Open Access
Summer 1999 Powers of 2
Horst Herrlich, Kyriakos Keremedis
Notre Dame J. Formal Logic 40(3): 346-351 (Summer 1999). DOI: 10.1305/ndjfl/1022615615

Abstract

It is shown that in ZF Martin's $ \aleph_{0}^{}$-axiom together with the axiom of countable choice for finite sets imply that arbitrary powers 2X of a 2-point discrete space are Baire; and that the latter property implies the following: (a) the axiom of countable choice for finite sets, (b) power sets of infinite sets are Dedekind-infinite, (c) there are no amorphous sets, and (d) weak forms of the Kinna-Wagner principle.

Citation

Download Citation

Horst Herrlich. Kyriakos Keremedis. "Powers of 2." Notre Dame J. Formal Logic 40 (3) 346 - 351, Summer 1999. https://doi.org/10.1305/ndjfl/1022615615

Information

Published: Summer 1999
First available in Project Euclid: 28 May 2002

zbMATH: 1058.03050
MathSciNet: MR1845626
Digital Object Identifier: 10.1305/ndjfl/1022615615

Subjects:
Primary: 03E25
Secondary: 54E52

Rights: Copyright © 1999 University of Notre Dame

Vol.40 • No. 3 • Summer 1999
Back to Top