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On Interpreting Truth Tables and
Relevant Truth Table Logic

RICHARD SYLVAN

Abstract Contrary to common mythology, the two-valued truth tables do
not yield classical logic. Many contestable assumptions are required to reach
classical logic. Indeed some assumptions are required to get anywhere logi-
cally. In between, and in other directions, lie several other logics. For, even
logically, there are many ways in which the truth tables can themselves be in-
terpreted. In particular, they can be variously read inferentially, in one di-
rection or two, or they may be variously read semantically. Along inferential
lines, Tennant’s one-way reading is reconsidered. It is argued that the tables
do not lead to the logics Tennant claims to reach but can lead to various
other decidedly weak logics. Along more orthodox semantical lines, it is
shown how the truth tables themselves do not exclude nonclassical situations
but can allow for incomplete and inconsistent set-ups. So considered, they
provide the framework for a four-valued relevant logic. A four-valued im-
plication is grafted onto this framework, simply by generalising upon two-
valued material implication artifice, to deliver the familiar system FDE of
tautological entailment. Finally, for comparison, a less contrived semantics
than pure truth tabular, a semantics due to Dunn, which now admits of ready
higher degree extension, is supplied for FDE.

It is commonplace nowadays to begin logic with the truth tables, the two-
valued truth tables. These have two values, symbolized (say) as 1 and 0 — value
1 for “true”, “on”, “holds”, “yes”, “yin”, etc., and value 0 for “false”, “off”,
“fails”, “no”, “yang”, etc. It is commonplace also to assume that these tables lead
immediately to classical logic. But they do not: not without the “right” interpre-
tation; not without both a considerable background and requisite assumptions.
Consider the usual tables for “connectives” &, v, and ~ in isolation (an early
choice is as to basic connectives), written one of the usual ways (already con-
densed a little from column forms):
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&|1 0 v]l ~|
1 1 0
0 1 1

Outside a broad mathematical content, these “tables” could represent a wide
range of things such as stylized scribbles, wallpaper designs, games of noughts
and ones, and so on (as Wittgenstein emphasized in [6]). Even within a mathe-
matical setting they could, if not idling, be doing a variety of jobs; for instance,
they could be (the way Boole would perhaps have seen them) strange arithmet-
ical tables (for an arithmetic mod 2, with & for X, v for +, and maybe ~ for —).
Even when a strictly logical setting is entered, and ‘truth value’ gets some stuff-
ing, the interpretational options are considerable. Consider the table for &
redepicted in column tabular form with schematic letters introduced (definitely
a different pattern and game, or very odd numbers):

Such a column can be “read” from left to right (“constructively” building up 4
& B from components A and B), or from right to left (“deconstructively” in one
sense), or, more commonly, both ways. Such a column can, moreover, be read
syntactically or “proof theoretically”, implicationally or inferentially, or more
commonly it can be read semantically. As such columns require a good deal of
interpretation, a “right” interpretation, the commonplace theme that the truth
tables themselves provide an interpretation is widely astray.

To appreciate further Aow much interpretation goes into the truth tables, es-
pecially in getting a calculus from them, and what can be read out of them, it
is revealing to consider in passing Tennant’s provocative “Truth table logic” [5].
In this exercise Tennant manages to extract an exotic nonclassical logic from an
(unorthodox) inferential construal of “the” truth tables. In the revised version
of his article Tennant claims to be “taking a fell swoop view of what the truth
tables say”. Thus he reads, he says, the truth table for conjunction ‘as saying’:

if the truth value of A and of B are both 1 then the truth value of
A&Bis1;

if the truth value of A4 is 0 then that of A & Bis 0:
if the truth value of B is 0 then that of A & B is 0.

But in fact he switches immediately, without notice, from these conditional forms
to certain argumentative construals, which he calls ‘truth table inferences’.
Plainly, the various forms are not the same without substantive assumptions
which can impact on the logic that results. For there are various conditional re-
lations, and (even setting aside the significant differences between conditional-
ity and argument) these may not match.

The first two entries, those for connectives ~ and &, in Tennant’s tabulation
look like this (but using 1 and 0 in place of his T and F):
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Exhibit I: Truth Table Inferences (after [5])

A ~A Sentential version Nonredundant demonstranda
1 0 A ~~A A ~~A

0 1 ~A . ~A

A B A&B

1 1 1 A,B..A&B AB. . A&B

1 0 0 A,~B .. ~(A & B) ~B .. ~(A & B)

0 1 0 ~A,B .. ~(A & B) ~A . ~(A & B)

0 0 0 ~A,~B .. ~(A &B)

To arrive at the column headed ‘Sentential version’, moving from left to right
across the column of the exhibit, it becomes evident that we are expected to ap-
ply the following rules (see [5]): Where a value 1 appears in the truth table for
a wff, A e.g., write that wff, viz. A; where a value 0 appears in the truth table
for a wff, B e.g., write down the negation of that wff, viz. ~B. Further, for bi-
nary connectives insert commas between wff of the component wff; and insert
the “inferential” symbol .. between component (input) wff and operated-upon
(output) wff of the table. Finally, transfer only the body of the table right. (Were
the heading of the negation table, for instance, transposed we should obtain the
powerful nonclassical inference A .". ~A!) The procedure provides a certain one-
way inferential ‘reading of the truth tables’ concerned.! It is a sort of subintui-
tionistic reading; it is taken to deliver 4 .. ~~A, but not (what a reverse
direction would yield) ~~4 .. A.

But even within one-way inferential limitations, other outcomes are easily
reached. Even if similar table positions are replaced in “the same way” (i.e. lo-
cation in a table makes no difference to transcription), who says that a 0 in B
column is to be replaced by ~B? The tables do not say that (nor do they show
it). It could be replaced instead by ~~~B, or ~~B, or B& ~B, or. . . . Simi-
larly for replacing 1 by wff. Lots of different one-way .". inferences could thus
emerge, some of them no doubt quite bizarre by usual straight-laced standards.
Not all these procedures are perverse. If, for instance, 1 is taken to represent nec-
essary truth, and 0 necessary falsehood, then the negation table would not un-
reasonably yield the (nonredundant, but one-way) inferences: Av ~A4 .. ~(~A
& ~~A), and ~ (4 & ~A) .". ~A v ~~A. Differently, it could be argued that
getting down from truth values for wff to wff themselves involves double nega-
tion buffering (the sort of considerations that go into Tennant’s main theorem
suggest as much). With double negation buffering, we can obtain, for example,
the following sentential versions, illustrated for the negation table:

A|~A DNI1 sentential version? DN2 sentential version?
1 0 A ~~~~A ~~A . ~~~~A
0/ 1 A . ~A A L A

Thus even within the confined space of one-way inferential elaborations, there
are many interpretations leading with further input to a variety of weak infer-
ential logics.

Further assumptions are imported in moving left to right from tke acclaimed
sentential version to the so-called nonredundant demonstranda. Certain features
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of the linkage .".3 are taken for granted. Unless we have a basic (meta-)logic of
.. which supplies both an identity scheme A .". A as well as principles of sche-
matic replacement, we do not know that ~4 .". ~A is redundant. After all it not
derivable from the other .". principles given. Likewise we could hardly establish
that ~A4, ~B .". ~(A & B) is redundant unless we had been supplied with an
appropriate principle of weakening for .. logic, for instance of the form 4 .".
B/A, C .". B. What is redundant and what is not will depend on the background
(but unexposed) .". logic.

Suppose then we are given such a background .'. logic which will be like the
structural rules of some Gentzen (meta-)logic. Then the Tennant 7'(~,&) logic—
to persist with just the two connectives ~ and & — will consist of that background
together with the nonredundant demonstranda of Exhibit 1. That is a truth ta-
ble inferential logic of a sort. But T'(~,&) is considerably weaker than either of
the two systems T and T* that Tennant proposes as truth table logics. So also
is the full system T(~,&,v,D) in connective set {~,&,v,D}, system TT for
short. TT does not even contain such principles as those of simplification, 4 &
B .. A, A& BD A, etc. Indeed, by inspection, TT supplies no connective elimi-
nation principles for .’. inferences.

Reaching Tennant’s “truth table” logics from 7T requires a macro-leap. That
leap comprises several large component steps beginning with critical infiltration
of a constant A and several schemata concerning A, proceeding through a sub-
stantial diversion on requirements for Kalmar’s Theorem, and ending with the
assumption of natural deduction techniques, above all subproof procedures
which TT does not license.*

The schemata including A much exceed what the truth table for A (kad it
been introduced) would sustain. The modest result, Tennant style, is merely as
follows:

AlA

110 A .. ~A
010 ~A . ~A

None of the A schemes (one for each connective) which Tennant lists for proof
of an inferential version of Kalmar’s Theorem are thereby supplied. But T and
T* are set up to deliver just such a theorem. It is already evident then, without
entering into any further detail, that Tennant’s advertised claim is mistaken. That
systems T and T* are systems of “fruth table logic —a logic justified on the ba-
sis of what the truth tables say, rather than on the extra that they might argu-
ably show” —is palpably false. Both his systems proceed far beyond what truth
tables say on his own impoverished left-to-right inferential reading.

An obvious way to obtain a working inferential motor from the truth tables
themselves, from what they appear to “say” inferentially, is to adopt a two-way
reading. The resulting inferential logic, 27(~, &) in the {~,&]} case, will presum-
ably then include appropriate elimination principles, namely ~~A4 .. A; A& B
.. A; A & B . B.’ The logic, while still exceedingly weak by all orthodox stan-
dards, is in the vicinity of nonreplacement relevant logics (investigated, e.g. by
Routley and Loparic [4]). But it is weaker even than the main logics so far in-
vestigated in lacking &-v distribution principles (e.g. A & (BvC) .. A& Bv
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A & C), and composition principles for connectives & andv (e.g. A .. C, B .".
C/Av B .. C). Nor would such a two-way inferential logic, though truth tabu-
larly authentic enough, appeal to Tennant; for it reinstates the nonintuitionis-
tic form of double negation, ~~A .". 4, the removal of which was no doubt a
main virtue of the highly commended one-way reading.

It is decidedly unorthodox to construe that truth tables inferentially. The
truth tables are typically taken to encapsulate semantical conditions. They are
integrally tied, after all, with ¢ruth values 1 and 0. Of course the conditions may
yield inferences, but that is only part, a by-product even, of what the conditions
amount to and do. To illustrate encapsulation, one example will suffice. For in-
stance, the rows of the table for negation ~ given below correspond to the bi-
conditionals written to the right:

A | ~A

110 v (A) = 1if and only if v(~4) = 0;
0 1 v(A) =0if and only if v(~4) = 1.

Here the expression v (A) =1 is read along these lines: the value of (assigned to)
Ais (=) 1, i.e. “true”, where 1 is the truth value true; similarly, for v (A4) =0,
with 0 the “truth” value 0. Thus v amounts to valuational function, sending ex-
pressions such as 4 into one or other of the truth value pair {1,0}.

So far everything looks pretty standard; we have proceeded to spell out, in
entirely orthodox semantical fashion, the valuational principles the tables encap-
sulate. But there is a crucial difference, which makes all the difference. Ordinarily
it is further assumed that values 1 and O are exclusive and exhaustive. That is, for
any wff A, not both v (A) =1 and v(A) =0, and either v(A) =1or v(4) =
0, or, in material terms, v (A) = 0 iff v (A4) # 1. Such assumptions hold good
only for what is convenient to call classical situations. There are, however, two
types of nonclassical situations where the assumptions fail, namely

® undercomplete situations, for 4, where neither v (A4) =1 nor v (A4) =0,
and
® overcomplete situations, for A, where both v(A4) =1 and v (A4) =0.

Examples of the first include cases of indeterminacy and vagueness; examples
of the second paradoxical outcomes. While both are controversial, it is nonethe-
less, indeed all the more, important to investigate the logic of these situations (to
determine which principles hold valid and which do not, what can be inferred
and what cannot, and so on).

Admitting nonclassical situations, there are four cases to consider for each
wif A:

T,or 1only: v(A)=1only,ie v(4)=1and v(A4)+#0:
B, or {1,0}: v(A)=1and v(A4) =0also, i.e. A takes both values 1 and 0;
N, or { }: v (A4) # 1 and v (A4) # 0 also, i.e. A takes neither value 1 nor 0;
F,orOonly: v(A4)=0only,ie v(A)=0and v(A4)# 1.

Those four cases lead us, ineluctably, to four-valued truth tables for each con-
nective considered, here the set {&,Vv,~}.% Those four-valued tables can be seen
as making more explicit what is already contained in the two-valued tables, at
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least as construed semantically. Let us illustrate the derivation of some elements
of the four-valued tables before setting them down in full detail. Suppose for A
the situation is overcomplete, that is A gets assigned {1,0}; what happens to ~A4?
When v (A4) =1, v(~A) =0, and when v(A4) =0, v(~A4) = 1. So when A is
assigned {1,0}, ~A is assigned {0,1}, i.e. {1,0}; that is both. Or suppose under
four-valued valuation I, A is assigned neither, { }, i.e. v(A) # 1 and v (A4) #
0, and B is assigned both {1,0} i.e. v(B) =1 and v (B) = 0; in short, I(4) =
{ }JandI(B)=1{1,0}. WhatisI(A & B)? Well, v (A & B) #1, because v (4) # 1,
and v (A & B) =0, because v (B) =0, whence (A & B) =0 only. Proceeding
in this way, we arrive at the following tables (where 1 only and 0 only are rep-
resented by italicized symbols):

(4 & | 1 (1,0(})0 v |

1

1 1 {10} {} 0 1
{1,0} | {1,0} (1,0} 0 0 {1,0) | 7 (1,0} I (1,0} {1,0} | {1,0}

{} (y o0 {30 1

0 0 0 0 0 1

As relabelled, in what will be called S-notation, according to the following trans-
lation scheme
( 1 (1,03 {3} 0O
1 2 3 4

these tables deliver the following tables:

(S) &|1 23 4 v[1 234 ~|
11234 1{1 111 14
212244 2(1 212 2|2
313434 31133 3|3
414 4 4 4 41234 41

The S-notation simply reexpresses the four-valued matrices in a standard many-
valued form, a readily recognizable form given previous logical use of these ma-
trices.”

Splendid as those matrices are there is not a great deal of relevant logical
work that we can accomplish with them on their own. For they yield no logical
truths. Even the principle of noncontradiction, ~ (4 & ~A), takes a nondesig-
nable value { } when A is assigned value { }. (It is nondesignable because it does
not include a truth element 1.) Put differently, the {&,v,~} logic delivered where
nonclassical situations are not excluded has no theorems. Of course the {&,v,~}
logic for classical situations is the standard two-valued logic, S.

There are two evident ways out of the no-theorem predicament, ways we shall
before long want to put together:

¢ Introduce an implicational or inferential connective of some sort, to make
explicit which truth-functional wff are derivable (inferable or deducible)
from which others.

¢ Combine classical with nonclassical situations.
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Implication requires artifice in a finite-valued setting. We will generalize in a four-
valued way on classical two-valued artifice, a generalization which interestingly
suffices to remove basic paradox. A suitably generalized Philonian conditional
cannot quite set v (4 - B) = 1iff v(A) =0 or v (B) = 1, in the usual discon-
nected fashion. For that makes no due allowance for four values; it would not
even ensure A - A. But an appropriate rule is not far to seek; namely

(=1) v(A-B)=1ifv(A)=0onlyor v(B)=1onlyor v(A4)=v(B);and
v (A — B) = 0 otherwise.

To reach this two-valued assignment on four values, a little experimentation
is required; for it is but one of many evaluation rules that might be tried. And
of course it helps if experimenters know where they are headed, what results
they aim to churn out. (In applying the —;-rule observe that v (A4) = 0 only iff
v(A)=0& v(A)#1and v(B) =1onlyiff v(B)=1& v(B) #0.)

The rule delivers the following (patterned) matrix, as may be straightfor-
wardly verified:

(B) - |1.{1,0) {} 0 e inSnotation - |1 2 3 4
1 150 0 0 11 4 4 4
(1,0} | 13~-. .0 0 2(1 1 4 4
A3 L 07109 311 41 4
0 i1 I~ 401111

Now more of the beauty of the enterprise emerges: with matrices (A) and
(B) we have arrived at precisely the matrices characteristic for first degree en-
tailment of system FDE. These are the “Smiley matrices” (given in S-notation
in [1], pp. 161-162), characteristic for “tautological entailments”. The logic of
FDE in fact matches the algebraic structure underlying the matrices, namely De
Morgan lattice structure; it adds to distributive lattice logic (DLL of Routley [3],
pp. 104ff) a De Morgan negation. In one axiomatic presentation it runs as fol-
lows (for A and B truth-functional in {&,v,~}):

A-A A->B, B-C/A-C
A&B—- A A->B A-C/A-B&C
A& B—-B

A—->AvVB A-C, B->C/AvVvB->C
B->AVB

A& (BvC)-» (A& B)vC

~~A—> A A—->~B/B—-~A

FDE is a well investigated system, with many other formulations, and with sev-
eral modellings (for which see [1], chapter 3, and [3], pp. 122ff and s. 3.2).
The artifice of the finite-valued implication of the matrix formulation can
be avoided very simply by switching to alternative modellings for FDE, in
particular to a valuational semantics. Then an implication A — B is FDE-valid
(under a valuational semantics) iff for every valuation v, when v (A) = 1 then
v (B) =1 and when v (B) =0 then v (A4) = 0. The rule is, so to say, the entirely
natural requirement for implication, recalling that v (A4) = 1 leaves open whether
v(A4) =0 or v(A4) # 0, so that both forward and backward truth value preser-
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vation should be considered. Then the theorems of FDE coincide exactly with
the FDE-valid wff.®

NOTES

1. In the initial printing of his article, Tennant simply assumed that the truth tables were
read, from the given column of forms, left to right; in revision he makes that assump-
tion explicit. But many other assumptions are not explicit, beginning with the idea
that the truth tables are primarily inferential devices, construed through a coupling
.., which gives way to “natural deduction” linear inference.

2. The DNI version can be reached by replacing 1 by 4, and 0 by ~A., then eliminat-
ing sub 1° through double negation and sub 1 vacuously. The procedure was sug-
gested by relevant truth table games. The DN2 version eliminates sub 1 also through
double negation. A DN3 would remove 1 only, and not 1°, through double negation.
Other versions could further multiply up negation or other connectives.

3. The symbol is nowhere explained by Tennant but presumably is transcribable as
“therefore”. The nonhypothetical “therefore” is much more restrictive than usual in-
ferential schemes, including those of natural deduction, subsequently substituted for
them, which are suppositional. Nor are truth tables so narrowly restricted, admitting
of hypothetical construal (e.g. were A4 true, ~4 would be false). Accordingly “there-
fore”, .., is too narrow both for proper construal of the truth tables and for Ten-
nant’s subsequent natural-deduction enterprise.

4. How much scene setting goes into a natural deduction formulation is evident from
better investigations of the topic.

5. There is further ado here, which we have glossed over, since two-way inferential read-
ings are merely a sidestream in the present setting. For example, right to left read-
ings strictly involve inferential forms which are multiple on the right; then there are
further slides in getting down to singular forms.

6. We are here retracing a beautiful route mapped out by Dunn [2]. We should observe
that further assumptions are entering as we proceed (there is no pure assumptionless
way), e.g. syntactical assumptions as to the availability of symbols, and semantical
assumptions as to the role of 1 in distinguishing designated values.

7. Observe that the truth-tabular analysis of these (S)-matrices provides but one anal-
ysis explaining the matrices; we shall arrive at, or refer to, other analyses. Some ma-
trices will be familiar from other settings. The matrices for & and v are those both
distributive lattice theory and Boolean algebra supply and which were adopted by
Parry for Lewis modal logics. The negation matrix is that given by De Morgan lat-
tice negation. These (S)-matrices were assembled by Smiley; see Anderson and Bel-
nap [1].

8. Seee.g. [3], p. 198. From there, moreover, it is an easy step to the next stage, the full
first degree logic, FD. For details see [3].
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