Translator Disclaimer
Fall 1998 Lattice Ordered O-Minimal Structures
Carlo Toffalori
Notre Dame J. Formal Logic 39(4): 447-463 (Fall 1998). DOI: 10.1305/ndjfl/1039118862

Abstract

We propose a notion of $o$-minimality for partially ordered structures. Then we study $o$-minimal partially ordered structures $(A, \leq, \ldots)$ such that $(A,\leq)$ is a Boolean algebra. We prove that they admit prime models over arbitrary subsets and we characterize $\omega$-categoricity in their setting. Finally, we classify $o$-minimal Boolean algebras as well as $o$-minimal measure spaces.

Citation

Download Citation

Carlo Toffalori. "Lattice Ordered O-Minimal Structures." Notre Dame J. Formal Logic 39 (4) 447 - 463, Fall 1998. https://doi.org/10.1305/ndjfl/1039118862

Information

Published: Fall 1998
First available in Project Euclid: 5 December 2002

zbMATH: 0973.03051
MathSciNet: MR1776219
Digital Object Identifier: 10.1305/ndjfl/1039118862

Subjects:
Primary: 03C64

Rights: Copyright © 1998 University of Notre Dame

JOURNAL ARTICLE
17 PAGES


SHARE
Vol.39 • No. 4 • Fall 1998
Back to Top