AN EXTENSION OF NEGATIONLESS LOGIC

J. KENT MINICHIELLO

§1. Nelson [1] has provided a formalization of part of Griss' negationless mathematics [2]. The logic Nelson devised uses a quantified implication ($A \supset \bar{x} B$) and a quantified disjunction ($\Sigma \bar{x}\left(A_{1}, \ldots, A_{n}\right)$) as well as $\&, \forall$, and ヨ. These connectives do not exhaust the possibilities for rendering each provable sequent of Nelson's P_{1} system as a provable formula: when given a sequent $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$, we lack a corresponding closed formula to be read negationlessly as 'for all x_{1}, \ldots, x_{k} if A_{1} and . . . and A_{m}, then B_{1} or . . . or B_{n}." Further, in Nelson's two most restricted predicate calculi there is no obvious way of forming Griss negation in several variables. If \neq is a distinguishability relation and $P\left(t_{1}, \ldots, t_{n}\right)$ is a formula in which x_{1}, \ldots, x_{n} do not occur, then the Griss negation of $P\left(t_{1}, \ldots, t_{n}\right)$ should be read 'for all x_{1}, \ldots, x_{n} if $P\left(x_{1}, \ldots, x_{n}\right)$ then $x_{1} \neq t_{1}$ or . . . or $x_{n} \neq t_{n}$."

We have defined a general connective which provides the lacking notation [3]. Using the notation of [1] we give the definition and introduction rules for this connective. Let \bar{x} be a non-empty list of distinct variables, Ψ a (possible empty) list of formulas, and Φ a non-empty list of formulas: then ($\Psi \supset \bar{x} \Phi$) is a formula. Introduction rules suitable to $P_{2}-A_{2}$ are

$$
\frac{\Gamma, \Pi(\bar{x}) \rightarrow \Psi(\bar{x})\left|\Gamma \rightarrow(\exists \bar{z})\left(\Pi(\bar{z})_{1} \& \ldots \& \Pi(\bar{z})_{m}\right)\right| \Gamma \rightarrow(\exists \bar{z}) \Psi(\bar{z})_{1}|\ldots| \Gamma \rightarrow(\exists \bar{z}) \Psi(\bar{z})_{n}}{\Gamma \rightarrow(\Pi(\bar{z}) \supset \bar{z} \Psi(\bar{z}))}
$$

and

$$
\frac{\Sigma \rightarrow A_{1}(\bar{t}), \wedge|\ldots| \Sigma \rightarrow A_{m}(\bar{t}), \wedge\left|B_{1}(\bar{t}), \Omega \rightarrow \Phi\right| \ldots \mid B_{n}(\bar{t}), \Omega \rightarrow \Phi}{\left(A_{1}(\bar{x}), \ldots, A_{m}(\bar{x}) \supset \bar{x} B_{1}(\bar{x}), \ldots, B_{n}(\bar{x})\right), \Sigma, \Omega \rightarrow \wedge, \Phi}
$$

in which Γ does not contain any of \bar{x} free, each variable of \bar{x} (term of \bar{t}) is free for the corresponding variable of $\bar{z}(\bar{x})$ in each formula of $\Pi(\bar{z}), \Psi(\bar{z})$ $\left(A_{1}(\bar{x}), \ldots, B_{n}(\bar{x})\right)$, if $\Pi(\bar{x})\left(A_{1}(\bar{t}), \ldots, A_{m}(\bar{t})\right)$ is empty then the premise(s) not involving $\Psi(\bar{x})\left(B_{1}(\bar{t}), \ldots, B_{n}(\bar{t})\right)$ is (are) omitted, $\Pi(\bar{x})$ is a list of m formulas, $\Psi(\bar{x})$ is a non-empty list of n formulas, etc. An additional premise

$$
\left(A_{1}(\bar{x}), \ldots, A_{m}(\bar{x}) \supset \bar{x} B_{1}(\bar{x}), \ldots, B_{m}(\bar{x})\right), \Sigma, \Omega \rightarrow \tilde{J}
$$

is required for introduction in the antecedent in $P_{1}-A_{1}$. The existence rule for both $P_{1}-A_{1}$ and $P_{2}-A_{2}$ is

$$
\frac{\Gamma \rightarrow\left(A_{1}, \ldots, A_{m} \supset \bar{x} A_{m=1}, \ldots, A_{n}\right)}{\Gamma \rightarrow \exists \bar{x} A_{i}}
$$

Let us denote by $P_{i}^{\prime}-A_{i}^{\prime}$ the formal system which results from the following changes in $P_{i}-A_{i}$: the clauses in the definition of formula involving Σ, \supset, and \forall are replaced by the clause for the general connective and the rules for Σ, \supset, and \forall are replaced by the three rules for the general connective. (We abbreviate 'general connective"' by gc.) If F is a formula of $P_{i}-A_{i}$, let F^{\prime} be defined inductively as follows: F^{\prime} is F if F is prime; $(A \& B)^{\prime}$ is $A^{\prime} \& B^{\prime} ;(\exists x A)^{\prime}$ is $\exists x A^{\prime} ;(\forall x A)^{\prime}$ is $\supset x A^{\prime} ;\left(\Sigma \bar{x}\left(A_{i}, \ldots, A_{n}\right)\right)^{\prime}$ is $\supset \bar{x} A_{1}^{\prime}, \ldots, A_{n}^{\prime} ;(A \supset \bar{x} B)^{\prime}$ is $A^{\prime} \supset \bar{x} B^{\prime}$. If Γ is a list of formulas then Γ^{\prime} is the list of their maps; $(\Gamma \rightarrow \Phi)^{\prime}$ is $\Gamma^{\prime} \rightarrow \Phi^{\prime}$.

Theorem I: If $S_{1}, \ldots, S_{n} \vdash S_{n+1}$ in $P_{i}-A_{i}$, then $S_{1}^{\prime}, \ldots, S_{n}^{\prime} \vdash S_{n+1}^{\prime}$ in $P_{i}^{\prime}-A_{i}^{\prime}$.

The proof is an easy induction on the height of the deduction of S_{n+1} from S_{1}, \ldots, S_{n}.
§2. Before proving that $P_{i}^{\prime}-A_{i}^{\prime}$ is a proper enlargement of $P_{i}-A_{i}$, we obtain a canonical form for formulas of P_{2}. Let $B, B_{1}, \ldots, B_{m}(A)$ contain free none of $x, \bar{x}(\bar{y})$; let $\bar{u}, \bar{v}, \bar{w}$ be a list of distinct variables free only where exhibited; and let $\vdash A \longleftrightarrow B$ abbreviate $\vdash A \rightarrow B$ and $\vdash B \rightarrow A$.

Lemma I:

1. $\vdash \forall x B \longleftrightarrow B$,
2. $\vdash \exists x B \longleftrightarrow B$,
3. $\vdash\left(B_{1} \supset \bar{x} B_{2}\right) \longleftrightarrow B_{1} \& B_{2}$,
4. $\vdash(A \supset \bar{x} B) \longleftrightarrow \exists \bar{x} A \& B$,
5. $\vdash(B \supset \bar{x} C) \leftrightarrow B \& \forall x C$,
6. $\vdash \Sigma \bar{x}\left(B_{1}, \ldots, B_{m}, C_{1}, \ldots, C_{n}\right) \leftrightarrow B_{1} \& \ldots \& B_{m} \& \exists \bar{x} C_{1} \& \ldots \& \exists \bar{x} C_{n}$,
7. $\vdash \forall x(A \& B) \longleftrightarrow \forall x A \& B$,
8. $\vdash \exists x(A \& B) \longleftrightarrow \exists x A \& B$,
9. $\vdash(A \& B \supset \bar{x} C) \longleftrightarrow(A \supset \bar{x} C) \& B$,
10. $\vdash(A \supset \bar{x} C \& B) \longleftrightarrow(A \supset \bar{x} C) \& B$,
11. $\vdash(A \supset \bar{x} \bar{y} B) \leftrightarrow \exists \bar{x} A \& \forall \bar{y} B$,
12. $\vdash \Sigma \bar{x}\left(A_{1}, \ldots, A_{i} \& B, \ldots, A_{n}\right) \leftrightarrow \Sigma \bar{x}\left(A_{1}, \ldots, A_{n}\right) \& B$,
13. $\vdash P(\bar{u}) \supset \bar{u}, Q(\bar{u}) \& R(\bar{u}) \longleftrightarrow(P(\bar{u}) \supset u R(\bar{u})) \&(P(u) \supset \bar{u} R(\bar{u}))$,
14. $\vdash P(\bar{u}) \& Q(\bar{v}) \supset \bar{u} \bar{v} \bar{w} R(\bar{u}) \& S(\bar{w}) \leftrightarrow[P(\bar{u}) \supset \bar{u} R(\bar{u})] \& \exists \bar{v} Q(\bar{v}) \& \forall \bar{w} S(\bar{w})$.

The results involving Σ and \supset are easy consequences of the existence rules. To obtain the canonical form we use the Lemma to remove or reduce the depth of quantifiers wherever possible and to move \& across quantifiers until we have a formula in which each formula (and formula of a
conjunction) immediately within the scope of a quantifier has at least one of its free variables bound by the quantifier and in which no quantifier binds only one occurrence of a variable. Further, the premise and conclusion of each $\partial \bar{x}$ will have common free variables bound by the quantifier.

The canonical form for formulas composed entirely from one-place predicate letters is particularly simple: if F is such a formula with exactly x_{1}, \ldots, x_{m} as free variables, then the canonical form of F is

$$
Q_{1} \& \ldots \& Q_{n} \& p_{11}\left(x_{1}\right) \& \ldots \& p_{1 n_{1}}\left(x_{1}\right) \& \ldots \& p_{m n_{m}}\left(x_{m}\right)
$$

where each Q_{i} is closed by the application of one quantifier containing exactly one variable to predicate letters and the conjunctions of distinct predicate letters and where x_{i} occurs free in F in exactly predicate letters $p_{i 1}\left(x_{i}\right), \ldots, p_{i_{n}}\left(x_{i}\right)$.

While the only explicitly given propositional connective of Nelson's $\mathbf{P}_{\mathbf{1}}$ P_{2} systems is conjunction, there remains the possibility that the quantifiers ($\forall, \exists, \supset$, and Σ) might be used to build up propositional connectives by using dummy variables; for example, one might ask if $\Sigma x(P, Q)$ is interpretable as " P or Q " when x does not occur free in P, Q. Lemma I shows that such constructions may always be reduced to conjunctions.

Remark: The reader may consult [4] for the development of the predicate calculus of P_{2} including a replacement theorem.
§3. Let us denote by \bar{P}_{2} that system obtained by adding the gc and its rules to $\mathrm{P}_{2} ; \mathrm{P}_{2}$ is then a subsystem of $\overline{\mathrm{P}}_{2}$. Let F be $p_{1}(x) \supset x p_{2}(x), p_{3}(x)$.

Theorem II: There is no formula D of P_{2} such that both $D \rightarrow F$ and $F \rightarrow D$ are provable in $\overline{\mathrm{P}}_{2}$.

To prove this we regard the connectives as arithmetic truth functions. Let $\bar{x}, A, B, A(x), B(x), \ldots$ be evaluated by $\overline{\boldsymbol{x}}, \boldsymbol{\delta}, \boldsymbol{\sigma}, \boldsymbol{\delta}(\boldsymbol{x}), \boldsymbol{\delta}(\boldsymbol{x}), \ldots$; then $\forall x A(x)$ is evaluated by $\mathbf{s g}\left(\sum x \delta(x)\right) ; \exists x A(x)$ by $\Pi x \delta(x) ; A \& B$ by $\mathbf{s g}(\delta+\sigma) ; A(\bar{x}) \supset \bar{x} B(\bar{x})$ by $\boldsymbol{\operatorname { s g }}[\{\Pi \bar{x} \delta(\bar{x})\}+\{\Sigma \bar{x}(\overline{\mathbf{s g}}(\delta(\bar{x})) \cdot \boldsymbol{\sigma}(\bar{x}))\}] ; \Sigma \bar{x}\left(A_{1}(\bar{x}), \ldots, A_{m}(\bar{x})\right)$ by $\mathbf{~ s g}\left(\left\{\Sigma i\left(\Pi \bar{x} \delta_{i}\right.\right.\right.$ $\left.(\bar{x}))\}+\left\{\Sigma \bar{x}\left(\Pi i \delta_{i}(\bar{x})\right)\right\}\right) ; A_{1}(\bar{x}), \ldots, A_{m}(\bar{x}) \supset \bar{x} B_{1}(\bar{x}), \ldots, B_{n}(\bar{x})$ by $\mathbf{s g}\left(\left\{\Pi \overline{\boldsymbol{x}}\left(\sum i \delta_{i}\right.\right.\right.$ $\left.(\bar{x}))\}+\left\{\Sigma i\left(\Pi \bar{x} \sigma_{i}(\bar{x})\right)\right\}+\left\{\Sigma \bar{x}\left[\mathbf{s g}\left(\Sigma i \delta_{i}(\bar{x})\right) \cdot \Pi i \sigma_{i}(\bar{x})\right]\right\}\right) ; A \rightarrow B$ by $\boldsymbol{\sigma} \div \boldsymbol{\delta}$.
Also let the three truth functions $\alpha(x), \beta(x)$, and $\gamma(x)$ be defined on a domain of three objects by the following table:

	$\alpha(x)$	$\beta(x)$	$\gamma(x)$
a	0	0	1
b	0	1	0
c	1	1	1

A straightforward induction argument shows that if $\vdash A \rightarrow B$ and $\vdash B \rightarrow A$ then A and B are identically equal. Note that there are but four cases out of twenty-seven in which F takes a value 1. We will show that no closed formula of P_{2} has such a small percentage of cases of value 1 (provided that it is not identically 0).

First consider a formula D of P_{2} in one place predicate letters which is in the canonical form of $\S 2$. For D and F to be identically equal none of the Q_{i} 's in D may be $\forall x E$ or $\sum x\left(E_{1}, \ldots, E_{n}\right)$ since all these closed formulas take only 1 as a value. Hence each Q_{i} must be of one of the following three forms:
a) $p_{1}(x) \& \ldots \& p_{n}(x) \supset x p_{i}(x)$ in which $i \leq n$;
b) $p_{1}(x) \& \ldots \& p_{n-1}(x) \supset x p_{n}(x)$ in which $p_{n}(x)$ is distinct from $p_{i}(x)$ for each $\boldsymbol{i}<\boldsymbol{n}$;
c) $\exists x\left(p_{1}(x) \& \ldots p_{n}(x)\right)$.

If the formula in case c) is 1 for a particular assignment of α, β, γ to p_{1}, \ldots, p_{n}, then so are the formulas in cases a) and b). Let $\boldsymbol{r}(\boldsymbol{n})$ be the ratio of cases in which $\exists x\left(p_{1}(x) \& \ldots \& p_{n}(x)\right)$ takes value 1 to the total number of cases 3^{n}; than $r(n)=1-\left(2^{n}+2^{n}-1\right) / 3^{n}$ since the formulas is 0 when only α, β or only α, γ are assigned. For $n \geq 2, r(n) \geq 6 / 27$ and for $\boldsymbol{n}=1$ both $\exists x p(x)$ and $p(x) \supset x p(x)$ are identically 0 . Thus no closed formula of \boldsymbol{P}_{2} in one place predicate letters is identically equal to F.

Next consider the evaluation of an arbitrary formula D in predicate letters $p_{1}\left(x_{11}, \ldots, x_{n_{1}}\right), \ldots, p_{m}\left(x_{m_{1}}, \ldots, x_{m n_{m}}\right)$ by a function δ. Since $\boldsymbol{\alpha}, \boldsymbol{\beta}$, and $\boldsymbol{\gamma}$ are functions of one variable $\boldsymbol{\delta}$ may be considered a function in prime arguments $\omega_{1}\left(x_{1}\right), \ldots, \omega_{m}\left(\boldsymbol{x}_{m}\right)$. In obtaining a truth table for D we must consider all possible assignments of the variables \boldsymbol{x}_{i} to some one of $x_{i j}\left(\boldsymbol{1} \leqq \boldsymbol{j} \leqq \boldsymbol{n}_{\boldsymbol{i}}\right)$ as well as all possible assignments of $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ to $\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{m}$. If the assignment of variables is held fixed each variable of each Σx and Πx in δ is assigned to a variable of a quantifier of D, and a partition of the truth table into cases results. The evaluating function resulting form the fixed assignment is also an evaluating function for some formula in one place predicate letters; hence subdivision of the truth table has a ratio of cases 1 to total cases which is greater than $4 / 27$. Thus the ratio for D must also be greater than $4 / 27$.
§4. We take this opportunity to clarify the status of several of Nelson's existence rules. First, The independence of the existence rule 20a)

$$
\frac{\Gamma \rightarrow A \supset \bar{x} B}{\Gamma \rightarrow \exists \bar{x} A}
$$

can be established using the formula $\left(x=y^{\prime} \supset y x=y^{\prime}\right) \supset x \exists y x=y^{\prime}$ which is provable in $P_{1}-A_{1}$. Following Nelson, let us map the formulas and sequents of $P_{1}-A_{1}$ into a Gentzen type formal system for intuitionistic arthimetic by mapping $A \supset \bar{x} B$ into $\forall \bar{x}\left(A^{\prime} \supset B^{\prime}\right)$ and $\Sigma \bar{x}\left(B_{1}, \ldots, B_{m}\right)$ into
$\bar{x}\left(B_{1}^{\prime} \vee \ldots v B_{m}^{\prime}\right)$. We find that the axioms and rules of inference except the existence rules map into theorems and derived rules of the intuitionistic system and that the above formula maps into $\forall x\left[\forall y\left(x=y^{\prime} \supset x=y^{\prime}\right) \supset \exists x y=\right.$ $\left.y^{\prime}\right]$. Were this formula provable then both $\exists y x=y^{\prime}$ and $\exists y 0=y^{\prime}$ would be provable also. A similar argument shows the independence of 20b) and 21). The arguments remain valid for $P_{2}-A_{2}$ and, for the quantified implication, for $P_{3}-A_{3}$.

The existence rules 24 a) and 24 b) do not add to the theorems of $P_{1}-A_{1}$. This may be established by proving the following lemma by induction on proofs.

Lemma II: a) If $\vdash A_{0}, \ldots, A_{m} \rightarrow \Phi$ then $\vdash \rightarrow \exists \bar{x}\left(A_{i_{0}} \& \ldots \& A_{i_{k}}\right)$ where $\boldsymbol{i}_{0}, \ldots, \boldsymbol{i}_{k}$ is a subset of $0, \ldots, \boldsymbol{m}, \exists \bar{x}\left(A_{i_{0}} \& \ldots \& A_{i_{k}}\right)$ is closed, and parentheses may be inserted in the conjunction in any way leading to a wff; b) If $\vdash \Gamma \rightarrow B_{1}, \ldots, B_{n}$, then $\vdash \rightarrow \exists \bar{x} B_{i}$ where $\exists \bar{x} B_{i}$ is closed.

BIBLIOGRAPHY

[1] Nelson, David, 'Non-null Implication, The Journal of Symbolic Logic, vol. 31 (1966), pp. 562-572.
[2] Griss, G. F. C., 'Negationless intuitionistic mathematics. I," Koninklijke Nederlandsche Akademie van Wetenschappen, Proceedings of the section of sciences, vol. 49 (1946), pp. 1127-1133.
[3] Minichiello, J. Kent, A general quantified connective for negationless logic, (A paper presented to the Association for Symbolic Logic Dec. 27, 1967).
[4] Minichiello, J. Kent, Negationless Intuitionistic Mathematics (Dissertation: The George Washington University, Washington, D.C.)

Howard University
Washington, D.C.

