ON THE GROUP OF AUTOMORPHISMS OF A HOPF MAP

TAKASHI ONO

§1. Introduction

Let K be an infinite field of characteristic not 2. Let q_{X}, q_{Y} be nonsingular quadratic forms on vector spaces X, Y over K, respectively. Assume that there is a bilinear map $B: X \times Y \rightarrow Y$ such that $q_{Y}(B(x, y))=q_{X}(x) q_{Y}(y)$. To each such triple $\left\{q_{X}, q_{Y}, B\right\}$ one associates the Hopf map $h: Z=X \times Y$ $\rightarrow W=K \times Y$ by $h(z)=\left(q_{X}(x)-q_{Y}(y), 2 B(x, y)\right), z=(x, y)$. Denote by q_{z}, q_{W} quadratic forms on Z, W, respectively, defined by $q_{z}(z)=q_{X}(x)+q_{r}(y)$, $q_{W}(w)=u^{2}+q_{Y}(v), w=(u, v)$. One sees easily that $q_{W}(h(z))=q_{z}(z)^{2}$, which means that h sends a sphere into a sphere. We shall denote by G the group of automorphisms of h, i.e. the group formed by all automorphisms $s \in G L(Z)$ such that $h(s z)=h(z)$ for all $z \in Z$. After the model of the relationship of quadratic forms and orthogonal groups, it is natural to ask questions such as: what is the structure of G, how G acts on the fibre, what the 1st cohomology of G looks like, and how about the Hasse principle for G when the ground field is a number field? In the present paper, we shall limit our considerations to the case where X is an algebra with 1 over K together with a nonsingular quadratic form q_{x} such that $q_{x}(x y)$ $=q_{X}(x) q_{x}(y), x, y \in X$. Thanks to a theorem due to A. Hurwitz, such algebras, called composition algebras, are completely determined (cf. [1], Theorem 3.25, p. 73). Namely, an algebra (X, q_{x}) is one of the following: (I) $X=K$; (II) $X=K+K$; (III) $X=$ a quadratic extension of K; (IV) X = a quaternion algebra over K; (V) $X=$ a Cayley algebra over K. Furthermore, if $X=K$, then $q_{X}(x)=x^{2}$; otherwise q_{X} is the norm form on X. Except for some easy arguments which work for an arbitrary triple $\left\{q_{X}\right.$, $\left.q_{Y}, B\right\}$, our results depend on the above theorem of Hurwitz. One can answer completely the questions mentioned above. For the general case, I have, at present, no definite idea how to handle it except the feeling that one needs detailed study of representations of Clifford algebras.

§2. The subgroup N

Notations being as in $\S 1$, since we have $q_{w}(h z)=q_{z}(z)^{2}$, for $s \in G$, we have $q_{z}(s z)=e(s, z) q_{z}(z)$ with $e(s, z)= \pm 1$. Let $E=\left\{z \in Z, q_{z}(z) \neq 0\right\}$. Since E is a non-empty open subset of the irreducible set Z, E is also irreducible. Let f_{s} be a function $E \rightarrow K$ defined by $f_{s}(z)=q_{z}(s z) / q_{z}(z)$. As f_{s} is a continuous map, its image which is a subset of $\{ \pm 1\}$ must be irreducible, and so $e(s, z)=\chi(s)$, a function of s only.*) Obviously, $\chi(s)$ is a homomorphism of G into $\{ \pm 1\}$. Call N the kernel of χ. In this section, we consider N. Later on, we shall study the complement $G-N$ to decide whether $G=N$ or $[G: N]=2$.

An endomorphism $s: Z \rightarrow Z$ can be written as

$$
s=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \quad \text { where } \alpha, \beta, \gamma, \delta
$$

are linear maps $X \rightarrow X, Y \rightarrow X, X \rightarrow Y, Y \rightarrow Y$, respectively. Using the column notation for $z=(x, y)$, we have

$$
s(z)=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{x}{y}=\binom{\alpha x+\beta y}{\gamma x+\delta y} .
$$

Now, we have

$$
s \in N \Longleftrightarrow h(s z)=h(z) \quad \text { and } \quad q_{z}(s z)=q_{z}(z)
$$

In other words, we have

$$
s \in N \Longleftrightarrow\left\{\begin{array}{l}
q_{X}(\alpha x+\beta y)-q_{\mathrm{Y}}(\gamma x+\delta y)=q_{x}(x)-q_{Y}(y) \\
q_{x}(\alpha x+\beta y)+q_{Y}(\gamma x+\delta y)=q_{X}(x)+q_{Y}(y) \\
B(\alpha x+\beta y, \gamma x+\delta y)=B(x, y)
\end{array}\right.
$$

or

$$
s \in N \Longleftrightarrow\left\{\begin{array}{l}
q_{X}(\alpha x+\beta y)=q_{X}(x) \tag{2.1}\\
q_{Y}(\gamma x+\delta y)=q_{Y}(y) \\
B(\alpha x+\beta y, \gamma x+\delta y)=B(x, y)
\end{array}\right.
$$

Let $(,)_{X},(,)_{Y}$ be the inner product associated to q_{X}, q_{Y}, respectively. Then, (2.1) can be written as

$$
\begin{equation*}
q_{X}(\alpha x)+q_{Y}(\beta y)+2(\alpha x, \beta y)_{X}=q_{X}(x) \tag{2.4}
\end{equation*}
$$

[^0]Similarly, (2.2) can be written as

$$
\begin{equation*}
q_{Y}(\gamma x)+q_{Y}(\delta y)+2(\gamma x, \delta y)_{Y}=q_{Y}(y) \tag{2.5}
\end{equation*}
$$

If we put $x=0$ in (2.1), then we have $q_{x}(\beta y)=0$. If, on the other hand, we put $y=0$ in (2.1), then we have $q_{x}(\alpha x)=q_{x}(x)$ and hence $\alpha \in O\left(q_{x}\right)$, the orthogonal group of q_{x}. Substituting these results back in (2.4), we see that $(\alpha x, \beta y)_{X}=0$ for all $x \in X, y \in Y$. Since α is invertible, this implies that $\beta y=0$ for all y, i.e. $\beta=0$. Similarly, using (2.2), (2.5), we see that $\gamma=0$ and $\delta \in O\left(q_{Y}\right)$. We have therefore proved that

$$
N=\left\{s=\left(\begin{array}{ll}
\alpha & 0 \tag{2.6}\\
0 & \delta
\end{array}\right), \alpha \in O\left(q_{x}\right), \delta \in O\left(q_{Y}\right), B(\alpha x, \delta y)=B(x, y)\right\}
$$

(2.7) Remark. Let e be a vector in X such that $q_{X}(e)=1$. If such e is available, the map t defined by $t(y)=B(e, y)$ belongs to $O\left(q_{Y}\right)$ in view of the relation $q_{Y}(B(x, y))=q_{X}(x) q_{Y}(y)$. Therefore, if we put $B_{0}(x, y)=t^{-1} B(x, y)$, then we get a bilinear map $X \times Y \rightarrow Y$ with the property $B_{0}(e, y)=y, y \in$ Y, in addition to the property $q_{Y}\left(B_{0}(x, y)\right)=q_{X}(x) q_{Y}(y)$. Hence, without much loss of generality, we may assume from the beginning that the bilinear map B satisfies the condition that $B(e, y)=y$ for an $e \in X$ with $q_{X}(e)$ $=1$. It then follows that $\delta y=B(e, \delta y)=B\left(\alpha^{-1} e, y\right)$ and so we have a group isomorphism:

$$
\begin{equation*}
N \approx\left\{\alpha \in O\left(q_{x}\right), B\left(\alpha x, B\left(\alpha^{-1} e, y\right)\right)=B(x, y)\right\} \tag{2.8}
\end{equation*}
$$

§3. The set $G-N$

First of all, we have

$$
s \in G-N \Longleftrightarrow h(s z)=h(z) \quad \text { and } \quad q_{z}(s z)=-q_{z}(z)
$$

Therefore,

$$
s \in G-N \Longleftrightarrow\left\{\begin{array}{l}
q_{X}(\alpha x+\beta y)-q_{Y}(\gamma x+\delta y)=q_{X}(x)-q_{Y}(y) \\
q_{X}(\alpha x+\beta y)+q_{Y}(\gamma x+\delta y)=-q_{X}(x)-q_{Y}(y) \\
B(\alpha x+\beta y, \gamma x+\delta y)=B(x, y)
\end{array}\right.
$$

or

$$
s \in G-N \Longleftrightarrow\left\{\begin{array}{l}
q_{X}(\alpha x+\beta y)=-q_{Y}(y) \tag{3.1}\\
q_{Y}(\gamma x+\delta y)=-q_{X}(x), \\
B(\alpha x+\beta y, \gamma x+\delta y)=B(x, y)
\end{array}\right.
$$

Here (3.1) can be written as

$$
\begin{equation*}
q_{X}(\alpha x)+q_{X}(\beta y)+2(\alpha x, \beta y)_{X}=-q_{Y}(y) \tag{3.4}
\end{equation*}
$$

and (3.2) can be written as

$$
\begin{equation*}
q_{Y}(\gamma x)+q_{Y}(\delta y)+2(\gamma x, \delta y)_{Y}=-q_{X}(x) . \tag{3.5}
\end{equation*}
$$

If we put $y=0$ in (3.1), we have $q_{x}(\alpha x)=0$. If we put $x=0$ in (3.1), we have $q_{x}(\beta y)=-q_{Y}(y)$ and hence β is injective, i.e. β embeds $\left(Y-q_{Y}\right)$ into (X, q_{X}). Similarly, from (3.2), (3.5), $q_{Y}(\delta y)=0$ and $q_{Y}(\gamma x)=-q_{X}(x)$ where the latter implies that γ embeds (X, q_{X}) into ($Y,-q_{Y}$). In other words, β and γ are isometries of $\left(X, q_{X}\right)$ and $\left(Y,-q_{Y}\right)$. Since (3.4) implies $(\alpha x, \beta y)_{x}$ $=0$ for all $x \in X, y \in Y$, we have $\alpha x=0$, i.e. $\alpha=0$. Similarly, by (3.5), we have $\delta=0$. We have therefore proved that

$$
\begin{align*}
& G-N=\left\{s=\left(\begin{array}{ll}
0 & \beta \\
\gamma & 0
\end{array}\right), q_{X} \beta=-q_{Y}, q_{Y} \gamma=-q_{X}\right. \tag{3.6}\\
&\quad B(\beta y, \gamma x)=B(x, y)\} .
\end{align*}
$$

(3.7) Remark. As in (2.7), assume that B satisfies the additional condition $B(e, y)=y$. Then we have $\gamma x=B(e, \gamma x)=B\left(x, \beta^{-1} e\right)$ and so a bijection of sets:

$$
\begin{equation*}
G-N \approx\left\{\beta,\left(Y,-q_{Y}\right) \stackrel{\beta}{\longrightarrow}\left(X, q_{X}\right), B\left(\beta y, B\left(x, \beta^{-1} e\right)\right)=B(x, y)\right\} \tag{3.8}
\end{equation*}
$$

(3.9) Remark. As (3.6) shows, we have $G=N$ unless (X, q_{X}) and ($Y,-q_{Y}$) are isometric. For example, if $\operatorname{dim} X \neq \operatorname{dim} Y$, then $G=N$, always. One can also determine the structure of the triple $\left\{q_{X}, q_{Y}, B\right\}$ with isometries

$$
\left(X, q_{X}\right) \underset{\beta}{\stackrel{r}{\rightleftarrows}}\left(Y,-q_{Y}\right)
$$

by making use of the theorem of Hurwitz.

§4. Composition algebras

Let (X, q_{X}) be a composition algebra over K. This is a special case of the triple $\left\{q_{X}, q_{Y}, B\right\}$ where $Y=X, q_{Y}=q_{X}, B(x, y)=x y$. Moreover, X has the identity 1 and so the remarks (2.7), (3.7) are available. If we put $a=\alpha^{-1}(1), b=\delta^{-1}(1)$, the last equality of (2.6) implies that $\alpha x=x b$ and $\delta y=a y$. Substituting these in (2.8), we have the group isomorphism:

$$
\begin{align*}
N & \approx\left\{a \in X, q_{X}(a)=1,\left(x a^{-1}\right)(a y)=x y \text { for all } x, y \in X\right\} \tag{4.1}\\
& =\left\{a \in X, q_{x}(a)=1, x(a y)=(x a) y \text { for all } x, y \in X\right\} .
\end{align*}
$$

If the algebra X is associative, then we have simply:

$$
\begin{equation*}
N \approx\left\{a \in X, q_{X}(a)=1\right\} \tag{4.2}
\end{equation*}
$$

the group of norm one in X. In view of the theorem of Hurwitz, it remains the case where X is the Cayley algebra. In this case, we have $X=Y+$ $Y \omega, Y=K+K i+K j+K k$, a quaternion algebra. The multiplication and conjugation in X are given as follows: $\omega^{2}=\mu \in K^{\times}, \omega x=\bar{x} \omega, x(y \omega)=(y x) \omega$, $(x \omega) y=(x \bar{y}) \omega,(x \omega)(y \omega)=\mu \bar{y} x, \overline{x+y \omega}=\bar{x}-y \omega, x, y \in Y$. Now, write $a=$ $b+c \omega, b, c \in Y$ and put $x=i, y=j$ in the relation $x(a y)=(x a) y$. Then, we end up with the equality $i b j-c k \omega=i b j+c k \omega$, which implies that c $=0$, i.e. $a=b \in Y$. Next, put $x=y \omega, y=\omega$ in $x(a y)=(x a) y$. It then follows that $a \in K$, the center of Y. We have therefore proved that

$$
\begin{equation*}
N \approx\{ \pm 1\} \quad \text { when } X \text { is a Cayley algebra } \tag{4.3}
\end{equation*}
$$

We now turn to the set $G-N$. If we put $a=\gamma^{-1}(1), b=\beta^{-1}(1)$, the last equality of (3.6) implies that $\gamma x=x b, \beta y=a y$. Note that $q_{x}(a)=q_{x}(b)$ $=-1$ because $q_{x} \beta=-q_{x}=q_{x} \gamma$. Substituting these in (3.8), we have the bijection of sets:

$$
\begin{align*}
G-N & \approx\left\{a \in X, q_{X}(a)=-1,(a y)\left(x a^{-1}\right)=x y \text { for all } x, y \in X\right\} \tag{4.4}\\
& =\left\{a \in X, q_{X}(a)=-1,(a y) x=(x a) y \text { for all } x, y \in X\right\} .
\end{align*}
$$

If the algebra X is commutative, then we have simply:

$$
\begin{equation*}
G-N \approx\left\{a \in X, q_{x}(a)=-1\right\} \tag{4.5}
\end{equation*}
$$

In view of the theorem of Hurwitz, it remains the cases where X is a quaternion algebra or a Cayley algebra. Putting $y=1$ in the relation (ay) $x=(x a) y$, we see that $a \in K$ because these algebras are central. But then we must have $x y=y x$ if there is an $a \in K$ such that $q_{X}(a)=a^{2}=-1$. Thus the set $G-N$ is empty, i.e.
(4.6) $\quad G=N$ when X is either a quaternion algebra or a Cayley algebra.

From (4.1)-(4.6), we get the following
(4.7) Theorem. Let K be an infinite field of characteristic not $2, X$ be a composition algebra over K and $n(x)$ be the norm form on X. Let $h: Z=$ $X \times X \rightarrow W=K \times X$ be the Hopf map given by $h(z)=(n(x)-n(y), 2 x y)$,
$z=(x, y), G$ be the group of automorphisms $s \in G L(Z)$ such that $h(s z)=h(z)$ and N be the subgroup of G consisting of s such that $q_{z}(s z)=q_{z}(z)$, where $q_{z}(z)=n(x)+n(y)$. According to the theorem of Hurwitz, classify X as (I) $X=K$; (II) $X=K+K$; (III) $X=a$ quadratic extension of K; (IV) X a quaternion algebra over K; (V) $X=a$ Cayley algebra over K. Then we have the following table:

type of X	N	$[G: N]$		
(I)	$\{ \pm 1\}$	$\begin{array}{l}1 \\ 2\end{array}$		
(II)	K^{\times}	2		
when $\sqrt{-1} \notin K$				
when $\sqrt{-1} \in K$			$]$	(III)
:---				
$\{x \in X, n(x)=1\}$				
(IV)				
(V)				

(4.8) In the table, the groups described are not the group N itself but isomorphic images of N.
(4.9) For $t \in K^{\times}$, put $S_{z}(t)=\left\{z \in Z=X \times X, q_{z}(z)=t\right\}$. Then, h induces a map $h_{t}: S_{z}(t) \rightarrow S_{w}\left(t^{2}\right)=\left\{w \in W=K \times X, q_{w}(w)=t^{2}\right\}$. Let $w \in S_{W}\left(t^{2}\right)$ be such that the fibre $h_{t}^{-1}(w) \neq \emptyset$. Since $z \in Z$ belongs to this fibre if and only if $h(z)=w$ and $q_{z}(z)=t$, the group N acts on $h_{t}^{-1}(w)$. As $q_{z}(z)=n(x)+$ $n(y), q_{w}(w)=u^{2}+n(v), z=(x, y), w=(u, v)$, we have

$$
z \in h_{t}^{-1}(w) \Longleftrightarrow\left\{\begin{array} { l }
{ n (x) + n (y) = t } \\
{ n (x) - n (y) = u } \\
{ 2 x y = v }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
n(x)=r \\
n(y)=s, \\
2 x y=v
\end{array}\right.\right.
$$

with $r=\frac{1}{2}(t+u), s=\frac{1}{2}(t-u)$. Since $t \neq 0$, either r or $s \neq 0$. If $r \neq 0$, then x is invertible and $y=\frac{1}{2} x^{-1} v$. We have therefore the bijection $h_{t}^{-1}(w)$ $\approx\{x \in X, n(x)=r\}$. If we identify N with $\{a \in X, n(a)=1, x(a z)=(x a) y\}$ by (4.1), then the action of N on $h_{t}^{-1}(w)$ is given by $x \mapsto x a^{-1}$ or $x \mapsto a x$ according as $r \neq 0$ or $s \neq 0$. From the table of (4.7), we see that N acts transitively on the fibre when X is of type (II), (III), (IV).

§5. Tate-Shafarevich set for algebraic groups

Let k be an algebraic number field of finite degree over the field \boldsymbol{Q} of rational numbers. Let G be an algebraic group defined over k. Using the standard notation in Galois cohomology, we put

$$
\amalg(k, G)=\operatorname{Ker}\left(H^{1}(k, G) \longrightarrow \prod_{v} H^{1}\left(k_{v}, G\right)\right),
$$

and call this the Tate-Shafarevich set for G over k. Basic references for Galois cohomology are [2] and [3]. In this section, we shall prove two lemmas which will be needed in the next section.
(5.1) Lemma. Let K / k be a finite Galois extension and G be an algebraic group defined over k. If $\amalg(K, G)=0$, then there is a bijection $\amalg(k, G) \approx$ $\amalg\left(K / k, G_{K}\right)$, where

$$
\amalg(K / k, G)=\operatorname{Ker}\left(H^{1}\left(K / k, G_{K}\right) \longrightarrow \prod_{v} H^{1}\left(K_{v} / k_{v}, G_{K_{v}}\right)\right)
$$

and K_{v} is the field which is the completion of K taken in the algebraic closure \bar{k}_{v} of k_{v}.

Proof. Consider the following commutative diagram:

where all columns and the middle row are exact, $\alpha, \inf , \varepsilon$ are injective and K_{w} is the completion of K at a place w of K. We shall show that $\operatorname{Im} \alpha=\operatorname{Ker} \beta$. In fact, take $x \in \amalg\left(K / k, G_{K}\right)$. Then we have $\beta \alpha(x)=$ $\operatorname{res} \inf (x)=0$ and hence $\operatorname{Im} \alpha \subset \operatorname{Ker} \beta$. Next, take $y \in \operatorname{Ker} \beta \subset \operatorname{Ker}(\operatorname{res})$. Then $y=\inf (x)$ for some $x \in H^{1}\left(K / k, G_{K}\right)$. It then follows that $0=\delta(y)=$ $\delta \inf (x)=\varepsilon \gamma(x)$. Since ε is injective, we have $\gamma(x)=0$, i.e. $x \in \amalg\left(K / k, G_{K}\right)$ which shows that $\operatorname{Ker} \beta \subset \operatorname{Im} \alpha$. Now, if $\amalg(K, G)=0$, then the relation $\operatorname{Im} \alpha=\operatorname{Ker} \beta$ means that α is surjective, which proves our assertion, q.e.d.
(5.2) Lemma. We have $\amalg(k, G)=0$ if G is a finite abelian group consisting of k-rational points only.

Proof. Denote by g (resp. \mathfrak{g}_{v}) the Galois group of \bar{k} / k (resp. \bar{k}_{v} / k_{v}). By the assumption, g and g_{v} act trivially on G. Hence, $\amalg(k, G)$ is nothing else than the kernel of the canonical map

$$
\theta: \operatorname{Hom}(\mathfrak{g}, G) \longrightarrow \prod_{v} \operatorname{Hom}\left(g_{v}, G\right)
$$

where Hom means the continuous homomorphisms with respect to the Krull topology on the Galois group and the discrete topology on G. Now, take any $\xi \in \operatorname{Ker} \theta$. Because of the continuity of ξ, there is an open normal subgroup \mathfrak{G} of g such that $\xi(\mathfrak{h})=0$, and hence $\xi\left(\mathfrak{g}_{v} \mathfrak{G}\right)=0$ for all v. Call K / k the finite Galois extension corresponding to \mathfrak{G}. To $\mathfrak{g}_{v} h$ corresponds the field ($\left.K \cap k_{v}\right) / k$ which is the decomposition field of a valuation of K which induces v on k. For any $\sigma \in \mathfrak{g}$, put $s=\sigma \mathfrak{h} \in \mathfrak{g}(K / k)$, the Galois group of K / k. By Tschebotareff density theorem, one has $t s t^{-1} \in g\left(K / K \cap k_{p}\right)$ for some finite prime \mathfrak{p} of k, and for some $t \in \mathfrak{g}(K / k)$. If one puts $t=\tau \mathfrak{h}$ with $\tau \in \mathfrak{g}$, then $\tau \sigma \tau^{-1} \in \mathfrak{g}_{p} \mathfrak{h}$. Hence $\xi(\sigma)=\xi\left(\tau \sigma \tau^{-1}\right)=0$ since $\xi \in \operatorname{Ker} \theta$, and so $\xi=0$, q.e.d.

§6. Hasse principle for G attached to a composition algebra

Let (X, n) be a composition algebra defined over a number field k. By definition, there is a composition algebra (X_{k}, n_{k}) over k such that (X, n) is obtained by extending the ground field k to a universal domain Ω containing k. The Hopf map

$$
h: Z=X \times X \longrightarrow W=\Omega \times X
$$

is given by $h(z)=(n(x)-n(y), 2 x y), z=(x, y)$, and the group G of automorphisms of h becomes an algebraic group defined over k. Our main result is the
(6.1) Theorem. Let G be the group of automorphisms of the Hopf map associated to a composition algebra defined over a number field k. Then, we have $\amalg(k, G)=0$, i.e. the Hasse principle holds for G.

Proof. We split the proof into five cases according to the type of the algebra (X_{k}, n_{k}) described in the theorem of Hurwitz.

Type (I). In this case $X=\Omega, n(x)=x^{2}$ and $h(z)=\left(x^{2}-y^{2}, 2 x y\right)$. By (2.6), (3.6) (or by a direct calculation) we see that G is a finite abelian group consisting of elements $\pm 1, \pm \gamma$ where

$$
\gamma=\left(\begin{array}{rr}
0 & i \\
-i & 0
\end{array}\right), \quad i=\sqrt{-1} .
$$

Put $K=k(i)$. Then, since every element of G is K-rational, we have $\amalg(K, G)=0$ by (5.2). Thus $\amalg(k, G)=0$ if $i \in k$. On the other hand, in case where $i \notin k$, we have $\amalg(k, G) \approx \amalg\left(K / k, G_{k}\right)$ by (5.1). We now prove that $H^{1}\left(K / k, G_{K}\right)=0$ which, of course, implies that $\amalg\left(K / k, G_{K}\right)=0$. In fact, let $\left(a_{\sigma}\right)=\{1, a\}$ be a cocycle of $g(K / k)$ in G_{K}. This simply means that $a a^{s}=1$ where s is the generator of $\mathfrak{g}(K / k)$. One sees easily that $a= \pm 1$ and $1=1^{-1} 1^{s},-1=\gamma^{-1} \gamma^{s}$, which shows that (a_{σ}) is trivial.

Type (II). In this case, from (4.7), it follows that

$$
0 \longrightarrow N \longrightarrow G \xrightarrow{\chi}\{ \pm 1\} \longrightarrow 0 \quad \text { (exact) , }
$$

where $N \approx \Omega^{\times}$and hence $H^{1}(k, N)=0$ by Hilbert theorem 90 . Take a cocycle $\left(a_{\sigma}\right)$ from $Ш(k, G)$. Then, $b_{\sigma}=\chi\left(a_{\sigma}\right)$ defines a cocycle $\left(b_{\sigma}\right)$ in $Ш(k,\{ \pm 1\})$ which is 0 by (5.2). This implies that $b_{\sigma}=1$, i.e. $a_{\sigma} \in N$. Since $H^{1}(k, N)=0$, we have $a_{\sigma} \sim 0$ in N and hence in G. We have thus proved that $\amalg(k, G)=0$.

Type (III). In this case, $X_{k}=K$, a quadratic extension, n_{k} is the norm for K / k and $N=\{x \in X, n(x)=1\}$, a torus of dimension one which is split by K. Hence, we have $H^{1}(K, N)=0$ by Hilbert theorem 90. Take a cocycle $\left(a_{\sigma}\right)$ from $Ш(K, G)$. Then $b_{\sigma}=\chi\left(a_{\sigma}\right)$ defines a cocycle (b_{σ}) in $Ш(K,\{ \pm 1\})$ which is 0 by (5.2). Hence $b_{\sigma}=1$ and so $a_{\sigma} \in N$. Then, Hilbert theorem 90 for N over K implies that $a_{\sigma} \sim 0$ in N and hence in G, which proves that $\amalg(K, G)=0$. Therefore, by (5.1), we have $\amalg(k, G) \approx \amalg\left(K / k, G_{K}\right)$. Having reduced the problem to the case of quadratic extension K / k, we write $K=k(\theta)$ with $\theta^{2}=m \in k$. Hence, we have $n(z)=x^{2}-m y^{2}$ if $z=x$ $+y \theta, x, y \in \Omega$. From (4.5), we see that, for any field extension L / k, we have $\left[G_{L}: N_{L}\right]=2$ if and only if $x^{2}-m y^{2}=-1$ has solutions x, y in L. Now, take a cocycle (a_{σ}) from $\amalg\left(K / k, G_{K}\right)$. By a similar argument as above, using $\amalg(K / k,\{ \pm 1\})=0$, we see that $a_{\sigma} \in N_{K}$. We shall prove that $a_{\sigma} \sim 0$ in $N_{K_{v}}$ for all v in k. If that is so, our assertion will follow from the known fact $\amalg\left(K / k, N_{K}\right)=0$ (See [4] Proposition 4.5.1). First of all, if the valuation v is such that $K_{v}=k_{v}$, then the matter is trivial because $\left(a_{o}\right)=$ $\{1\}$. So, from now on, we shall only consider the case where $\left[K_{v}: k_{v}\right]=2$. In this case, we have $\left(a_{\sigma}\right)=\{1, a\}$ with $a \in N_{K}$. The assumption $a_{\sigma} \sim 0$ in $G_{K_{v}}$ means that $a=g_{v}^{-1} g_{v}^{s}$, where s is the conjugation in K_{v} / k_{v}. If $g_{v} \in N_{K_{v}}$, then $a_{\sigma} \sim 0$ in $N_{K_{v}}$ already. If not, we write $g_{v}=w t_{v}$ with $t_{v} \in N_{K_{v}}$ and
w, any element of $G_{K}-N_{K}$. We now show that we can find w such that $w^{s}=-w$. Namely, identifying X with Ω^{2} by setting $x_{1}+x_{2} \theta=\binom{x_{1}}{x_{2}}$, put $\beta(x)=\left(\begin{array}{cc}0 & \theta \\ \theta^{-1} & 0\end{array}\right)\binom{y_{1}}{y_{2}}$. Then, by (3.6), we see that $w=\left(\begin{array}{cc}0 & \beta \\ \beta & 0\end{array}\right) \in G_{K}-N_{K}$ because $n(\beta(y))=\left(\theta y_{2}\right)^{2}-m\left(\theta^{-1} y_{1}\right)^{2}=m y_{2}^{2}-y_{1}^{2}=-n(y)$ and $(\beta y)(\beta x)=\left(\theta y_{2}\right.$ $\left.+\theta\left(\theta^{-1} y_{1}\right)\right)\left(\theta x_{2}+\theta\left(\theta^{-1} x_{1}\right)\right)=m x_{2} y_{2}+x_{1} y_{1}+\theta\left(x_{1} y_{2}+x_{2} y_{1}\right)=\left(x_{1}+\theta x_{2}\right)\left(y_{1}+\theta y_{2}\right)$ $=x y$. It is obvious that $w^{s}=-w$. Using this w, we have $a=g_{v}^{-1} g_{v}^{s}=$ $t_{v}^{-1} w^{-1} w^{s} t_{v}^{s}=-t_{v}^{-1} t_{v}^{s}$. We next show that we can find $u \in N_{K_{v}}$ such that $-1=u^{-1} u^{s}$. In fact, take $\xi, \eta \in k_{v}$ such that $\xi+\eta=1, \xi-\eta=m^{-1}$, and put $x=\theta \xi, y=\eta, u=x+\theta y$. Then, $u^{s}=x^{s}-\theta y^{s}=-x-\theta y=-u$ and $n(u)=x^{2}-m y^{2}=m \xi^{2}-m \eta^{2}=m(\xi+\eta)(\xi-\eta)=1$. We have therefore $a=g_{v}^{-1} g_{v}^{s}=\left(t_{v} u\right)^{-1}\left(t_{v} u\right)^{s}$ and hence $a_{v} \sim 0$ in $N_{K_{v}}$, again.

Type (IV). In this case, $G=N$ and $N=\{x \in X, n(x)=1\}$. Denote by X_{0} the subspace of X consisting of quaternions of trace zero and by n_{0} the quadratic form induced on X_{0} by n. Then N is a simply connected group (the spin group) which forms a double covering of the rotation group $O^{+}\left(n_{0}\right)$. Then, we have $\amalg(k, G)=0$ as is well-known (See [3]).

Type (V). In this case, $G=N=\{ \pm 1\}$ and our assertion follows from (5.2), q.e.d.

References

[1] R. Schafer, An introduction to nonassociative algebras, Academic Press, New York, 1966.
[2] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Mathematics, SpringerVerlag, 1964.
[3] M. Kneser, Lectures on Galois cohomology of classical groups, Tata Institute, Bombay, 1969.
[4] T. Ono, On the Tamagawa number of algebraic tori, Ann. of Math. 78 (1963), 47-73.

The Johns Hopkins University

[^0]: *) We assumed the field K infinite because we needed the Zariski topology here.

