T. Ono Nagoya Math. J. Vol. 79 (1980), 131-140

ON THE GROUP OF AUTOMORPHISMS OF A HOPF MAP

TAKASHI ONO

§1. Introduction

Let K be an infinite field of characteristic not 2. Let q_x, q_y be nonsingular quadratic forms on vector spaces X, Y over K, respectively. Assume that there is a bilinear map $B: X \times Y \to Y$ such that $q_{x}(B(x, y)) = q_{x}(x)q_{y}(y)$. To each such triple $\{q_x, q_y, B\}$ one associates the Hopf map $h: Z = X \times Y$ $\rightarrow W = K \times Y$ by $h(z) = (q_x(x) - q_y(y), 2B(x, y)), z = (x, y)$. Denote by q_z , q_W quadratic forms on Z, W, respectively, defined by $q_Z(z) = q_X(x) + q_Y(y)$, $q_W(w) = u^2 + q_Y(v), w = (u, v)$. One sees easily that $q_W(h(z)) = q_Z(z)^2$, which means that h sends a sphere into a sphere. We shall denote by G the group of automorphisms of h, i.e. the group formed by all automorphisms $s \in GL(Z)$ such that h(sz) = h(z) for all $z \in Z$. After the model of the relationship of quadratic forms and orthogonal groups, it is natural to ask questions such as: what is the structure of G, how G acts on the fibre, what the 1st cohomology of G looks like, and how about the Hasse principle for G when the ground field is a number field? In the present paper, we shall limit our considerations to the case where X is an algebra with 1 over K together with a nonsingular quadratic form q_x such that $q_x(xy)$ $= q_x(x)q_x(y), x, y \in X.$ Thanks to a theorem due to A. Hurwitz, such algebras, called composition algebras, are completely determined (cf. [1], Theorem 3.25, p. 73). Namely, an algebra (X, q_x) is one of the following: (I) X = K; (II) X = K + K; (III) X = a quadratic extension of K; (IV) X = a quaternion algebra over K; (V) X = a Cayley algebra over K. Furthermore, if X = K, then $q_x(x) = x^2$; otherwise q_x is the norm form on X. Except for some easy arguments which work for an arbitrary triple $\{q_x,$ q_r, B , our results depend on the above theorem of Hurwitz. One can answer completely the questions mentioned above. For the general case, I have, at present, no definite idea how to handle it except the feeling that one needs detailed study of representations of Clifford algebras.

Received March 20, 1979.

§2. The subgroup N

Notations being as in §1, since we have $q_W(hz) = q_Z(z)^2$, for $s \in G$, we have $q_Z(sz) = e(s, z)q_Z(z)$ with $e(s, z) = \pm 1$. Let $E = \{z \in Z, q_Z(z) \neq 0\}$. Since E is a non-empty open subset of the irreducible set Z, E is also irreducible. Let f_s be a function $E \to K$ defined by $f_s(z) = q_Z(sz)/q_Z(z)$. As f_s is a continuous map, its image which is a subset of $\{\pm 1\}$ must be irreducible, and so $e(s, z) = \chi(s)$, a function of s only.^{*)} Obviously, $\chi(s)$ is a homomorphism of G into $\{\pm 1\}$. Call N the kernel of χ . In this section, we consider N. Later on, we shall study the complement G - N to decide whether G = N or [G: N] = 2.

An endomorphism $s: Z \rightarrow Z$ can be written as

$$s = egin{pmatrix} lpha & eta \ \gamma & \delta \end{pmatrix} \qquad ext{where} \,\, lpha, eta, \gamma, \delta$$

are linear maps $X \to X$, $Y \to X$, $X \to Y$, $Y \to Y$, respectively. Using the column notation for z = (x, y), we have

$$s(z) = \begin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} lpha x + eta y \\ \gamma x + \delta y \end{pmatrix}$$

Now, we have

$$s \in N \iff h(sz) = h(z) \quad ext{and} \quad q_z(sz) = q_z(z) \;.$$

In other words, we have

$$s \in N \Longleftrightarrow \begin{cases} q_x(\alpha x + \beta y) - q_y(\gamma x + \delta y) = q_x(x) - q_y(y), \\ q_x(\alpha x + \beta y) + q_y(\gamma x + \delta y) = q_x(x) + q_y(y), \\ B(\alpha x + \beta y, \gamma x + \delta y) = B(x, y), \end{cases}$$

or

$$(q_x(\alpha x + \beta y) = q_x(x), \qquad (2.1)$$

$$s \in N \iff \left\{ q_{Y}(\gamma x + \delta y) = q_{Y}(y) \right\},$$
 (2.2)

$$(B(\alpha x + \beta y, \gamma x + \delta y) = B(x, y).$$
(2.3)

Let $(,)_x, (,)_y$ be the inner product associated to q_x, q_y , respectively. Then, (2.1) can be written as

(2.4)
$$q_{x}(\alpha x) + q_{y}(\beta y) + 2(\alpha x, \beta y)_{x} = q_{x}(x) .$$

^{*)} We assumed the field K infinite because we needed the Zariski topology here.

Similarly, (2.2) can be written as

$$(2.5) q_Y(\gamma x) + q_Y(\delta y) + 2(\gamma x, \delta y)_Y = q_Y(y) .$$

If we put x = 0 in (2.1), then we have $q_x(\beta y) = 0$. If, on the other hand, we put y = 0 in (2.1), then we have $q_x(\alpha x) = q_x(x)$ and hence $\alpha \in O(q_x)$, the orthogonal group of q_x . Substituting these results back in (2.4), we see that $(\alpha x, \beta y)_x = 0$ for all $x \in X, y \in Y$. Since α is invertible, this implies that $\beta y = 0$ for all y, i.e. $\beta = 0$. Similarly, using (2.2), (2.5), we see that $\gamma = 0$ and $\delta \in O(q_x)$. We have therefore proved that

(2.6)
$$N = \left\{ s = \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}, \ \alpha \in O(q_x), \ \delta \in O(q_y), \ B(\alpha x, \delta y) = B(x, y) \right\}.$$

(2.7) Remark. Let e be a vector in X such that $q_x(e) = 1$. If such e is available, the map t defined by t(y) = B(e, y) belongs to $O(q_y)$ in view of the relation $q_x(B(x, y)) = q_x(x)q_y(y)$. Therefore, if we put $B_0(x, y) = t^{-1}B(x, y)$, then we get a bilinear map $X \times Y \to Y$ with the property $B_0(e, y) = y, y \in Y$, in addition to the property $q_y(B_0(x, y)) = q_x(x)q_y(y)$. Hence, without much loss of generality, we may assume from the beginning that the bilinear map B satisfies the condition that B(e, y) = y for an $e \in X$ with $q_x(e) = 1$. It then follows that $\delta y = B(e, \delta y) = B(\alpha^{-1}e, y)$ and so we have a group isomorphism:

(2.8)
$$N \approx \{\alpha \in O(q_x), B(\alpha x, B(\alpha^{-1}e, y)) = B(x, y)\}.$$

§3. The set G - N

First of all, we have

 \boldsymbol{s}

$$s \in G - N \iff h(sz) = h(z)$$
 and $q_z(sz) = -q_z(z)$.

Therefore,

$$s \in G - N \iff \begin{cases} q_x(\alpha x + \beta y) - q_y(\gamma x + \delta y) = q_x(x) - q_y(y) , \\ q_x(\alpha x + \beta y) + q_y(\gamma x + \delta y) = -q_x(x) - q_y(y) , \\ B(\alpha x + \beta y, \gamma x + \delta y) = B(x, y) , \end{cases}$$

or

$$(q_x(\alpha x + \beta y) = -q_y(y), \qquad (3.1)$$

$$\in G - N \iff \left\{ q_x(\gamma x + \delta y) = -q_x(x) \right\},$$
 (3.2)

$$(B(\alpha x + \beta y, \gamma x + \delta y) = B(x, y) . \tag{3.3}$$

Here (3.1) can be written as

(3.4)
$$q_x(\alpha x) + q_x(\beta y) + 2(\alpha x, \beta y)_x = -q_y(y)$$

and (3.2) can be written as

$$(3.5) q_Y(\gamma x) + q_Y(\delta y) + 2(\gamma x, \delta y)_Y = -q_X(x)$$

If we put y = 0 in (3.1), we have $q_x(\alpha x) = 0$. If we put x = 0 in (3.1), we have $q_x(\beta y) = -q_r(y)$ and hence β is injective, i.e. β embeds $(Y - q_r)$ into (X, q_x) . Similarly, from (3.2), (3.5), $q_r(\delta y) = 0$ and $q_r(\gamma x) = -q_x(x)$ where the latter implies that γ embeds (X, q_x) into $(Y, -q_r)$. In other words, β and γ are isometries of (X, q_x) and $(Y, -q_r)$. Since (3.4) implies $(\alpha x, \beta y)_x = 0$ for all $x \in X, y \in Y$, we have $\alpha x = 0$, i.e. $\alpha = 0$. Similarly, by (3.5), we have $\delta = 0$. We have therefore proved that

$$(3.6) G-N = \left\{ s = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix}, \ q_x \beta = -q_y, \ q_y \gamma = -q_x, \\ B(\beta y, \gamma x) = B(x, y) \right\}.$$

(3.7) Remark. As in (2.7), assume that B satisfies the additional condition B(e, y) = y. Then we have $\gamma x = B(e, \gamma x) = B(x, \beta^{-1}e)$ and so a bijection of sets:

$$(3.8) \quad G-N\approx\left\{\beta,\ (Y,-q_Y)\xrightarrow{\beta}(X,q_X),\ B(\beta y,\ B(x,\ \beta^{-1}e))=B(x,y)\right\}.$$

(3.9) Remark. As (3.6) shows, we have G = N unless (X, q_x) and $(Y, -q_y)$ are isometric. For example, if dim $X \neq \dim Y$, then G = N, always. One can also determine the structure of the triple $\{q_x, q_y, B\}$ with isometries

$$(X, q_x) \xrightarrow{r}_{\beta} (Y, -q_r)$$

by making use of the theorem of Hurwitz.

§4. Composition algebras

Let (X, q_x) be a composition algebra over K. This is a special case of the triple $\{q_x, q_y, B\}$ where Y = X, $q_y = q_x$, B(x, y) = xy. Moreover, Xhas the identity 1 and so the remarks (2.7), (3.7) are available. If we put $a = \alpha^{-1}(1)$, $b = \delta^{-1}(1)$, the last equality of (2.6) implies that $\alpha x = xb$ and $\delta y = ay$. Substituting these in (2.8), we have the group isomorphism:

134

HOPF MAP

(4.1)
$$N \approx \{a \in X, q_x(a) = 1, (xa^{-1})(ay) = xy \text{ for all } x, y \in X\} \\ = \{a \in X, q_x(a) = 1, x(ay) = (xa)y \text{ for all } x, y \in X\}.$$

If the algebra X is *associative*, then we have simply:

$$(4.2) N \approx \{a \in X, q_X(a) = 1\},$$

the group of norm one in X. In view of the theorem of Hurwitz, it remains the case where X is the Cayley algebra. In this case, we have X = Y + $Y\omega$, Y = K + Ki + Kj + Kk, a quaternion algebra. The multiplication and conjugation in X are given as follows: $\omega^2 = \mu \in K^{\times}$, $\omega x = \bar{x}\omega$, $x(y\omega) = (yx)\omega$, $(x\omega)y = (x\bar{y})\omega$, $(x\omega)(y\omega) = \mu\bar{y}x$, $\overline{x + y\omega} = \bar{x} - y\omega$, $x, y \in Y$. Now, write a = $b + c\omega$, $b, c \in Y$ and put x = i, y = j in the relation x(ay) = (xa)y. Then, we end up with the equality $ibj - ck\omega = ibj + ck\omega$, which implies that c= 0, i.e. $a = b \in Y$. Next, put $x = y\omega$, $y = \omega$ in x(ay) = (xa)y. It then follows that $a \in K$, the center of Y. We have therefore proved that

(4.3)
$$N \approx \{\pm 1\}$$
 when X is a Cayley algebra.

We now turn to the set G - N. If we put $a = \gamma^{-1}(1)$, $b = \beta^{-1}(1)$, the last equality of (3.6) implies that $\gamma x = xb$, $\beta y = ay$. Note that $q_x(a) = q_x(b) = -1$ because $q_x\beta = -q_x = q_x\gamma$. Substituting these in (3.8), we have the bijection of sets:

(4.4)
$$G - N \approx \{a \in X, q_x(a) = -1, (ay)(xa^{-1}) = xy \text{ for all } x, y \in X\} \\ = \{a \in X, q_x(a) = -1, (ay)x = (xa)y \text{ for all } x, y \in X\}.$$

If the algebra X is commutative, then we have simply:

(4.5)
$$G - N \approx \{a \in X, q_X(a) = -1\}$$
.

In view of the theorem of Hurwitz, it remains the cases where X is a quaternion algebra or a Cayley algebra. Putting y = 1 in the relation (ay)x = (xa)y, we see that $a \in K$ because these algebras are central. But then we must have xy = yx if there is an $a \in K$ such that $q_x(a) = a^2 = -1$. Thus the set G - N is empty, i.e.

(4.6) G = N when X is either a quaternion algebra or a Cayley algebra. From (4.1)-(4.6), we get the following

(4.7) THEOREM. Let K be an infinite field of characteristic not 2, X be a composition algebra over K and n(x) be the norm form on X. Let $h: Z = X \times X \to W = K \times X$ be the Hopf map given by h(z) = (n(x) - n(y), 2xy),

TAKASHI ONO

z = (x, y), G be the group of automorphisms $s \in GL(Z)$ such that h(sz) = h(z)and N be the subgroup of G consisting of s such that $q_z(sz) = q_z(z)$, where $q_z(z) = n(x) + n(y)$. According to the theorem of Hurwitz, classify X as (I) X = K; (II) X = K + K; (III) X = a quadratic extension of K; (IV) X a quaternion algebra over K; (V) X = a Cayley algebra over K. Then we have the following table:

type of X	N	[G: N]
(I)	{±1}	1when $\sqrt{-1} \notin K$ 2when $\sqrt{-1} \in K$
(II)	K×	2
(III)	$\{x \in X, n(x) = 1\}$	1 when $n(x) = -1$ has no solutions 2 when $n(x) = -1$ has a solution
(IV)	$\{x \in X, n(x) = 1\}$	1
(V)	$\{\pm 1\}$	1

(4.8) In the table, the groups described are not the group N itself but isomorphic images of N.

(4.9) For $t \in K^{\times}$, put $S_z(t) = \{z \in Z = X \times X, q_z(z) = t\}$. Then, h induces a map $h_t: S_z(t) \to S_w(t^2) = \{w \in W = K \times X, q_w(w) = t^2\}$. Let $w \in S_w(t^2)$ be such that the fibre $h_t^{-1}(w) \neq \emptyset$. Since $z \in Z$ belongs to this fibre if and only if h(z) = w and $q_z(z) = t$, the group N acts on $h_t^{-1}(w)$. As $q_z(z) = n(x) + n(y), q_w(w) = u^2 + n(v), z = (x, y), w = (u, v)$, we have

$$egin{aligned} z \in h_t^{-1}(w) & \Longleftrightarrow egin{cases} n(x) + n(y) &= t \ n(x) - n(y) &= u \ 2xy &= v \end{aligned} & & & \Leftrightarrow egin{aligned} n(x) &= r \ n(y) &= s \ 2xy &= v \ 2xy &= v \end{aligned}$$

with $r = \frac{1}{2}(t + u)$, $s = \frac{1}{2}(t - u)$. Since $t \neq 0$, either r or $s \neq 0$. If $r \neq 0$, then x is invertible and $y = \frac{1}{2}x^{-1}v$. We have therefore the bijection $h_t^{-1}(w) \approx \{x \in X, n(x) = r\}$. If we identify N with $\{a \in X, n(a) = 1, x(az) = (xa)y\}$ by (4.1), then the action of N on $h_t^{-1}(w)$ is given by $x \mapsto xa^{-1}$ or $x \mapsto ax$ according as $r \neq 0$ or $s \neq 0$. From the table of (4.7), we see that N acts transitively on the fibre when X is of type (II), (III), (IV).

§5. Tate-Shafarevich set for algebraic groups

Let k be an algebraic number field of finite degree over the field Q of rational numbers. Let G be an algebraic group defined over k. Using the standard notation in Galois cohomology, we put

$$\amalg(k, G) = \operatorname{Ker} \left(H^{1}(k, G) \longrightarrow \prod_{v} H^{1}(k_{v}, G) \right) ,$$

and call this the Tate-Shafarevich set for G over k. Basic references for Galois cohomology are [2] and [3]. In this section, we shall prove two lemmas which will be needed in the next section.

(5.1) LEMMA. Let K/k be a finite Galois extension and G be an algebraic group defined over k. If $\coprod(K, G) = 0$, then there is a bijection $\coprod(k, G) \approx \coprod(K/k, G_{\kappa})$, where

$$\amalg(K/k, G) = \operatorname{Ker}\left(H^{1}(K/k, G_{K}) \longrightarrow \prod_{v} H^{1}(K_{v}/k_{v}, G_{K_{v}})\right)$$

and K_v is the field which is the completion of K taken in the algebraic closure \bar{k}_v of k_v .

Proof. Consider the following commutative diagram:

where all columns and the middle row are exact, α , inf, ε are injective and K_w is the completion of K at a place w of K. We shall show that $\operatorname{Im} \alpha = \operatorname{Ker} \beta$. In fact, take $x \in \operatorname{III}(K/k, G_{\kappa})$. Then we have $\beta \alpha(x) =$ res inf (x) = 0 and hence $\operatorname{Im} \alpha \subset \operatorname{Ker} \beta$. Next, take $y \in \operatorname{Ker} \beta \subset \operatorname{Ker}$ (res). Then $y = \inf(x)$ for some $x \in H^1(K/k, G_{\kappa})$. It then follows that $0 = \delta(y) =$ $\delta \inf(x) = \varepsilon \gamma(x)$. Since ε is injective, we have $\gamma(x) = 0$, i.e. $x \in \operatorname{III}(K/k, G_{\kappa})$ which shows that $\operatorname{Ker} \beta \subset \operatorname{Im} \alpha$. Now, if $\operatorname{III}(K, G) = 0$, then the relation $\operatorname{Im} \alpha = \operatorname{Ker} \beta$ means that α is surjective, which proves our assertion, q.e.d.

TAKASHI ONO

(5.2) LEMMA. We have $\coprod(k, G) = 0$ if G is a finite abelian group consisting of k-rational points only.

Proof. Denote by \mathfrak{g} (resp. \mathfrak{g}_v) the Galois group of \overline{k}/k (resp. \overline{k}_v/k_v). By the assumption, \mathfrak{g} and \mathfrak{g}_v act trivially on G. Hence, $\mathrm{III}(k, G)$ is nothing else than the kernel of the canonical map

$$\theta \colon \operatorname{Hom} \left(\mathfrak{g}, G \right) \longrightarrow \prod_{v} \operatorname{Hom} \left(g_{v}, G \right)$$

where Hom means the continuous homomorphisms with respect to the Krull topology on the Galois group and the discrete topology on G. Now, take any $\xi \in \operatorname{Ker} \theta$. Because of the continuity of ξ , there is an open normal subgroup \mathfrak{h} of \mathfrak{g} such that $\xi(\mathfrak{h}) = 0$, and hence $\xi(\mathfrak{g}_v\mathfrak{h}) = 0$ for all v. Call K/k the finite Galois extension corresponding to \mathfrak{h} . To \mathfrak{g}_vh corresponds the field $(K \cap k_v)/k$ which is the decomposition field of a valuation of K which induces v on k. For any $\sigma \in \mathfrak{g}$, put $s = \sigma\mathfrak{h} \in \mathfrak{g}(K/k)$, the Galois group of K/k. By Tschebotareff density theorem, one has $tst^{-1} \in \mathfrak{g}(K/K \cap k_v)$ for some finite prime \mathfrak{p} of k, and for some $t \in \mathfrak{g}(K/k)$. If one puts $t = \tau\mathfrak{h}$ with $\tau \in \mathfrak{g}$, then $\tau \sigma \tau^{-1} \in \mathfrak{g}_v\mathfrak{h}$. Hence $\xi(\sigma) = \xi(\tau \sigma \tau^{-1}) = 0$ since $\xi \in \operatorname{Ker} \theta$, and so $\xi = 0$, q.e.d.

§6. Hasse principle for G attached to a composition algebra

Let (X, n) be a composition algebra defined over a number field k. By definition, there is a composition algebra (X_k, n_k) over k such that (X, n) is obtained by extending the ground field k to a universal domain Ω containing k. The Hopf map

 $h: Z = X \times X \longrightarrow W = \Omega \times X$

is given by h(z) = (n(x) - n(y), 2xy), z = (x, y), and the group G of automorphisms of h becomes an algebraic group defined over k. Our main result is the

(6.1) THEOREM. Let G be the group of automorphisms of the Hopf map associated to a composition algebra defined over a number field k. Then, we have $\coprod(k, G) = 0$, i.e. the Hasse principle holds for G.

Proof. We split the proof into five cases according to the type of the algebra (X_k, n_k) described in the theorem of Hurwitz.

Type (I). In this case $X = \Omega$, $n(x) = x^2$ and $h(z) = (x^2 - y^2, 2xy)$. By (2.6), (3.6) (or by a direct calculation) we see that G is a finite abelian group consisting of elements $\pm 1, \pm \gamma$ where

HOPF MAP

$$\gamma = egin{pmatrix} 0 & i \ -i & 0 \end{pmatrix}$$
 , $i = \sqrt{-1}$.

Put K = k(i). Then, since every element of G is K-rational, we have $\amalg(K, G) = 0$ by (5.2). Thus $\amalg(k, G) = 0$ if $i \in k$. On the other hand, in case where $i \notin k$, we have $\amalg(k, G) \approx \amalg(K/k, G_{\kappa})$ by (5.1). We now prove that $H^1(K/k, G_{\kappa}) = 0$ which, of course, implies that $\amalg(K/k, G_{\kappa}) = 0$. In fact, let $(a_{\sigma}) = \{1, a\}$ be a cocycle of $\mathfrak{g}(K/k)$ in G_{κ} . This simply means that $aa^s = 1$ where s is the generator of $\mathfrak{g}(K/k)$. One sees easily that $a = \pm 1$ and $1 = 1^{-1}1^s$, $-1 = \gamma^{-1}\gamma^s$, which shows that (a_{σ}) is trivial.

Type (II). In this case, from (4.7), it follows that

$$0 \longrightarrow N \longrightarrow G \xrightarrow{\chi} \{\pm 1\} \longrightarrow 0$$
 (exact),

where $N \approx \Omega^{\times}$ and hence $H^{1}(k, N) = 0$ by Hilbert theorem 90. Take a cocycle (a_{σ}) from $\amalg(k, G)$. Then, $b_{\sigma} = \chi(a_{\sigma})$ defines a cocycle (b_{σ}) in $\amalg(k, \{\pm 1\})$ which is 0 by (5.2). This implies that $b_{\sigma} = 1$, i.e. $a_{\sigma} \in N$. Since $H^{1}(k, N) = 0$, we have $a_{\sigma} \sim 0$ in N and hence in G. We have thus proved that $\amalg(k, G) = 0$.

Type (III). In this case, $X_k = K$, a quadratic extension, n_k is the norm for K/k and $N = \{x \in X, n(x) = 1\}$, a torus of dimension one which is split by K. Hence, we have $H^{1}(K, N) = 0$ by Hilbert theorem 90. Take a cocycle (a_a) from $\coprod(K, G)$. Then $b_{\sigma} = \chi(a_{\sigma})$ defines a cocycle (b_{σ}) in $\amalg(K, \{\pm 1\})$ which is 0 by (5.2). Hence $b_{\sigma} = 1$ and so $a_{\sigma} \in N$. Then, Hilbert theorem 90 for N over K implies that $a_{\sigma} \sim 0$ in N and hence in G, which proves that $\amalg(K, G) = 0$. Therefore, by (5.1), we have $\amalg(k, G) \approx \amalg(K/k, G_{\kappa})$. Having reduced the problem to the case of quadratic extension K/k, we write $K = k(\theta)$ with $\theta^2 = m \in k$. Hence, we have $n(z) = x^2 - my^2$ if z = x $+ y\theta$, $x, y \in \Omega$. From (4.5), we see that, for any field extension L/k, we have $[G_L: N_L] = 2$ if and only if $x^2 - my^2 = -1$ has solutions x, y in L. Now, take a cocycle (a_a) from $\coprod(K/k, G_k)$. By a similar argument as above, using $\coprod(K/k, \{\pm 1\}) = 0$, we see that $a_{\sigma} \in N_{\kappa}$. We shall prove that $a_{\sigma} \sim 0$ in N_{K_v} for all v in k. If that is so, our assertion will follow from the known fact $\amalg(K/k, N_{\kappa}) = 0$ (See [4] Proposition 4.5.1). First of all, if the valuation v is such that $K_v = k_v$, then the matter is trivial because $(a_{\sigma}) =$ {1}. So, from now on, we shall only consider the case where $[K_v: k_v] = 2$. In this case, we have $(a_{\sigma}) = \{1, a\}$ with $a \in N_{\kappa}$. The assumption $a_{\sigma} \sim 0$ in G_{κ_v} means that $a = g_v^{-1} g_v^s$, where s is the conjugation in K_v/k_v . If $g_v \in N_{\kappa_v}$, then $a_{\sigma} \sim 0$ in N_{κ_v} already. If not, we write $g_v = wt_v$ with $t_v \in N_{\kappa_v}$ and

TAKASHI ONO

w, any element of $G_{\kappa} - N_{\kappa}$. We now show that we can find w such that $w^s = -w$. Namely, identifying X with Ω^2 by setting $x_1 + x_2\theta = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, put $\beta(x) = \begin{pmatrix} 0 \\ \theta^{-1} \\ 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. Then, by (3.6), we see that $w = \begin{pmatrix} 0 \\ \beta \\ 0 \end{pmatrix} \in G_{\kappa} - N_{\kappa}$ because $n(\beta(y)) = (\theta y_2)^2 - m(\theta^{-1}y_1)^2 = my_2^2 - y_1^2 = -n(y)$ and $(\beta y)(\beta x) = (\theta y_2 + \theta(\theta^{-1}y_1))(\theta x_2 + \theta(\theta^{-1}x_1)) = mx_2y_2 + x_1y_1 + \theta(x_1y_2 + x_2y_1) = (x_1 + \theta x_2)(y_1 + \theta y_2)$ = xy. It is obvious that $w^s = -w$. Using this w, we have $a = g_v^{-1}g_v^s = t_v^{-1}w^{-1}w^s t_v^s = -t_v^{-1}t_v^s$. We next show that we can find $u \in N_{\kappa_v}$ such that $-1 = u^{-1}u^s$. In fact, take $\xi, \eta \in k_v$ such that $\xi + \eta = 1, \xi - \eta = m^{-1}$, and put $x = \theta\xi, y = \eta, u = x + \theta y$. Then, $u^s = x^s - \theta y^s = -x - \theta y = -u$ and $n(u) = x^2 - my^2 = m\xi^2 - m\eta^2 = m(\xi + \eta)(\xi - \eta) = 1$. We have therefore $a = g_v^{-1}g_v^s = (t_v u)^{-1}(t_v u)^s$ and hence $a_\sigma \sim 0$ in N_{κ_v} , again.

Type (IV). In this case, G = N and $N = \{x \in X, n(x) = 1\}$. Denote by X_0 the subspace of X consisting of quaternions of trace zero and by n_0 the quadratic form induced on X_0 by n. Then N is a simply connected group (the spin group) which forms a double covering of the rotation group $O^+(n_0)$. Then, we have $\coprod(k, G) = 0$ as is well-known (See [3]).

Type (V). In this case, $G = N = \{\pm 1\}$ and our assertion follows from (5.2), q.e.d.

References

- R. Schafer, An introduction to nonassociative algebras, Academic Press, New York, 1966.
- [2] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Mathematics, Springer-Verlag, 1964.
- [3] M. Kneser, Lectures on Galois cohomology of classical groups, Tata Institute, Bombay, 1969.
- [4] T. Ono, On the Tamagawa number of algebraic tori, Ann. of Math. 78 (1963), 47-73.

The Johns Hopkins University