OPERATOR INEQUALITIES RELATED TO CAUCHY-SCHWARZ AND HÖLDER-MCCARTHY INEQUALITIES

Masatoshi Fujii*, Saichi Izumino**, Ritsuo Nakamoto*** and Yuki Seo****

Abstract

We give an improvement of the Cauchy-Schwarz inequality, which is based on the covariance-variance inequality. We also give a complementary inequality of the Hölder-McCarty inequality. Furthermore we extend it to the case of two variables using the operator mean in the Kubo-Ando theory. Consequently we have a noncommutative version of the Greub-Rheinboldt inequality as an extension of the Kantrovich one. Finally we discuss about order preserving properties of increasing functions through the Kantorovich inequality.

1. Introduction. In [1], we proved the covariance-variance inequality in the noncommutative probability theory established by Umegaki[12]:

$$
\begin{equation*}
|\operatorname{Cov}(A, B)|^{2} \leq \operatorname{Var}(A) \operatorname{Var}(B), \tag{1}
\end{equation*}
$$

where $\operatorname{Cov}(A, B)$ and $\operatorname{Var}(A)$ are defined as

$$
\operatorname{Cov}(A, B)=\left(B^{*} A x, x\right)-\left(B^{*} x, x\right)(A x, x) \text { and } \operatorname{Var}(A)=\operatorname{Cov}(A, A)
$$

for (bounded linear) operators A, B acting on a Hilbert space H and a fixed unit vector $x \in H$.
The covariance-variance inequality has many applications for operator inequalities, see $[1,2,6]$. Among others, we pointed out that (1) implies the celebrated Kantorovich inequality: If a positive operator A on a Hilbert space H satisfies $0<m \leq A \leq M$, then for each unit vector $x \in H$

$$
\begin{equation*}
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(m+M)^{2}}{4 m M} \tag{2}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left(A^{2} x, x\right) \leq \frac{(m+M)^{2}}{4 m M}(A x, x)^{2} . \tag{3}
\end{equation*}
$$

Since the covariance-variance inequality is equivalent to the Cauchy-Schwarz inequality, the Kantorovich inequality lies on the line of the Cauchy-Schwarz inequality. More precisely, it is considered as an estimation of the ratio of factors appearing in the Cauchy-Schwarz inequality. Another viewpoint is to estimate the difference of the factors. Actually it has been done in the numerical case. Its operator version will be given by the covariance-variance inequality in the below.
On the other hand, the Hölder-McCarthy inequality $[3,8]$ is a generalization of the CauchySchwarz inequality. Along with our argument, we attempt to generalize the Hölder-McCarthy

[^0]inequality and give its complementary inequality, in which the geometric mean plays an essential role, see [7].

Finally we discuss the bridge between the Kantorovich inequality and the Löwner-Heinz inequality via the condition number with the origin by Turing.
2. Cauchy-Schwarz inequality. The covariance-variance inequality is equivalent to the Cauchy-Schwarz inequality[1]. Nevertheless we can discuss an improvement of the CauchySchwarz inequality lying on the line of the covariance-variance inequality .

First of all, we remark that the covariance-variance inequality (1) has a nice relation with the Gram matrix as follows. For a unit vector x, the Gram matrix

$$
\left(\begin{array}{ccc}
(A x, A x) & (A x, B x) & (A x, x) \\
(B x, A x) & (B x, B x) & (B x, x) \\
(x, A x) & (x, B x) & (x, x)
\end{array}\right)
$$

is positive definite and its determinant $G(A x, B x, x)$ is just the difference of the covariancevariance inequality:

$$
\begin{equation*}
G(A x, B x, x)=\operatorname{Var}(A) \operatorname{Var}(B)-|\operatorname{Cov}(A, B)|^{2} \geq 0 \tag{4}
\end{equation*}
$$

The covariance-variance inequality also appears in an improvement of Cauchy's inequality (see [9]): Let a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n} be real numbers and let

$$
u=n^{-1 / 2} \sum a_{i} \text { and } v=n^{-1 / 2} \sum b_{i}
$$

Then

$$
\sum a_{i}^{2} \sum b_{i}^{2}-\left(\sum a_{i} b_{i}\right)^{2} \geq u^{2} \sum b_{i}^{2}-2 u v \sum a_{i} b_{i}+v^{2} \sum a_{i}^{2}
$$

An operator version of this inequality is seemed to be as follows: If A and B are commuting hermitian operators, then

$$
\begin{align*}
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-(A B x, x)^{2} \geq & \left(A^{2} x, x\right)(B x, x)^{2}-2(A B x, x)(A x, x)(B x, x) \tag{5}\\
& +\left(B^{2} x, x\right)(A x, x)^{2} \geq 0
\end{align*}
$$

for all unit vectors x. However the assumption of the commutativity on A and B is not needed; as a matter of fact, we have the following operator version of Cauchy's inequality, in which we will be able to recognize the utility of the covariance-variance inequality:

Theorem 1. Let A and B be positive. Then

$$
\begin{align*}
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-|(A B x, x)|^{2} \geq & \left(A^{2} x, x\right)(B x, x)^{2}-2|(A B x, x)|(A x, x)(B x, x) \\
+ & \left(B^{2} x, x\right)(A x, x)^{2} \geq 0 \tag{6}
\end{align*}
$$

for all unit vectors x.
Proof. By the covariance-variance inequality (1), we have

$$
\begin{aligned}
\left\{\left(A^{2} x, x\right)-(A x, x)^{2}\right\}\left\{\left(B^{2} x, x\right)-(B x, x)^{2}\right\} & \geq|(A B x, x)-(A x, x)(B x, x)|^{2} \\
& \geq\{(A x, x)(B x, x)-|(A B x, x)|\}^{2}
\end{aligned}
$$

It is easily checked that this inequality can be rephrased as the first inequality of (6). The positivity of the middle term is shown as follows:

$$
\begin{aligned}
&\left(A^{2} x, x\right)(B x, x)^{2}-2|(A B x, x)|(A x, x)(B x, x)+\left(B^{2} x, x\right)(A x, x)^{2} \\
&=\left\{\left(A^{2} x, x\right)^{1 / 2}(B x, x)-\left(B^{2} x, x\right)^{1 / 2}(A x, x)\right\}^{2} \\
&+2\left\{\left(A^{2} x, x\right)^{1 / 2}\left(B^{2} x, x\right)^{1 / 2}-|(A B x, x)|\right\}(A x, x)(B x, x) \geq 0 .
\end{aligned}
$$

3. Hölder-McCarthy inequality. In this section we show an operator version of Hölder's inequality and its complementary inequality. Moreover we generalize it using the geometric mean in the Kubo-Ando theory[7]. The geometric mean $A \# B$ is defined by

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

for positive invertible operators A and B.
We need the following useful result, which gives Jensen's inequality and a complementary inequality of it with respect to the convex function $f(x)=x^{p}(p>1)$.

Lemma $2\left(\left[9\right.\right.$, p.694, (11.2)]). Let $\left(a_{1}, \cdots, a_{n}\right)$ and $\left(w_{1}, \cdots, w_{n}\right)$ be n-tuples of nonnegative numbers such that $0<m \leq a_{k} \leq M(k=1, \cdots, n)$ and $\sum w_{k}=1$. Then, for $p \geq 1$

$$
\begin{equation*}
\left(\sum w_{k} a_{k}\right)^{p} \leq \sum w_{k} a_{k}^{p} \leq \lambda(p ; m, M)\left(\sum w_{k} a_{k}\right)^{p} \tag{7}
\end{equation*}
$$

where $\lambda(p ; m, M)=\left\{\frac{1}{p^{1 / p} q^{1 / q}} \frac{M^{p}-m^{p}}{(M-m)^{1 / p}\left(m M^{p}-M m^{p}\right)^{1 / q}}\right\}^{p}$ and $q=\frac{p}{p-1}$.
If A is a selfadjoint operator with $m \leq A \leq M$, then for a unit vector $x \in H$, there is a spectral measure μ_{x} on $[m, M]$ such that

$$
\begin{equation*}
\left(A^{p} x, x\right)=\int_{m}^{M} t^{p} d \mu_{x} \tag{8}
\end{equation*}
$$

Applying the inequality (7) to the approximate sum of the integral of (8), we have:
Theorem 3. Let A be a selfadjoint operator with $m \leq A \leq M$ and $p>1$. Then for a unit vector $x \in H$,

$$
\begin{equation*}
(A x, x)^{p} \leq\left(A^{p} x, x\right) \leq \lambda(p ; m, M)(A x, x)^{p} \tag{9}
\end{equation*}
$$

Here we note that the first inequality of (9) is due to McCarthy [8] and is called the HölderMcCarthy inequality[3].

If we replace x by $x /\|x\|$ in (9), and taking the p-th root of each term, we obtain

$$
\begin{equation*}
(A x, x) \leq\left(A^{p} x, x\right)^{1 / p}\|x\|^{2 / q} \leq \lambda(p ; m, M)^{1 / p}(A x, x) \tag{10}
\end{equation*}
$$

for every $x \in H$ and $\frac{1}{p}+\frac{1}{q}=1$.

Recall the s-power mean $A \#, B(s \in[0,1])$ in the Kubo-Ando theory;

$$
A \#, B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{s} A^{1 / 2}
$$

Consequently, we have the following noncommutative version of Theorem 3.
Theorem 4. Let A and B be positive operators satisfying $0<m_{1} \leq A \leq M_{1}$ and $0<m_{2} \leq$ $B \leq M_{2}$. Then for $p>1, q>1, \frac{1}{p}+\frac{1}{q}=1$ and for $x \in H$,

$$
\begin{equation*}
\left(B^{q} \#_{1 / p} A^{p} x, x\right) \leq\left(A^{p} x, x\right)^{1 / p}\left(B^{q} x, x\right)^{1 / q} \leq \lambda\left(p ; \frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}}\right)^{1 / p}\left(B^{q} \#_{1 / p} A^{p} x, x\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A^{p} \#_{1 / q} B^{q} x, x\right) \leq\left(A^{p} x, x\right)^{1 / p}\left(B^{q} x, x\right)^{1 / q} \leq \lambda\left(q ; \frac{m_{2}}{M_{1}^{p-1}}, \frac{M_{2}}{m_{1}^{p-1}}\right)^{1 / q}\left(A^{p} \#_{1 / q} B^{q} x, x\right) \tag{12}
\end{equation*}
$$

Proof. Replace A by $\left(B^{-q / 2} A^{p} B^{-q / 2}\right)^{1 / p}$ and x by $B^{q / 2} x$ in (10). Then we have

$$
\begin{align*}
\left(B^{q / 2}\left(B^{-q / 2} A^{p} B^{-q / 2}\right)^{1 / p} B^{q / 2} x, x\right) & \leq\left(A^{p} x, x\right)^{1 / p}\left(B^{q} x, x\right)^{1 / q} \tag{13}\\
& \leq \lambda\left(p ; \frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}}\right)^{1 / p}\left(B^{q / 2}\left(B^{-q / 2} A^{p} B^{-q / 2}\right)^{1 / p} B^{q / 2} x, x\right)
\end{align*}
$$

Since

$$
\frac{m_{1}^{p}}{M_{2}^{q}} \leq m_{1}^{p} B^{-q} \leq B^{-q / 2} A^{p} B^{-q / 2} \leq M_{1}^{p} B^{-q} \leq \frac{M_{1}^{p}}{m_{2}^{q}}
$$

we have $\frac{m_{1}}{M_{2}^{q-1}} \leq\left(B^{-q / 2} A^{p} B^{-q / 2}\right)^{1 / p} \leq \frac{M_{1}}{m_{2}^{q-1}}$. Hence (11) holds by noting that $B^{q} \#_{1 / p} A^{p}=$ $B^{q / 2}\left(B^{-q / 2} A^{p} B^{-q / 2}\right)^{1 / p} B^{q / 2}$. The latter (12) is proved similarly.a

Thus a noncommutative variant of the Greub-Rheinboldt inequality[4] is also obtained by putting $p=q=2$ in particular.

Corollary 5. Under the same assumption as in Theorem 4, the following holds:

$$
\begin{equation*}
\left(A^{2} \# B^{2} x, x\right) \leq\left(A^{2} x, x\right)^{1 / 2}\left(B^{2} x, x\right)^{1 / 2} \leq \frac{m_{1} m_{2}+M_{1} M_{2}}{2 \sqrt{m_{1} m_{2} M_{1} M_{2}}}\left(A^{2} \# B^{2} x, x\right) . \tag{14}
\end{equation*}
$$

Moreover, if A and B is replaced by $A^{1 / 2}$ and $A^{-1 / 2}$ respectively in (14), then the Kantorovich inequality is obtained (cf. [10]):

$$
(A x, x)^{1 / 2}\left(A^{-1} x, x\right)^{1 / 2} \leq \frac{m_{1}+M_{1}}{2 \sqrt{m_{1} M_{1}}}
$$

4. Kantorovich inequality. The Kantorovich inequality is a complementary one of the Cauchy-Schwarz inequality and gives the bound of its ratio. Also it has many generalizations (see (1) and Theorem 4).

Now it is well known that $t^{s}(0 \leq s \leq 1)$ is an operator monotone function ([5]) and not so is t^{2}. However, by the Kantorovich inequality, we can say that t^{2} is order preserving in the following sense.

Theorem 6. Let $0 \leq A \leq B$ and $0<m \leq A \leq M$. Then

$$
A^{2} \leq \frac{(m+M)^{2}}{4 m M} B^{2} .
$$

Proof. By the Kantorovich inequality (3), we have

$$
\left(A^{2} x, x\right) \leq \frac{(m+M)^{2}}{4 m M}(A x, x)^{2} \leq \frac{(m+M)^{2}}{4 m M}(B x, x)^{2} \leq \frac{(m+M)^{2}}{4 m M}\left(B^{2} x, x\right)
$$

for all unit vectors x.a
Similarly, if $0<n \leq B \leq N$, we have, by Theorem 6,

$$
B^{-2} \leq \frac{\left(\frac{1}{n}+\frac{1}{N}\right)^{2}}{4 \frac{1}{n} \frac{1}{N}} A^{-2}=\frac{(n+N)^{2}}{4 n N} A^{-2} .
$$

So, as a variant of Theorem 6 , we have
Theorem 6'. Let $0<A \leq B$ and $0<n \leq B \leq N$. Then

$$
A^{2} \leq \frac{(n+N)^{2}}{4 n N} B^{2}
$$

Following after Turing[11], the condition number $\kappa(A)$ of an invertible operator A is defined by $\kappa(A)=\|A\|\left\|A^{-1}\right\|$. If a positive operator A satisfies the condition $0<m \leq A \leq M$, then it may be thought as $M=\|A\|$ and $m=\left\|A^{-1}\right\|^{-1}$, so that $\kappa(A)=\frac{M}{m}$.

From the same viewpoint as Theorems 6 and 6^{\prime}, we estimate the function t^{p} ($p \geq 1$) using the condition number $\kappa(A)=\frac{M}{m}$.

Theorem 7. Let $0<A \leq B$ and $0<m \leq A \leq M$. Then

$$
A^{p} \leq\left(\frac{M}{m}\right)^{p} B^{p} \quad(p \geq 1)
$$

Proof. We have

$$
A^{2 p}=B^{p} B^{-p} A^{2 p} B^{-p} B^{p} \leq\left\|B^{-p} A^{2 p} B^{-p}\right\| B^{2 p} \leq\|A\|^{2 p}\left\|B^{-1}\right\|^{2 p} B^{2 p},
$$

so that this implies $A^{p} \leq\|A\|^{p}\left\|B^{-1}\right\|^{p} B^{p} \leq M^{p}\left(\frac{1}{m}\right)^{p} B^{p}=\left(\frac{M}{m}\right)^{p} B^{p}$. \square
Though the function e^{t} is not operator monotone, we have the following result as a consequence of Theorem 7:

Corollary 8. Let $0<A \leq B$ and $0<m \leq A \leq M$. Then

$$
e^{A} \leq e^{\frac{M}{m} B} .
$$

Proof. By Theorem 7, we have

$$
e^{A}=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n} \leq \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{M}{m}\right)^{n} B^{n}=e^{\frac{M}{m} B} .0
$$

Remark. Finally we remark that Theorem 7 is extended to every increasing function f as follows: If $0<m \leq A \leq M$ and $A \leq B$ are satisfied, then we obtain

$$
f(A) \leq f\left(\frac{M}{m} B\right)
$$

and

$$
f(A) \leq \frac{f(M)}{f(m)} f(B) \quad(f(m) f(M)>0)
$$

because $f(A) \leq f(M) \leq f\left(\frac{M}{m} B\right)$ and $f(A) \leq f(M)=\frac{f(M)}{f(m)} f(m) \leq \frac{f(M)}{f(m)} f(B)$.

References

[1] M.Fujii, T.Furuta, R.Nakamoto and S.I.Takahashi, Operator inequalities and covariance in noncommutative probability, to appear in Math. Japonica
[2] M.Fujii, R.Nakamoto and Y.Seo, Covariance in Bernstein's inequality for operators, to appear in Nihonkai Math. J.
[3] M.Fujii, S.Izumino and R.Nakamoto, Classes of operators determined by the Heinz-KatoFuruta inequality and the Hölder-McCarthy inequality, Nihonkai Math.J., 5(1994), 61-67.
[4] W.Greub and W.Rheinboldt, On a generalization of an inequality of L.V.Kantorovich, Proc. Amer. Math. Soc., 10(1959), 407-415.
[5] E.Heinz, Beiträge zur Störungstheorie der Spectralzerlegung, Math. Ann., 123(1951), 415-438.
[6] S.Izumino and Y.Seo, On Ozeki's inequality and noncommutative covariance, to appear in Nihonkai Math.J.
[7] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
[8] C.A.McCarthy, c_{p}, Israrel J. Math., 5(1967), 249-271.
[9] D.S.Mitrinović, J.E.Pečarić and A.M.Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[10] R.Nakamoto and M.Nakamura. Operator mean and the Kantorovich inequality, Math. Japonica, 44(1966), 495-498.
[11] A.M.Turing, Rounding off-errors in matrix processes, Quart. J. Mech. Appl. Math., 1(1948), 287-308.
[12] H.Umegaki, Conditional expectation in an operator algebra, Tohoku Math. J., 6(1954), 177-181.

* Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka, 582, Japan
** Faculty of Education, Toyama University, Gofuku, Toyama-shi 930, Japan
*** Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan
**** Tennoji Branchi, Senior Highschool, Osaka Kyoiku University, Tennoji, Osaka 543, Japan

[^0]: 1991 Mathematics Subject Classification. Primary 47A30, 47A63 and Secondary 46 L 89.
 Key words and phrases. covariance of operator, variance of operator, noncommutative probability,
 Kantorovich inequality, Cauchy-Schwarz inequality, Hölder-McCarthy inequality, condition number.

