(c), hd ◦ tl◦ tl(c), . . .) to an element c ∈ C .

(2) Suppose I and O are sets and T X = (X × O)I is the set of functions from I

to X × O. A T -coalgebra (C, γ ) is a deterministic Mealy Machine with input set

I and output set O: given a state c ∈ C and an input i ∈ I , the transition function

γ provides us with a new state (the first component of γ (c)(i)) and an output (the

second component of γ (c)(i)).

(3) Consider T X = P (X) × P (A), where A is a set (of atomic propositions)

and P denotes the covariant powerset functor. Every T -coalgebra (C, γ : C →

P (C) × P (A)) gives rise to a Kripke model (see [3], [5]) by putting K(C, γ ) =

(C, R, V ) where C is the carrier (set of worlds) of the model, R is the successor

relation, given by

(c, c′) ∈ R ⇐⇒ c′ ∈ π1 ◦ γ (c)

and V : A → P (C) is the valuation of the propositional variables, defined by

V (a) = {c ∈ C | a ∈ π2 ◦ γ (c)}.

In the above, π1 (respectively, π2) denotes the first (respectively, second) projection.

Since the construction can be reversed, T -coalgebras are in one-to-one correspon-

dence with Kripke models for T X = P (X)× P (A).

As has been observed in Rutten [19], the morphisms of coalgebras for T X =

P (X)× P (A) are precisely the p-morphisms (bounded morphisms in the terminol-

ogy of [3]) known from modal logic.

Thinking of morphisms between coalgebras as preserving the observable behavior, it

is natural to consider elements of the carrier of coalgebras as behaviorally equivalent

if they can be identified by means of behavior preserving functions. This notion of

behavioral equivalence, formally defined below, was first studied by Kurz [9].

Definition 2.3 Suppose (C, γ ) and (D, δ) are T -coalgebras and (c, d) ∈ C × D.

We call c and d behaviorally equivalent, if there exists (E, ǫ) ∈ CoAlg(T ) and two

coalgebra morphisms f : (C, γ ) → (E, ǫ) and g : (D, δ) → (E, ǫ), such that

f (c) = g(d).
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Some remarks concerning the definition of behavioral equivalence are in order. Rut-

ten [19] has studied bisimulation, as defined by Aczel and Mendler [1], as the fun-

damental notion of equivalence. It is immediate that bisimilarity always implies

behavioral equivalence. For functors preserving weak pullbacks, it can be shown

that bisimilarity and behavioral equivalence coincide. For functors that do not have

this property, such as T X = {(x, y, z) ∈ X3 | card({x, y, z}) ≤ 2} (the example

from [1]), it can easily be seen that, for any T -coalgebra (C, γ ), any two points

c0, c1 are behaviorally equivalent. It is, however, not the case than any pair (c0, c1)

is bisimilar. Since T does not allow for any observations (other than the existence of

a successor state), we intuitively regard all states (c0, c1) as behaviorally equivalent

and therefore take behavioral equivalence as the more fundamental notion. The fol-

lowing sections are devoted to a characterization of behavioral equivalence in terms

of modal logics.

3 Coalgebraic Modal Logic

This section introduces the framework of coalgebraic modal logic, which is an ex-

tension of multimodal logic, interpreted over coalgebras. Compared with Moss’s

coalgebraic logic [13], coalgebraic modal logic can still be used for a large class of

endofunctors but has the advantage of a standard (multimodal) language.

This is achieved by using predicate liftings to formulate assertions about successor

states. Informally, if T is an endofunctor, predicate liftings for T map subsets of a

set X to subsets of T X . This allows to use predicate liftings to assert properties of

successor states, and hence to interpret modal operators on coalgebras. The present

section introduces the framework of coalgebraic modal logic and shows its adequacy,

that is, behaviorally equivalent points cannot be distinguished by logical formulas.

Definition 3.1 A predicate lifting λ for T is an order-preserving natural transfor-

mation λ : 2 → 2 ◦ T , where 2 is the contravariant powerset functor.

Spelling out this definition, a predicate lifting for T is an indexed family of maps

λ(C) : P (C) → P (T C), such that for all functions f : C → D we have that

λ(C)◦ f −1 = (T f )−1 ◦λ(D) (we write P (C) for the object part of the contravariant

powerset functor). Predicate liftings were first used by Hermida and Jacobs [7] in

the context of (co-)induction principles and later by Rößiger [17] and Jacobs [8] in

the context of modal logic. There, as well as in the related paper [17], predicate lift-

ings are syntactically defined entities, and naturality, which we take as our defining

property, is derived.

In a logical context, predicate liftings allow us to reason about the state of a sys-

tem after a transition has been performed. Order preservation thus allows us to infer

formulas involving successor states only from the corresponding judgments, inter-

preted in the current state. This corresponds to the rule ϕ⊢ψ H⇒ �ϕ⊢�ψ of

modal logic.

We illustrate the concept of predicate liftings by showing that they generalize the

interpretation of the �-operator from Kripke models (see, e.g., [3], [5]) to coalgebras

of arbitrary signature functors.

Example 3.2 Suppose T X = P (X) × P (A) as in Example 2.2. Consider the

operation λ(C) : P (C) → P (T C) defined by

λ(C)(c) = {(a, c′) ∈ T C | c′ ⊆ c}.
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An easy calculation shows that this defines a predicate lifting λ. Now consider a T -

coalgebra (C, γ ) and a subset c ⊆ C which we think of as the semantics of a modal

formula ϕ. Then

γ−1 ◦ λ(C)(c) = {c ∈ C | π1 ◦ γ (c) ∈ c}

(where π1 : P (C) × P (A) → P (C) denotes first projection) corresponds to the

interpretation of the modal formula �ϕ under the correspondence outlined in Exam-

ple 2.2.

The definition of λ(C) given in the last example can be rewritten (using the first

projection π1 : T C → P (C)) as λ(C)(c) = {t ∈ T C | π1(t) ⊆ c}, and the naturality

of λ follows immediately from the naturality of π1. Replacing π1 by an arbitrary

natural transformation, we obtain a construction principle for predicate liftings.

Proposition 3.3 Suppose µ : T → P is a natural transformation. Then the

operation λ(C) : P (C) → P (T C), given by

λ(C)(c) = {c ∈ T C | µ(C)(c) ⊆ c}

defines a predicate lifting λ for T .

Proof Let f : C → D. We have to show that λ(C) ◦ f −1 = (T f )−1 ◦ λ(D),

given that µ is natural, that is, P f ◦ µ(C) = µ(D) ◦ T f . If d ⊆ D, we have

λ(C)◦ f −1(d) = {c ∈ T C | µ(C)(c) ⊆ f −1(d)} = {c ∈ T C | P f ◦µ(C)(c) ⊆ d} =

{c ∈ T C | µ(D) ◦ T f (c) ⊆ d} = (T f )−1 ◦ λ(D)(d), showing that λ is natural. It is

immediate from the definition that λ preserves order. �

Continuing Example 2.2, we now show that predicate liftings can also be used to

interpret atomic propositions of Kripke models.

Example 3.4 Again, let T X = P (X)×P (A). For some fixed a ∈ A, consider the

(constant) operation λa(C) : P (C) → P (T C) given by

λa(C)(c) = {(c′, a) ∈ T C | a ∈ a}.

Given an arbitrary subset c ⊆ C , we obtain

γ−1 ◦ λa(C)(c) = {c ∈ C | a ∈ π2 ◦ γ (c)},

that is, the set of worlds satisfying proposition a under the correspondence outlined

in Example 2.2.

Again there is a more general principle underlying the construction of the (constant)

lifting of the last example. In the following, we write 1 = {0} and, if X is a set,

!X : X → 1 for the uniquely defined surjection.

Proposition 3.5 Suppose a ⊆ T 1. Then the operation λ(C) : P (C) → P (T C),

given by

λ(C)(c) = {c ∈ T C | (T !C)(c) ∈ a}

defines a (constant) predicate lifting λ for T .

Proof Note that λ(C)(c) = (T !C)
−1(a) where !C : C → 1 is the unique morphism.

Given f : C → D, we have to show that λ(C) ◦ f −1 = (T f )−1 ◦ λ(D). If d ⊆ D,

this follows from (T f )−1 ◦ λ(D)(d) = (T f )−1 ◦ (T !D)
−1(a) = (T !C )

−1(a) =

λ(C)( f −1(d)). Clearly λ preserves order. �
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The following example shows how Propositions 3.3 and 3.5 can be used to construct

predicate liftings, which make assertions about deterministic automata.

Example 3.6 Suppose T X = (X × O)I where I and O are sets. We have demon-

strated in Example 2.2 that T -coalgebras are deterministic Mealy automata with in-

put set I , producing elements of O as outputs.

Given an input i ∈ I , the natural transformation ρ : T → P , defined by

ρ(C)( f ) = {π1( f (i))} for f ∈ (C × O)I = T C , gives rise to a predicate lift-

ing λi by Proposition 3.3. Intuitively, λi allows us to formulate properties about the

successor state after consuming input i ∈ I .

If (i, o) ∈ I × O, then the subset { f ∈ (1 × O)I | π2( f (i)) = o} gives rise

to a lifting µ(i,o) by Proposition 3.5. The lifting µ(i,o) can be used to assert that the

current state is such that processing of input i yields output o.

In classical modal logic, one often defines the operator ♦ by putting ♦ϕ = ¬�¬ϕ.

We conclude this section by showing that this can already be accomplished on the

level of predicate liftings.

Proposition 3.7 Suppose λ is a predicate lifting for T . Then the operation λ¬(C),

defined by

λ¬(C)(c) = T C \ λ(C)(C \ c)

is a predicate lifting for T .

Proof Because negation preserves inverse images. �

For the remainder of this exposition,3 denotes a set of predicate liftings and we put

3¬ = {λ¬ | λ ∈ 3}.

As we have seen, predicate liftings can be used to interpret both modalities and

atomic propositions. We are thus led to study propositional logic, enriched with

predicate lifting operators, as a logic for coalgebras.

Since the expressiveness and definability results require infinitary logics in the

general case, the definition is parametric in a cardinal number κ . Note that atomic

propositions also arise through predicate liftings (Example 3.4), hence we do not

need to include atomic propositions in the definition.

Definition 3.8 Suppose κ is a cardinal number. The language L
κ (3) associated

with 3 is the least set with grammar

ϕ ::=
∧
8 | ¬ϕ | [λ]ϕ (8 ⊆ L

κ (3) with card(8) < κ and λ ∈ 3).

Given (C, γ ) ∈ CoAlg(T ), the semantics [[ϕ]]γ ⊆ C is given inductively by the

clauses

[[
∧
8]]γ =

⋂

ϕ∈8

[[ϕ]]γ [[¬ϕ]]γ = C \ [[ϕ]]γ [[[λ]ϕ]]γ = γ−1 ◦ λ(C)([[ϕ]]γ ).

Note that L
κ (3) contains the formula tt =

∧
∅ (with [[tt]]γ = C) and that L

κ (3)

is finitary if κ = ω. If we want to emphasize that a formula ϕ ∈ L
κ(3) holds at a

specific state c ∈ C of a coalgebra (C, γ ), we write c |Hγ ϕ for c ∈ [[ϕ]]γ . As usual

Th(c) = {ϕ ∈ L
κ(3) | c |Hγ ϕ} denotes the logical theory associated to a state

c ∈ C .

Given syntax and semantics of coalgebraic modal logic, we now begin the study

of the relationship between logical and behavioral equivalence. Since behavioral
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equivalence is defined in terms of coalgebra morphisms (Definition 2.3), we first

study the relation between logical formulas and morphisms of coalgebras.

Lemma 3.9 If f : (C, γ ) → (D, δ) ∈ CoAlg(T ), then

[[ϕ]]γ = f −1([[ϕ]]δ)

for all ϕ ∈ L
κ (3).

Proof We proceed by induction on the structure of ϕ. For conjunctions and

negations, the claim is evident. So suppose ϕ ∈ L
κ (3) and [[ϕ]]γ = f −1([[ϕ]]δ).

By naturality of λ and using f ∈ CoAlg(T ), we obtain f −1([[[λ]ϕ]]δ) =

(δ ◦ f )−1 ◦ λ(D)([[ϕ]]δ) = (T f ◦ γ )−1 ◦ λ(D)([[ϕ]]δ) = γ−1 ◦ λ(C) ◦ f −1([[ϕ]]δ) =

[[[λ]ϕ]]γ , which proves the claim. �

The importance of Lemma 3.9 is that it allows us to conclude that coalgebraic modal

logic is invariant under behavioral equivalence, that is, behaviorally equivalent points

cannot be distinguished by logical formulas.

Theorem 3.10 Let (C, γ ), (D, δ)∈CoAlg(T ) and ϕ∈L
κ (3). Then Th(c)=Th(d)

whenever (c, d) ∈ C × D are behaviorally equivalent.

Proof If (c, d) are behaviorally equivalent, there are (E, ǫ) ∈ CoAlg(T ) and a pair

of coalgebra morphisms f : (C, γ ) → (E, ǫ), g : (D, δ) → (E, ǫ) such that

f (c) = g(d). By Lemma 3.9 we have c |Hγ ϕ if and only if c ∈ [[ϕ]]γ if and only if

f (c) ∈ [[ϕ]]ǫ . Since f (c) = g(d), this is the case if and only if g(d) ∈ [[ϕ]]ǫ if and

only if g ∈ [[ϕ]]δ if and only if d |Hδ ϕ. �

The preceding theorem states that behavioral equivalence implies logical equiva-

lence. The remainder of this paper is concerned with conditions on 3 that also en-

sure the converse. Note that coalgebraic modal logic is in general not strong enough

to separate nonequivalent states: consider, for example, the logic given by the empty

set of liftings. In order to tackle the problem of giving a logical characterization of

behavioral equivalence, we need a detailed analysis of behavioral equivalence, which

is given in the next section.

4 Terminal Sequence Induction

This section discusses the proof principle of terminal sequence induction, due to

Worrell [20]. It provides an inductive characterization of behavioral equivalence

and, hence, allows us to use transfinite induction to show that two states are behav-

iorally equivalent. We concentrate on applications of the proof principle; the reader

is referred to [20] for full details.

We begin with a brief discussion of the terminal sequence, which is best thought

of as a sequence of approximants to the final coalgebra (that is, the final object in the

category CoAlg(T )).

The terminal sequence associated with T is an ordinal indexed sequence of sets

(Zα) together with a family (pαβ) of functions pαβ : Zα → Zβ for all ordinals β ≤ α

such that

1. Zα+1 = T Zα and pα+1
β+1 = T pαβ for all β ≤ α,

2. pαα = idZα and pαγ = p
β
γ ◦ pαβ for γ ≤ β ≤ α,

3. the cone (Zα, (pαβ )β<α) is limiting whenever α is a limit ordinal.
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(See MacLane [11] for more on limiting cones.) Thinking of Zα as the α-fold appli-

cation of T to the limit 1 of the empty diagram, we sometimes write Zα = T α1 in

the sequel. With this notation, the terminal sequence of T is the continuation of the

sequence

1 T 1
!oo T 21

T !oo T 31
T 2!oo . . .

through the class of all ordinal numbers, with 0 considered as limit ordinal. Intu-

itively, T α1 represents behaviors which can be exhibited in α steps. For example,

if T X = D × X and n ∈ N, then T n1 ∼= Dn contains all lists of length n. It

has been shown in [20] that the terminal sequence of a κ-accessible endofunctor

converges to a final coalgebra (Z , ζ ). Given any (C, γ ) ∈ CoAlg(T ), we write

!γ : (C, γ ) → (Z , ζ ) for the unique morphism induced by finality of (Z , ζ ).

Also note that every coalgebra (C, γ ) gives rise to a cone (C, (γα : C → T α1))

over the terminal sequence as follows:

1. If α = β + 1 is a successor ordinal, let γα = Tγβ ◦ γ : C → T α1.

2. If α is a limit ordinal, γα is the unique map for which γβ = pαβ ◦ γα for all

β < α.

(This has already been noticed by Barr [2]). Using this notation, terminal sequence

induction can be formulated as follows.

Theorem 4.1 (Worrell) Suppose T is κ-accessible and (C, γ ), (D, δ) ∈ CoAlg(T ).

The following are equivalent for (c, d) ∈ C × D:

1. c and d are behaviorally equivalent,

2. !γ (c) =!δ(d),

3. for all α < κ: γα(c) = δα(d).

For the proof, see [20]. Intuitively, γα(c) represents the behavior of c, which is

observable in at most α transition steps. Thus γα(c) = δα(d) asserts that the α-step

behavior of c and d coincide. The theorem therefore allows us to conclude that c and

d are behaviorally equivalent if their α-step behaviors coincide for all α less than the

accessibility degree of T . We illustrate this by means of some examples.

Example 4.2 (1) Suppose T X = L × X for some set L of labels. Then T is

polynomial, hence ω-accessible. Note that the elements T n1 ∼= Ln of the terminal

sequence associated to T are the sequences of labels, which have length n.

Given a T -coalgebra (C, γ ), every state c0 ∈ C gives rise to an infinite sequence

c0
l1

−→ c1
l2

−→ c2 . . . by putting c
l

−→ c′ if and only if γ (c) = (l, c′). In this

setup, we have γn(c0) = (l1, . . . , ln), that is, the sequence of the first n labels given

by c0. Theorem 4.1 states that two states c and d of T -coalgebras are behaviorally

equivalent if and only if they give rise to the same finite sequences of labels.

(2) Suppose T X = Pω(L × X) with L as above. Because Pω is ω-accessible, T

is ω-accessible, since ω-accessible functors are closed under composition.

A T -coalgebra (C, γ ) is a finitely branching labeled transition system: put

c
l

−→ c′ if and only if (l, c′) ∈ γ (c). Given two T -coalgebras (C, γ ) and (D, δ),

we define a relation ∼n on C × D by induction on n as follows: ∼0= C × D and

c ∼n+1 d if and only if

(a) ∀c′.c
l

−→ c′ H⇒ ∃d ′.d
l

−→ d ′ and c′ ∼n d ′;

(b) ∀d ′.d
l

−→ d ′ H⇒ ∃c′.c
l

−→ c′ and c′ ∼n d ′.
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We obtain that c ∼n d if and only if γn(c) = δn(d). The relation ∼n was used

to characterize bisimilarity for finitely branching labeled transition systems in Hen-

nessy and Milner [6]. Intuitively, c ∼n d if c and d are bisimilar for the first n

transition steps. In this setting, Theorem 4.1 states that c and d are behaviorally

equivalent if and only if c ∼n d for all n ∈ ω.

(3) Suppose κ is a regular cardinal such that κ > ω and consider T X = Pκ(X).

Then T is κ-accessible.

Now take C = ω + 2 and γ (c) = {c′ | c′ ∈ c}. One obtains γα(c) = γα(c
′) if

and only if c ∩ α = c′ ∩ α, for c, c′ ∈ C and α < κ . Hence γα(ω) = γα(ω + 1)

for all α ≤ ω but γω+1(ω) 6= γω+1(ω + 1). Hence ω and ω + 1 are not behaviorally

equivalent.

Writing c → c′ for c′ ∈ γ (c), this can be explained by the fact thatω+1 has a suc-

cessor (namely,ω) which allows for arbitrary long sequencesω → nk → · · · → n0 = 0,

for n0 < n1 < · · · nk < ω, whereas there is no successor of ω with this property.

Note that this also shows that induction up to the accessibility degree of T is

necessary to establish behavioral equivalence of two points.

The following section uses terminal sequence induction to establish a partial con-

verse of Theorem 3.10.

5 Expressivity of Coalgebraic Modal Logic

While behaviorally equivalent states always have the same logical theory, as we have

seen in Theorem 3.10, the converse is not necessarily true (consider, for example, the

logic given by the empty set of predicate liftings). Logics, for which the converse of

Corollary 3.10 holds, are called expressive.

Definition 5.1 We say that L
κ(3) is expressive, if for all T -coalgebras (C, γ ) and

(D, δ) and all (c, d) ∈ C × D, Th(c) = Th(d) implies that c and d are behaviorally

equivalent.

This section introduces separation, a condition on sets of predicate liftings and gives

a characterization of coalgebraic behavioral equivalence in logical terms. The proof

of the characterization theorem uses terminal sequence induction as its main tool.

The basic idea behind separation is the possibility of distinguishing individual

points of T X by means of lifted subsets of X . This is formalized as follows.

Definition 5.2 (Separation)

1. Suppose C is a set and C ⊆ P (C) is a system of subsets of C . We call C

separating if the map s : C → P (C), s(c) = {c ∈ C | c ∈ c}, is monic.

2. A set 3 of predicate liftings for T is called separating if, for all sets C , the

set {λ(C)(c) | λ ∈ 3, c ⊆ C} is a separating set of subsets of T C .

In a separating system of subsets, the system contains enough information to distin-

guish the individual elements of the underlying set. The intuition behind a separating

set of predicate liftings is that elements of T C can be distinguished by means of the

subsets λ(C)(c) obtained by applying the liftings. Alternatively, one can think of

s(c) as the logical theory of the state c; the fact that s is monic then allows us to

reconstruct a state from its theory.

Many sets of predicate liftings are indeed separating, notably the predicate liftings

giving rise to the interpretation of modalities and atoms in (standard) modal logic.
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Example 5.3 Suppose T X = P (X)× P (A) as in Example 2.2 and consider

3 = {λ} ∪ {λa | a ∈ A},

where λ and the λas are given as in Example 3.2 and Example 3.4, respectively. We

show that3 is separating. Fix some set C and let S = {µ(C)(c) | µ ∈ 3 and c ⊆ C}.

We establish that s : T C → P (S), given by s(c) = {s ∈ S | c ∈ s} is injective.

Note that by definition of s, we have µ(C)(c) ∈ s(c) if and only if c ∈ µ(C)(c), for

all c ∈ C , c ⊆ C , and µ ∈ 3.

So suppose s(c0, a0) = s(c1, a1). Then (c0, a0) ∈ λ(C)(c0), hence λ(C)(c0) ∈

s(c0, a0) = s(c1, a1). So (c1, a1) ∈ λ(C)(c0), that is, c1 ⊆ c0 by definition of λ. Now

assume a ∈ a1. Then (c1, a1) ∈ λa(C)(C), thus λa(C)(C) ∈ s(c1, a1) = s(c0, a0).

Therefore (c0, a0) ∈ λa(C)(C), showing a ∈ a0 and, since a was arbitrary, a1 ⊆ a0.

We conclude (c0, a0) = (c1, a1) by symmetry.

We now show that, given a separating set of predicate liftings, every singleton set

{x}, for x ∈ T X , arises as the intersection of lifted subsets of X . In order to obtain

this representation we have to use both liftings λ ∈ 3 and liftings of the form λ¬, as

introduced in Proposition 3.7. Recall the notation 3¬ = {λ¬ | λ ∈ 3} introduced in

Section 3.

Lemma 5.4 Suppose3 is separating and X is a set. Then
⋂

{λ(X)(x) | λ ∈ 3 ∪3¬ and x ∈ λ(X)(x)} = {x}

for all x ∈ T X.

Proof Fix x ∈ T X and denote the left-hand side of the above equation by LHS.

Clearly LHS ⊇ {x}.

In order to see that LHS ⊆ {x}, consider the assignment m(y) =
⋃
λ∈3{λ(X)(x) |

y ∈ λ(X)(x)} and pick y ∈ LHS. Since3 is separating, m is monic and it suffices to

show that m(x) = m(y). This follows if, for all λ ∈ 3 and all x ⊆ X ,

x ∈ λ(X)(x) iff y ∈ λ(X)(x).

First suppose that x ∈ λ(X)(x) for some λ ∈ 3 and some x ⊆ X . Since y ∈ LHS,

clearly y ∈ λ(X)(x). Conversely, if x /∈ λ(X)(x), we have x ∈ λ¬(X \ x). Since

y ∈ LHS, we have y ∈ λ¬(X \ x), which amounts to y /∈ λ(X)(x). �

Lemma 5.4 provides a first handle for isolating a single point x ∈ T X . However, we

have to consider the liftings of sets whose cardinality is not bounded above (amount-

ing to conjunctions of unbounded cardinality on the logical side). We can do better

if T is κ-accessible.

Lemma 5.5 Suppose T is κ-accessible, X is a set, and x ∈ T X. Then there exists

x0(x) ⊆ X with card(x0(x)) < κ such that

x ∈ λ(X)(x) iff x ∈ λ(X)(x ∩ x0(x))

for all x ⊆ X and all predicate liftings λ for T .

Proof Since T is κ-accessible, there exists a subset x0 = x0(x) ⊆ X with

card(x0) < κ such that x = (T i)(x0) for some x0 ∈ x0, where i : x0 → X denotes

the inclusion.
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Since predicate liftings preserve order by definition, we have x ∈ λ(X)(x) when-

ever x ∈ λ(X)(x ∩ x0). For the other implication, suppose that x ∈ λ(X)(x) for some

x ⊆ X and consider the diagram

P (X)
λ(X)

//

i−1

��

P (T X)

(T i)−1

��

P (x0)
λ(x0)

// P (T x0)

which commutes by the naturality of λ. We obtain

(T i)−1(λ(X)(x ∩ x0)) = λ(x0) ◦ i−1(x ∩ x0)

= λ(x0) ◦ i−1(x)

= (T i)−1(λ(X)(x)).

Since x = (T i)(x0) ∈ λ(X)(x), x0 ∈ (T i)−1(λ(X)(x)) = (T i)−1(λ(X)(x ∩ x0));

hence x = (T i)(x0) ∈ λ(X)(x ∩ x0). �

Combining Lemmas 5.4 and 5.5 allows us to isolate single points x ∈ T X by liftings

of subsets x ⊆ X which are of cardinality less than κ . This is the content of the

following corollary, which immediately follows from the fact that predicate liftings

preserve order.

Corollary 5.6 Suppose T is κ-accessible,3 is separating, and X is a set. Then
⋂

{λ(X)(x) | λ ∈ 3 ∪3¬ and x ∈ λ(X)(x), x ⊆ x0(x)} = {x},

for x ∈ T X and x0(x) as in Lemma 5.5.

The next lemma transfers the preceding result to a logical setting. We show that

the logics induced by a separating set of predicate liftings can distinguish distinct

elements z0, z1 ∈ T α1, for α less than the accessibility degree of T . For the general

case, one has to require that the predicate liftings preserve intersections. This is not

needed in the case where κ = ω or κ is inaccessible, as we shall see later.

Definition 5.7 We say that 3 is intersection preserving, if

λ(X)(
⋂

X) =
⋂

{λ(X)(x) | x ∈ X}

for all λ ∈ 3, whenever X is a set and X ⊆ P (X).

For example, all predicate liftings constructed via Proposition 3.3 and Proposition 3.5

are intersection preserving. The following lemma is the main step in the proof of the

expressiveness theorem.

Lemma 5.8 Suppose T is κ-accessible, 3 is separating and intersection-

preserving with card(3) < κ .

Then, for all α < κ and all z ∈ T α1, there exists a formula ϕαz ∈ L
κ(3) such

that [[ϕαz ]]γ = γ−1
α ({z}) for all (C, γ ) ∈ CoAlg(T ).

Proof We define ϕαz by transfinite induction. If α is a limit ordinal, let ϕαz =∧
β<α ϕ

β

pαβ (z)
, where pαβ : Zα → Zβ is the connecting morphism of the terminal
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sequence. We obtain [[ϕαz ]](Z ,ζ ) = ζ−1
α ({z}) using the fact that (Zα, (pαβ)β<α) is a

limiting cone.

Now suppose α = β + 1 is a successor ordinal. By Lemma 5.5 there exists a

subset z0 = z0(z) ⊆ Zβ with card(z0) < κ such that z ∈ λ(Zβ)(z) if and only if

z ∈ λ(Zβ )(z ∩ z0) for all z ⊆ Zβ and all λ ∈ 3.

We put ϕαz = ϕp ∧ ϕn where

ϕp =
∧

λ∈3

[λ]
∨

{ϕ
β

z′ | z′ ∈ d(λ)}

for d(λ) =
⋂

{z ⊆ z0 | z ∈ λ(Zβ)(z)}, and

ϕn =
∧

λ∈3

∧
{¬[λ]¬ϕ

β

z′ | z′ ∈ z0 and z ∈ λ¬(Zβ)({z
′})}.

Note that both ϕp and ϕn ∈ L
κ(3). For ϕp we obtain

[[ϕp]]γ =
⋂

λ∈3

γ−1 ◦ λ(C)(γ−1
β (d(λ)))

=
⋂

λ∈3

γ−1
β+1 ◦ λ(Zβ)(d(λ))

= γ−1
β+1(

⋂
{λ(Zβ)(z) | λ ∈ 3 and z ∈ λ(Zβ)(z), z ⊆ z0}),

since every λ(Zβ ) preserves intersections. Regarding ϕn , we calculate

[[ϕn]]γ =
⋂

λ∈3

⋂
{γ−1 ◦ λ¬(C)(γ−1

β ({z′})) | z′ ∈ z0 and z ∈ λ¬(Zβ)({z
′})}

=
⋂

λ∈3

⋂
{γ−1
β+1 ◦ λ¬(Zβ)({z

′}) | z′ ∈ z0 and z ∈ λ¬(Zβ)({z
′})}

= γ−1
β+1(

⋂
{λ¬(Zβ)(z) | λ ∈ 3 and z ∈ λ¬(Zβ)(z), z ⊆ z0}),

where the last equation follows from the fact that λ¬(Zβ) preserves arbitrary unions.

Summing up, we obtain

[[ϕn ∧ϕp]]γ = γ−1
β+1(

⋂
{λ(Zβ)(z) | λ ∈ 3∪3¬, z ∈ λ(Zβ )(z), z ⊆ z0} = γ−1

β+1({z})

by Corollary 5.6, which proves the lemma. �

The main theorem is now easy.

Theorem 5.9 Suppose T is κ-accessible and3 is separating and intersection pre-

serving with card(3) < κ . Then L
κ (3) is expressive.

Proof Suppose (C, γ ) and (D, δ) are T -coalgebras and (c, d) ∈ C × D have the

same logical theory, that is, Th(c) = Th(d). By Theorem 4.1 we have to show that

γα(c) = δα(d) for all α < κ . So fix some α < κ and let z = γα(c). By Lemma 5.8,

there exists a formula ϕ = ϕαz ∈ L
κ (3) with [[ϕ]]ǫ = ǫ−1

α ({z}) for all T -coalgebras

(E, ǫ). Now [[ϕ]]γ = γ−1
α ({γα(c)}), that is, ϕ ∈ Th(c). Since Th(c) = Th(d) by

assumption, we obtain d ∈ [[ϕ]]δ = δ−1
α (z), showing δα(d) = z. The claim follows

from the definition of z. �

Note that preservation of intersections is not needed for κ = ω or κ inaccessible.
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Remark 5.10 Suppose that κ = ω or κ is inaccessible. Then Lemma 5.8 and,

as a consequence, Theorem 5.9 remain valid, if one drops the assumption that 3 is

intersection-preserving. In the proof of Lemma 5.8, one puts

ϕp =
∧

λ∈3

∧
{[λ]

∨

z′∈z

ϕ
β

z′ | z ⊆ z0 and z ∈ λ(Zβ)(z)}

and

ϕn =
∧

λ∈3

∧
{¬[λ]¬

∨

z′∈z

ϕ
β

s ′ | z ⊆ z0 and z ∈ (¬λ¬)(Zβ)(z)}.

It follows from κ inaccessible (respectively, κ = ω) that both ϕp, ϕn ∈ L
κ(3), and

one proves the lemma by appealing to Corollary 5.6.

We conclude the section with some examples illustrating the expressiveness results.

Example 5.11 (1) Let T X = Pω(L × X). We have argued in Example 4.2 that a

T -coalgebra (C, γ ) is a finitely branching labeled transition system.

Consider, for l ∈ L, the natural transformation µl(C) : Pω(L × C) → P (C)

given by µl(C) = i ◦ Pω(π2), where i : Pω(C) → P (C) is the inclusion and

π2 : L × C → C is the projection. By Proposition 3.3, every µl gives rise to a

predicate lifting λl . A calculation similar to the one in Example 5.3 shows that the

set 3 = {λl | l ∈ L} thus obtained is separating.

Given a T -coalgebra (C, γ ), we put c
l

−→ c′ if (l, c′) ∈ γ (c). Under this corre-

spondence, we have c |H [λl ]ϕ if and only if ∀c′.c
l

−→ c′ H⇒ c′ |H ϕ for c ∈ C

and ϕ ∈ L
ω(3). Theorem 5.9 then reproves the characterization result by Hennessy

and Milner [6] in the coalgebraic framework.

(2) Suppose T X = Pκ(X) × P (A) for some set A (of atomic propositions) with

card(A) < κ . Consider the predicate lifting λ and, for a ∈ A, the liftings λa , as

described in Example 3.2 and Example 3.4.

If 3 = {λ} ∪ {λa | a ∈ A}, then 3 is intersection-preserving and, by Theo-

rem 5.9, the logical equivalence induced by L
κ (3) coincides with behavioral equiv-

alence. This amounts to saying that, in Kripke models with branching degree less

than κ , modal logic with conjunctions of size less than κ characterizes behavioral

equivalence.

If κ > ω, one can use an argument similar to that used in Example 4.2 to show

that the equivalence induced by L
ω(3) is weaker than behavioral equivalence.

(3) Suppose I and O are finite sets and T X = (X × O)I . We have shown in

Example 2.2 that T -coalgebras are input-output automata. In Example 3.6 we have

introduced the set3 = {λi | i ∈ I }∪{µ(i,o) | (i, o) ∈ I × O} of predicate liftings for

T . It is easy to see that 3 is separating and intersection preserving. Hence L
ω(3)

characterizes states of input output automata up to behavioral equivalence.

6 Conclusions and Related Work

The main result of the paper is the characterization of behavioral equivalence as log-

ical equivalence in the framework of coalgebraic modal logic. In this framework,

modal operators and atomic propositions are interpreted by means of predicate lift-

ings.

Compared to the syntax-based approaches [8], [10], [17], and [18], this has the

advantage of not restricting the class of signature functors a priori. Also, it can
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easily be seen that (in the one sorted case) all of the above approaches fit into our

framework.

In comparison to Moss’s coalgebraic logic, our language has the advantage of hav-

ing a standard syntax (that is, propositional logic plus modal operators). However,

we only obtain our characterization result for separating sets of predicate liftings.

The proof of the expressiveness theorem used terminal sequence induction, due to

Worrell [20], as its main proof principle.

A preliminary version of these results has appeared as Pattinson [15]. They are

extended by the present paper in two major directions. First, we have used predicate

liftings to unify the treatment of modal operators and atomic propositions. Second,

our language only needs conjunctions of size less than the accessibility degree of the

underlying endofunctor.

The present paper deals with coalgebraic modal logic on a purely semantical level.

Proof systems for coalgebraic modal have been studied in Pattinson [16].
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