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ON THE GROUP OF AUTOMORPHISMS OF A HOPF MAP

TAKASHI ONO

§ 1. Introduction

Let K be an infinite field of characteristic not 2. Let qx, qγ be non-
singular quadratic forms on vector spaces X, Y over K, respectively. Assume
that there is a bilinear map B:XX Y—> Y such that qγ(B(x, y)) = qx(x)qY(y)'
To each such triple {qX9 qY9 B} one associates the Hopf map h: Z = X X Y
-* W = K X y by h(z) = (qx(x) ~ qY(y), 2B(x, y)), z = (*, yj. Denote by qz,
qw quadratic forms on Z, W, respectively, defined by qz(z) = qAχ) + Qγ(y\
qw{w) = u2 + qY(v), w — (u, v). One sees easily that qw(h(z)) = qz{zf, which

means that h sends a sphere into a sphere. We shall denote by G the
group of automorphisms of h, i.e. the group formed by all automorphisms
s e GL(Z) such that h(sz) = h(z) for all zeZ. After the model of the re-
lationship of quadratic forms and orthogonal groups, it is natural to ask
questions such as: what is the structure of G, how G acts on the fibre,
what the 1st cohomology of G looks like, and how about the Hasse prin-
ciple for G when the ground field is a number field? In the present paper,
we shall limit our considerations to the case where X is an algebra with
1 over K together with a nonsingular quadratic form qx such that qx{xy)
= qx{x)qx{y), x, y β X. Thanks to a theorem due to A. Hurwitz, such
algebras, called composition algebras, are completely determined (cf. [1],
Theorem 3.25, p. 73). Namely, an algebra (X, qx) is one of the following:
(I) X = K; (Π) X = K + K; (III) X = a quadratic extension of K; (IV) X
= a quaternion algebra over K; (V) X — a Cayley algebra over K. Fur-
thermore, if X = K, then qx(x) = x2; otherwise qx is the norm form on X.
Except for some easy arguments which work for an arbitrary triple {qx,
qγ, JB}, our results depend on the above theorem of Hurwitz. One can
answer completely the questions mentioned above. For the general case,
I have, at present, no definite idea how to handle it except the feeling that
one needs detailed study of representations of Clifford algebras.
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§2. The subgroup N

Notations being as in § 1, since we have qw(hz) = qz(z)2, for s e G, we

have qz(sz) = e(s, z)qz(z) with e(s9 z) = ± 1 . Let E = {ze Z, qz(z) ΦO}. Since

E is a non-empty open subset of the irreducible set Z, E is also irreducible.

Let fs be a function E-> K defined by fs(z) = qz{sz)jqz{z). As fs is a con-

tinuous map, its image which is a subset of {±1} must be irreducible, and

so e(s, z) = χ(s), a function of s only.*} Obviously, χ(s) is a homomorphism

of G into {±1}. Call N the kernel of χ. In this section, we consider N.

Later on, we shall study the complement G — N to decide whether G = N

or [G:N] = 2.

An endomorphism s: Z-+ Z can be written as

where a, β, γ, δ

are linear maps X->X, Y->X, X-+Y, Y-> Y, respectively. Using the

column notation for z = (x, y), we have

\γχ + δy

Now, we have

s e N <=Φ h(sz) = h(z) and qz(sz) = 0^(2) .

In other words, we have

(qx(ax + βy) - qY(γx + δy) = qx(x) - qY(y)

seN<=Φ Iqx(ax + βy) + qY(γx + δy) = qx(x) + qY(y)

{B(ax + βy, γx + δy) = B(x, y) ,

or

qx(ax +

qY{γx +

B(ax +

βy) = q.
δy) = qY

βy, γx +

x(x)

(y)

δy) = B(x,y).

(2.1)

(2.2)

(2.3)

Let (, ) x , (, ) r be the inner product associated to qx, qY, respectively. Then,

(2.1) can be written as

(2.4) qMx) + Qr(βy) + 2(ax, βy)z = qx(χ) .

We assumed the field K infinite because we needed the Zariski topology here.
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Similarly, (2.2) can be written as

(2.5) qγ(γx) + qY(δy) + 2(γx, δy)Y = qY(y) .

If we put x = 0 in (2.1), then we have qx(βy) = 0. If, on the other hand,

we put y = 0 in (2.1), then we have qx(ax) = qx(x) and hence a e O(qx), the

orthogonal group of qx. Substituting these results back in (2.4), we see

that (ax, βy)x = 0 for all x e X, y e Y. Since a is invertible, this implies

that βy = 0 for all y, i.e. β = 0. Similarly, using (2.2), (2.5), we see that

γ — 0 and δ e O(qY). We have therefore proved that

(2.6) N = {s = (o δ € 0(QY)' B(μXi δy) = B(X}

(2.7) Remark. Let β be a vector in X such that <7χ(e) = 1. If such e is

available, the map t defined by t(y) = B(e, y) belongs to O(qY) in view of

the relation qY(B(x,y)) = qx(x)qY(y). Therefore, if we put BQ(x, y) = t'1B{x9y\

then we get a bilinear map X X Y—> Y with the property B0(e,y) = y, y €
Y, in addition to the property qY(B0(x, y)) = qx(x)qY(y). Hence, without
much loss of generality, we may assume from the beginning that the bi-
linear map B satisfies the condition that B(e, y) = y for a n e e l with qx(e)
— 1. It then follows that δy — B(e, δy) = B(a~1e, y) and so we have a group

isomorphism:

(2.8) N « {a e O(qx\ B(ax, B(a^e, y)) = B(x, y)} .

§ 3. The set G - N

First of all, we have

seG — N4=Φ h(sz) = h(z) and qz(sz) = —qz(z) .

Therefore,

qx(ax + βy) - qγ(γx + δy) = qx(x) - qY(y) ,

qx(ax + ^y) + qY(γx + ^y) = -qx(x) - qY(y) ,

B(ax+ βy, γx+δy) = B(x,y),

or

seG-

( a x + j8y) = -qY(y) ,

qY(γx + δy) = -qx(x) ,

B(ax + βy, γx + δy) = B(x, y) .

(3.1)

(3.2)

(3.3)
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Here (3.1) can be written as

(3.4) qx{ax) + qx{βy) + 2(ax, βy)x = -qγ(y)

and (3.2) can be written as

(3.5) qγ(γx) + qY(δy) + 2(γx, δy)Y = -qx(x) .

If we put y = 0 in (3.1), we have qx(ax) = 0. If we put x = 0 in (3.1), we

have qx(βy) = —qY(y) and hence β is injective, i.e. β embeds (Y — qY) into

(X, qx). Similarly, from (3.2), (3.5), qY(δy) = 0 and qY(γx) = — qx(x) where

the latter implies that γ embeds (X,qx) into (Y, — qY). In other words, β

and γ are isometries of (X, qx) and (Y, —qY). Since (3.4) implies (ax, βy)x

= 0 for all x e l j e Y, we have αx = 0, i.e. a = 0. Similarly, by (3.5), we

have δ = 0. We have therefore proved that

(3.6) G - N = [s = (° ζ), qxβ = - g F , gFr = - g Λ

(3.7) Remark. As in (2.7), assume that B satisfies the additional condition

B(e,y) = y. Then we have γx = B(e, γx) = B(x, β~Λe) and so a bijection of

sets:

(3.8) G-N~{β, (Y, - g F ) ^ (X, 9x), B08y, B(x, jS"^)) = £(x,y)

(3.9) Remark. As (3.6) shows, we have G = iV unless (X, qx) and (Y, — gF)

are isometric. For example, if dim X φ dim Y, then G = N, always. One

can also determine the structure of the triple {qx, qY, B) with isometries

by making use of the theorem of Hurwitz.

§4. Composition algebras

Let (X, qx) be a composition algebra over K. This is a special case

of the triple {qx, qY, B) where Y = X, qY = qx, B(x, y) = xy. Moreover, X

has the identity 1 and so the remarks (2.7), (3.7) are available. If we put

a = α'^l), b = d'^l), the last equality of (2.6) implies that ax — xb and

δy = ay. Substituting these in (2.8), we have the group isomorphism:
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Nπ{aeX, qx(a) = 1, (xa^ay) = xy for all x,yeX}
Y* J-/

= {a e X, qx(a) = 1, x(ay) = (xά)y for all x, y e X) .

If the algebra X is associative, then we have simply:

(4.2) iV^{αeX, gz(α) = 1} ,

the group of norm one in X. In view of the theorem of Hurwitz, it remains

the case where X is the Cayley algebra. In this case, we have X = Y +

Yω, Y= K + Ki + Kj + Kk, a quaternion algebra. The multiplication and

conjugation in X are given as follows: ω2 = μ e Kx, ωx = xω, x(yω) = (yx)ω,

(xω)y = (xy)ω, (xώ)(yω) = μ yx, x + yω = x — yω, x,yeY. Now, write a =

6 + cω, 6, c e Y and put x = i, y = j in the relation x(ay) = (xa)y. Then,

we end up with the equality ibj — ckω — ibj + ckω, which implies that c

= 0, i.e. a = be Y. Next, put x — yω, y = ω in x(ay) = (xα)^. It then fol-

lows that ae K, the center of Y. We have therefore proved that

(4.3) N ^ {±1} when X is a Cayley algebra .

We now turn to the set G — N. If we put a = r '^ l ) , 6 = β'Xl), the

last equality of (3.6) implies that γx = xb, βy = ay. Note that ^ ( α ) = qx{b)

= — 1 because qxβ — — qx = gxf. Substituting these in (3.8), we have the

bijection of sets:

G - Nπ {aeX, qx(a) = - 1 , (μyXxa'1) = *y for all x,^€Z}
(4.4)

= {aeX, qx(a) = — 1, (α y)x = (xα)y for all x,y e X} .

If the algebra X is commutative, then we have simply:

(4.5) G - N « {α 6 X, gx(o) = -1} .

In view of the theorem of Hurwitz, it remains the cases where X is a

quaternion algebra or a Cayley algebra. Putting y = 1 in the relation

(ay)x = (xα)y, we see that α e if because these algebras are central. But

then we must have xy = yx if there is an a e K such that qx{a) = a2 = — 1.

Thus the set G — N is empty, i.e.

(4.6) G = N when X is either a quaternion algebra or a Cayley algebra.

From (4.1)-(4.6), we get the following

(4.7) THEOREM. Let K be an infinite field of characteristic not 2, X be a

composition algebra over K and n(x) be the norm form on X. Let h: Z =

XχX~>W=KχXbe the Hopf map given by h(z) = (n(x) - n(y), 2xy),
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z = (χ? y)9 G be the group of automorphisms s e GL(Z) such that h(sz) = h(z)

and N be the subgroup of G consisting of s such that qz(sz) = qz{z), where

qz(z) = n(x) + n(y). According to the theorem of Hurwitz, classify X as

(I) X = K; (II) X = K + K; (ΠI) X = a quadratic extension of K; (IV) X

a quaternion algebra over K; (V) X = a Cayley algebra over K. Then we

have the following table:

type of X

(I)

(ID

(IΠ)

(IV)

(V)

N

{±1}

K*

{xeX, n(x) = 1}

{xeX, n(x) = 1}

{±1}

[G:iV]

1 when V — 1 £ if

2 when V —1 e if

2

1 when n(x) = — 1 has no solutions

2 when n(#) = — 1 has a solution

1

1

(4.8) In the table, the groups described are not the group N itself but

isomorphic images of N.

(4.9) For t e Kx, put Sz(t) = {z e Z = X x X, gz(z) = ί}. Then, Λ induces

a map ht: Sz(t)-> Sw(f) = {weW= Kx X, qw(w) = t2}. Let we Sw(f) be

such that the fibre hϊ\w) Φ 0. Since zeZ belongs to this fibre if and only

if h(z) — w and qz(z) = t9 the group N acts on hj\w). As qz(z) = n(x) +

), qw{w) = u2 + τι(ι;), 2 = (x, y), α; = (u, ϋ), we have

7i(#) + n(y)

n(x) — n(y)

2xy = v

= ί
• = u <

(n(x) = r

=Φ jn(y) = s,
(2xy = i;

with r = \{t + u), s = %(t- u). Since t Φ 0, either r OY s Φ 0. If r Φ 0,

then Λ: is invertible and y = ^x"1^. We have therefore the bisection hj\w)

« { x e l , n(x) = r}. If we identify iV with {α€ X, n(α) = 1, x(az) = {xa)y}

by (4.1), then the action of N on hj\w) is given by x >-> xα"1 or x «-> αx

according as r ^ 0 or s ^ 0. From the table of (4.7), we see that iV acts

transitively on the fibre when X is of type (II), (III), (IV).
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§5. Tate-Shafarevich set for algebraic groups

Let k be an algebraic number field of finite degree over the field Q

of rational numbers. Let G be an algebraic group defined over k. Using

the standard notation in Galois cohomology, we put

Ul(k, G) = Ker (ίΓ(fc, G) > Π H\kυ, G)) ,

and call this the Tate-Shafarevich set for G over k. Basic references for

Galois cohomology are [2] and [3]. In this section, we shall prove two

lemmas which will be needed in the next section.

(5.1) LEMMA. Let K/k be a finite Galois extension and G be an algebraic

group defined over k. If U1(K, G) = 0, then there is a bijectίon Ul(k, G) &

Ul(K/k, Gκ\ where

Ul(K/k, G) = Ker (u\K\k, Gκ) > Π H\KJkv, GKΌ))

and Kv is the field which is the completion of K taken in the algebraic

closure kΌ of kυ.

Proof. Consider the following commutative diagram:

0 0 0

Ul(Klk,Gκ) > Ul(k,G) - ^ U1(K,G)

* inf ^ res

0 > H\Klk,Gκ) -^> H\k,G) ^> H\K,G)

0 — • Π H (,KJh,, βj -L, π ίΓ(*,, O) — • Π H (K,, ΰ)
V V W

where all columns and the middle row are exact, a, inf, ε are injective

and Kw is the completion of if at a place w of K. We shall show that

Ima = Ker β. In fact, take x e Ul(K/k, Gκ). Then we have βa(x) =

res inf (x) = 0 and hence Ima a Ker β. Next, take y e Ker β C Ker (res).

Then y = inf (x) for some xeH^K/k, Gκ). It then follows that 0 = δ(y) =

<5inf (x) = εγ(x). Since ε is injective, we have γ(x) = 0, i.e. xe Ul(K/k, Gκ)

which shows that Ker β alma. Now, if HICK", G) = 0, then the relation

Im a = Ker β means that a is surjective, which proves our assertion, q.e.d.
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(5.2) LEMMA. We have Ul(k, G) = 0 if G is a finite abelian group consist-

ing of k-rational points only.

Proof. Denote by g (resp. §v) the Galois group of kjk (resp. kjkv).

By the assumption, 3 and qv act trivially on G. Hence, Ul(k, G) is nothing

else than the kernel of the canonical map

θ: Horn (9, G) • Π Horn(g99 G)

where Horn means the continuous homomorphisms with respect to the

KruU topology on the Galois group and the discrete topology on G. Now,

take any £ e Ker θ. Because of the continuity of £, there is an open normal

subgroup ϊ) of a such that £(§) = 0, and hence £(βJ(j) = 0 for all v. Call

Kjk the finite Galois extension corresponding to ζ. To QΌh corresponds the

field (K Π kv)lk which is the decomposition field of a valuation of K which

induces v on k. For any σ e β, put s = <ή) e §(Kjk), the Galois group of K/k.

By Tschebotareff density theorem, one has tst~ι e Q(K/K 0 kp) for some finite

prime p of k, and for some 16 Q(K/k). If one puts t = ri) with r e g , then

τστ~ι 6 gpϊj. Hence f(σ) = ξiτστ-1) = 0 since £ 6 Ker 0, and so £ = 0, q.e.d.

§6. Hasse principle for G attached to a composition algebra

Let (X, ή) be a composition algebra defined over a number field k.

By definition, there is a composition algebra (Xk, nk) over h such that (X, ή)

is obtained by extending the ground field k to a universal domain £? con-

taining £. The Hopf map

h:Z=Xχ X >W=Ωχ X

is given by h(z) = (n(x) - n{y\ 2xy), z = (s, y), and the group G of auto-

morphisms of h becomes an algebraic group defined over k. Our main

result is the

(6.1) THEOREM. Let G be the group of automorphisms of the Hopf map

associated to a composition algebra defined over a number field k. Then,

we have Ul(k9 G) = 0, i.e. the Hasse principle holds for G.

Proof. We split the proof into five cases according to the type of the

algebra (Xt, nk) described in the theorem of Hurwitz.

Type (I). In this case X = Ω, n{x) = x2 and h(z) = (x2 - / , 2xy). By

(2.6), (3.6) (or by a direct calculation) we see that G is a finite abelian

group consisting of elements ± 1 , ±γ where
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Put K = k(i). Then, since every element of G is if-rational, we have

U1(K, G) = 0 by (5.2). Thus Ul(k, G) = 0 if i e k. On the other hand, in

case where ί <£ k, we have Ul(k, G) « Ul(K/k, Gκ) by (5.1). We now prove

that H\Kjk9 Gκ) = 0 which, of course, implies that Ul(K/k, Gκ) = 0. In

fact, let (aσ) = {1, a] be a cocycle of ^(K/k) in G x. This simply means that

aas = 1 where s is the generator of Q(K/k). One sees easily that a = ± 1

and 1 = 1-1Γ, — 1 = γ~Y, which shows that (aσ) is trivial.

Type (II). In this case, from (4.7), it follows that

0 >N >G-ϊ->{±ϊ\ >0 (exact),

where N « Ωx and hence H\k, N) = 0 by Hubert theorem 90. Take a

cocycle (aσ) from Ul(k, G). Then, bσ = %{aσ) defines a cocycle (bσ) in

U p , {±1}) which is 0 by (5.2). This implies that bσ = 1, i.e. ασ 6 N. Since

ίΓ(β, iV) = 0, we have aσ ~ 0 in N and hence in G. We have thus proved

that U p , G) = 0.

Type (IΠ). In this case, Xk = K, a quadratic extension, nk is the norm

for K/k and N = {xe X, n(x) = 1}, a torus of dimension one which is split

by if. Hence, we have H\K, N) = 0 by Hubert theorem 90. Take a

cocycle (ασ) from LU(i£, G). Then 6, = χ(ασ) defines a cocycle (bσ) in

IlI(ϋΓ, {±1}) which is 0 by (5.2). Hence bσ = 1 and so ασ e 2V. Then, Hubert

theorem 90 for N over K implies that aa ~ 0 in N and hence in G, which

proves that UI(J5L, G) = 0. Therefore, by (5.1), we have U p , G) «IIKX/ife, GJ.

Having reduced the problem to the case of quadratic extension K/k, we

write K = ^(^) with θ2 = me k. Hence, we have n(z) = x2 — m y2 if z — x

+ y#> i j e f l . From (4.5), we see that, for any field extension L/k, we

have [GL: iVJ = 2 if and only if x2 — my2 = — 1 has solutions x, y in L.

Now, take a cocycle (ασ) from Ul(Klk, Gκ). By a similar argument as above,

using Ul(K/k, {±1}) = 0, we see that aσ e Nκ. We shall prove that aσ — 0

in NKv for all v in k. If that is so, our assertion will follow from the

known fact Ul(K/k, Nκ) = 0 (See [4] Proposition 4.5.1). First of all, if the

valuation v is such that KΌ — kυ, then the matter is trivial because (aa) =

{1}. So, from now on, we shall only consider the case where [Kv: kv] = 2.

In this case, we have (aσ) = {1, a] with a e Nκ. The assumption aσ — 0 in

GKv means that a = g^gl, where s is the conjugation in Kυjkυ. If gυ e NKυ9

then aσ — 0 in JV^ already. If not, we write gv = wtυ with tυ e NKv and
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w, any element of Gκ — Nκ. We now show that we can find w such that

ws = —w. Namely, identifying X with Ω2 by setting xx + x2θ = ( X l ) , put
\*2/

Then' by (3'6)> we see that w==(°
because n(j9(y)) - (θy2)

2 - m(β-ιytf = m ^ - yϊ = - τ ι ( y) and (βy)(βx) = (0;y2

+ θ{θ~ιy1))(θx2 + θiθ-%)) = mx2y2 + xxyx + θ{x,y2 + x2y1) = (x, + Θx2)(y1 + θy2)

= xy. It is obvious that ws = — H;. Using this zι;, we have a = gΰτgv =

tϋ1u)~ιwsts

v = — £rX. We next show that we can find ueNKv such that

— 1 = w"1^. In fact, take ξ,ηekυ such that ξ + η = 1, ξ — rj — m~\ and

put x = θξ, y = η, u = x + θy. Then, us = xs — # y = — x — θy = —u and

n(zz) = x2 — my2 = τnf2 — mrf = m ^ + ^)(f — ^) = 1. We have therefore

a = gvXgv = (tvu)-\tυu)s and hence aa — 0 in JV ,̂ again.

Type (IV). In this case, G = N and N = {x e X, n(x) = 1}. Denote by

Xo the subspace of Z consisting of quaternions of trace zero and by n0 the

quadratic form induced on Xo by n. Then N is a simply connected group

(the spin group) which forms a double covering of the rotation group

O+(nQ). Then, we have Ul(k, G) = 0 as is well-known (See [3]).

Type (V). In this case, G = N = {±1} and our assertion follows from

(5.2), q.e.d.
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