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OPERATOR INEQUALITIES RELATED TO CAUCHY-SCHWARZ
AND H\"OLDER-McCARTHY INEQUALITIES

Masatoshi Fujii*, Saichi Izumino**, Ritsuo Nakamoto*** and Yuki Seo****

Abstract. We give an improvement of the Cauchy-Schwarz inequality, which is based on the
covariance-variance inequality. We also give a complementary inequality of the Holder-McCarty
inequality. Furthermore we extend it to the case of two variables using the operator mean in the
Kubo-Ando theory. Consequently we have a noncommutative version of the Greub-Rheinboldt
inequality as an extension of the Kantrovich one. Finally we discuss about order preserving
properties of increasing functions through the Kantorovich inequality.

1. Introduction. In [1], we proved the covariance-variance inequality in the noncommuta-
tive probability theory established by Umegaki[12]:

(1) $|Cov(A, B)|^{2}\leq Var(A)Var(B)$ ,

where $Cov(A, B)$ and $Var(A)$ are defined as

$Cov(A, B)=(B^{*}Ax, x)-(B^{\cdot}x, x)(Ax, x)$ and $Var(A)=Cov(A, A)$

for (bounded linear) operators $A,$ $B$ acting on a Hilbert space $H$ and a fixed unit vector $x\in H$.
The covariance-variance inequality has many applications for operator inequalities, see [1,2,6].

Among others, we pointed out that (1) implies the celebrated Kantorovich inequality: If a
positive operator $A$ on a Hilbert space $H$ satisfies $0<m\leq A\leq M$ , then for each unit vector
$x\in H$

(2) $(Ax, x)(A^{-1}x, x)\leq\frac{(m+M)^{2}}{4mM}$

or equivalently,

(3) $(A^{2}x, x)\leq\frac{(m+M)^{2}}{4mM}(Ax, x)^{2}$ .

Since the covariance-variance inequaJity is equivfient to the Cauchy-Schwarz inequality, the
Kantorovich inequality lies on the line of the Cauchy-Schwarz inequality. More precisely, it is
considered as an estimation of the ratio of factors appearing in the Cauchy-Schwarz inequality.
Another viewpoint is to estimate the difference of the factors. Actually it has been done in the
numerical case. Its operator version will be given by the covariancevariance inequality in the
below.

On the other hand, the Holder-McCarthy $inequality[3,8]$ is a generalization of the Cauchy-
Schwarz inequality. Along with our argument, we attempt to generalize the Holder-McCarthy
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inequality and give its complementary inequality, in which the geometric mean plays an essential
role, see [7].

Finally we discuss the bridge between the Kantorovich inequality and the Lowner-Heinz
inequality via the condition number with the origin by Turing.

2. Cauchy-Schwarz inequality. The covariance-variance inequality is equivalent to the
Cauchy-Schwarz inequaJity[l]. Nevertheless we can discuss an improvement of the Cauchy-
Schwarz inequality lying on the line of the covariance-variance inequality.

First of al, we remark that the covariance-variance inequality (1) has a nice relation with
the Gram matrix as follows. For a unit vector $x$ , the Gram matrix

$((Bx,Ax)(Ax,Ax)(x,Ax)$ $(Bx,Bx)(Ax,Bx)(x,Bx)$ $(((BA_{X,X}xxxx))))$

is positive definite and its determinant $G(Ax, Bx, x)$ is just the difference of the covariance-
variance inequality:

(4) $G(Ax, Bx, x)=Var(A)Var(B)-|Cov(A, B)|^{2}\geq 0$ .

The covariance-variance inequality also appears in an improvement of Cauchy’s inequality
(see [9]): Let $a_{1},$ $\cdots$ , $a$, and $b_{1},$ $\cdots$ , $b$. be real numbers and let

$u=n^{-1/2}\sum a_{i}$ and $v=n^{-1/2}\sum b_{j}$ .
Then

$\sum a_{j}^{2}\sum b_{1}^{2}-(\sum a_{i}b_{i})^{2}\geq u^{2}\sum b_{j}^{2}-2uv\sum a;b_{i}+v^{2}\sum a^{2}|$

An operator version of this inequality is seemed to be as follows: If $A$ and $B$ are commuting
hermitian operators, then

$(A^{2}x, x)(B^{2}x,x)-(ABx, x)^{2}\geq(A^{2}x, x)(Bx, x)^{2}-2(ABx, x)(Ax, x)(Bx,x)$
(5)

$+(B^{2}x,x)(Ax,x)^{2}\geq 0$

for all unit vectors $x$ . However the assumption of the commutativity on $A$ and $B$ is not needed;
as a matter of fact, we have the following operator version of Cauchy’s inequality, in which we
will be able to recognize the utility of the covariance-variance inequality:

Theorem 1. Let $A$ and $B$ be positive. Then

$(A^{2}x, x)(B^{2}x, x)-|(ABx, x)|^{2}\geq(A^{2}x, x)(Bx, x)^{2}-2|(ABx,x)|(Ax,x)(Bx, x)$
(6)

$+(B^{2}x, x)(Ax,x)^{2}\geq 0$

for all unit vectors $x$ .
Proof. By the covariance-variance inequality (1), we have

$\{(A^{2}x, x)-(Ax, x)^{2}\}\{(B^{2}x, x)-(Bx, x)^{2}\}\geq|(ABx,x)-(Ax, x)(Bx, x)|^{2}$

$\geq\{(Ax, x)(Bx,x)-|(ABx, x)|\}^{2}$
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It is easily checked that this inequality can be rephrased as the first inequality of (6). The
positivity of the middle term is shown as follows:

$(A^{2}x, x)(Bx, x)^{2}-2|(ABx, x)|(Ax, x)(Bx, x)+(B^{2}x, x)(Ax, x)^{2}$

$=\{(A^{2}x, x)^{1/2}(Bx, x)-(B^{2}x,x)^{1/2}(Ax, x)\}^{2}$

+2 $\{(A^{2}x, x)^{1/2}(B^{2}x, x)^{1/2}-|(ABx, x)|\}(Ax, x)(Bx, x)\geq 0.O$

3. Holder-McCarthy inequality. In this section we show an operator version of H\"older’s
inequality and its complementary inequality. Moreover we generalize it using the geometric
mean in the Kubo-Ando theory[7]. The geometric mean $A\# B$ is defined by

$A\# B=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$

for positive invertible operators $A$ and $B$ .
We need the following useful result, which gives Jensen’s inequality and a complementary

inequality of it with respect to the convex function $f(x)=x^{p}(p>1)$ .
Lemma 2([9, p.694, (11.2)]). Let $(a_{1}, \cdots , a_{n})$ and $(w_{1}, \cdots , w,)$ be n-tuplcs of nonnegative

numbers such that $0<m\leq a_{k}\leq M$ ($k=1,$ $\cdots$ , n) and $\sum w_{k}=1$ . Then, for $p\geq 1$

(7) $(\sum w_{k}a_{k})^{p}\leq\sum w_{k}a_{k}^{p}\leq\lambda(p;m, M)(\sum w_{k}a_{k})^{p}$ ,

whe $re\lambda(p;m, M)=\{\frac{1}{p^{1/p}q^{1/q}}\frac{M^{p}-m^{p}}{(M-m)^{1/p}(mM^{p}-Mm^{p})^{1/q}}\}^{p}$ and $q=\frac{p}{p-1}$

If $A$ is a selfadjoint operator with $m\leq A\leq M$ , then for a unit vector $x\in H$ , there is a
spectral measure $\mu_{x}$ on $[m, M]$ such that

(8) $(A^{p}x, x)=\int_{m}^{M}t^{p}d\mu_{s}$ .

Applying the inequality (7) to the approximate sum of the integral of (8), we have:
Theorem 3. Let $A$ be a $ selfadioin\ell$ operator with $m\leq A\leq M$ and $p>1$ . Then for a unit

vector $x\in H$ ,

(9) $(Ax, x)^{p}\leq(A^{p}x, x)\leq\lambda(p;m, M)(Ax, x)^{p}$ .

Here we note that the first inequality of (9) is due to McCarthy [8] and is called the H\"older-
McCarthy inequality[3].

If we replace $x$ by $x/||x||$ in (9), and taking the p-th root of each term, we obtain

(10) $(Ax, x)\leq(A^{p}x, x)^{1/p}||x||^{2/q}\leq\lambda(p;m, M)^{1/p}(Ax, x)$ ,

for every $x\in H$ and $\frac{1}{p}+\frac{1}{q}=1$ .
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RecaU the s-power mean $A\# sB(s\in[0,1])$ in the Kubo-Ando theory;

$A\# sB=A^{1/2}(A^{-1/2}BA^{-1/2})A^{1/2}$ .
Consequently, we have the following noncommutative version of Theorem 3.

Theorem 4. Let $A$ and $B$ be positive operators satisfying $0<m_{1}\leq A\leq M_{1}$ and $ 0<m_{2}\leq$

$B\leq M_{2}$ . Then for $p>1,$ $q>1,1+1|=1$ and for $x\in H$,

(11) $(B^{q}\# 1/pA^{p}x, x)\leq(A^{\prime}x,x)^{1/r}(B^{q}x,x)^{1/r}\leq\lambda(p;\frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}})^{1/r}(B^{q}\# 1/’ A^{p}x,x)$

and

(12) $(A^{p}\# 1/qB^{q}x, x)\leq(A^{\prime}x,x)^{1/}(B^{q}x,x)^{1/q}\leq\lambda(q;\frac{m_{2}}{M_{1}^{p-1}}, \frac{M_{2}}{m_{1}^{p-1}})^{1/q}(A^{p}\# 1/qB^{q}x,x)$ .

$Pr\infty f$. Replace $A$ by $(B^{-q/2}AB^{-r/2})^{1/p}$ and $x$ by $B^{q/2}x$ in (10). Then we have
(13)

$(B^{q/2}(B^{-q/2}A^{\prime}B^{-q/2})^{1/\prime}B^{q/2}x,x)\leq(A^{p}x, x)^{1/p}(B^{q}x,x)^{1/q}$

$\leq\lambda(p;\frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}})^{1/p}(B^{q/2}(B^{-q/2}A^{\prime}B^{-r/2})^{1/p}B^{q/2}x, x)$ .

Since
$\frac{m_{1}^{p}}{M_{2}^{q}}\leq m_{1}^{\prime}B^{-q}\leq B^{-q/2}A^{p}B^{-q/2}\leq M_{1}^{p}B^{-q}\leq\frac{M_{1}^{\prime}}{m_{2}^{q}}$

we have $\frac{m_{1}}{M_{2}^{q-1}}\leq(B^{-q/2}A^{p}B^{-r/2})^{1/p}\leq\frac{M_{1}}{m_{2}^{q-1}}$ Hence (11) holds by noting that $B^{q}\# 1/A^{\prime}=$

$B^{q/2}(B^{-q/2}A^{p}B^{-q/2})^{1/p}B^{q/2}$ . The latter (12) is proved similarly.$0$

Thus a noncommutative variant of the Greub-Rheinboldt inequality[4] is also obtained by
putting $p=q=2$ in particular.

Corollary 5. Under the same assumption as in Theorem 4, the following holds:

(14) $(A^{2}\# B^{2}x,x)\leq(A^{2}x,x)^{1/2}(B^{2}x,x)^{1/2}\leq\frac{m_{1}m_{2}+M_{1}M_{2}}{2\sqrt{m_{1}m_{2}M_{1}M_{2}}}(A^{2}\# B^{2}x,x)$ .

Moreover, if $A$ and $B$ is replaced by $A^{1/2}$ and $A^{-1/2}$ respectively in (14), then the Kantorovich
inequality is obtained (cf. [10]):

$(Ax,x)^{1/2}(A^{-1}x,x)^{1/2}\leq\frac{m_{1}+M_{1}}{2\sqrt{m_{1}M_{1}}}$

4. Kantorovich inequality. The Kantorovich inequaJity is a complementary one of the
Cauchy-Schwarz inequality and gives the bound of its ratio. Also it has many generalizations
(see (1) and Theorem 4).
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Now it is well known that $\ell^{\ell}(0\leq s\leq 1)$ is an operator monotone function ([5]) and not so
is $\ell^{2}$ . However, by the Kantorovich inequdity, we can say that $\ell^{2}$ is order preserving in the
following sense.

Theorem 6. Let $0\leq A\leq B$ and $0<m\leq A\leq M$ . Then

$A^{2}\leq\frac{(m+M)^{2}}{4mM}B^{2}$ .

Proof. By the Kantorovich inequality (3), we have

$(A^{2}x,x)\leq\frac{(m+M)^{2}}{4mM}(Ax,x)^{2}\leq\frac{(m+M)^{2}}{4mM}(Bx, x)^{2}\leq\frac{(m+M)^{2}}{4mM}(B^{2}x, x)$

for all unit vectors $x.O$

Similarly, if $0<n\leq B\leq N$ , we have, by Theorem 6,

$B^{-2}\leq\frac{(\frac{1}{l}+1\pi)^{2}}{4\frac{1}{l}\pi^{1}}A^{-2}=\frac{(n+N)^{2}}{4nN}A^{-2}$ .

So, as a variant of Theorem 6, we have
Theorem $6^{l}$ . Let $0<A\leq B$ and $0<n\leq B\leq N$ . Then

$A^{2}\leq\frac{(n+N)^{2}}{4nN}B^{2}$ .

Following after Turing[ll], the condition number $\kappa(A)$ of an invertible operator $A$ is defined
by $\kappa(A)=||A||||A^{-1}||$ . If a positive operator $A$ satisfies the condition $0<m\leq A\leq M$ , then
it may be thought as $M=||A||$ and $m=||A^{-1}||^{-1}$ , so that $\kappa(A)=$ Am

From the same viewpoint as Theorems 6 and 6‘, we estimate the function $\ell^{p}(p\geq 1)$ using
the condition number $\kappa(A)=um$

Theorem 7. Let $0<A\leq B$ and $0<m\leq A\leq M$ . Then

$A^{p}\leq(\frac{M}{m})^{p}B^{p}$ $(p\geq 1)$ .

Proof. We have

$A^{2p}=B^{p}B^{-p}A^{2p}B^{-p}B^{p}\leq||B^{-p}A^{2p}B^{-p}||B^{2p}\leq||A||^{2p}||B^{-1}||^{2p}B^{2p}$ ,

so that this implies $A^{p}\leq||A||^{p}||B^{-1}||^{p}B^{p}\leq M^{p}(\frac{1}{m})^{p}B^{p}=(\frac{M}{m})^{p}B^{p}$ . $0$

Though the function $e^{t}$ is not operator monotone, we have the following result as a conse-
quence of Theorem 7:

Corollary 8. Let $0<A\leq B$ and $0<m\leq A\leq M$. Then

$e^{A}\leq e^{u_{B}}n$
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Proof. By Theorem 7, we have

$e^{A}=\sum_{=0}^{\infty}\frac{1}{n!}A$ $\leq\sum_{l=0}^{\infty}\frac{1}{n!}(\frac{M}{m})B=e^{u_{B}}n.\coprod$

Remark. Findly we remark that Theorem 7 is extended to $e$very increasing function $f$ as
foUows: If $0<m\leq A\leq M$ and $A\leq B$ are satisfied, then we obtain

$f(\mathcal{A})\leq f(\frac{M}{m}B)$

and
$f(\mathcal{A})\leq\frac{f(M)}{f(m)}f(B)$ $(f(m)f(M)>0)$ ,

because $f(A)\leq f(M)\leq f(\frac{M}{*}B)$ and $f(A)\leq f(M)=E_{m}^{M}f(m)\leq\#_{\pi}^{M}|\not\simeq f(B)$ .
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