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ON ZETA FUNCTIONS ASSOCIATED TO SYMMETRIC
MATRICES, II: FUNCTIONAL EQUATIONS AND

SPECIAL VALUES

TOMOYOSHI IBUKIYAMA and HIROSHI SAITO

Abstract. New simple functional equations of zeta functions of the preho-
mogeneous vector spaces consisting of symmetric matrices are obtained, using

explicit forms of zeta functions in the previous paper, Part I, and real analytic

Eisenstein series of half-integral weight. When the matrix size is 2, our func-
tional equations are identical with the ones by Shintani, but we give here an

alternative proof. The special values of the zeta functions at nonpositive inte-
gers and the residues are also explicitly obtained. These special values, written

by products of Bernoulli numbers, are used to give the contribution of “cen-
tral” unipotent elements in the dimension formula of Siegel cusp forms of any

degree. These results lead us to a conjecture on explicit values of dimensions

of Siegel cusp forms of any torsion-free principal congruence subgroups of the
symplectic groups of general degree.
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§0. Introduction

In a previous paper [7], we gave an explicit formula for zeta functions

of the prehomogeneous vector spaces consisting of symmetric matrices. In
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this article, we give functional equations of these zeta functions. We also

give special values of the zeta functions at nonpositive integers, poles, and

residues. As an application, we give the contribution of “central unipotent”

elements to the dimension of the space Sk(Γn(N)) of Siegel cusp forms

of weight k of degree n belonging to the principal congruence subgroup

Γn(N). This leads us to an explicit conjecture on dimensions of Sk(Γn(N))

for k > 2n and N ≥ 3 for arbitrary n as announced in [6].

Historically, functional equations for zeta functions associated with a

large class of prehomogeneous vector spaces were investigated by Sato and

Shintani [17], and the special cases treated in this paper were studied sep-

arately by Shintani [21], since it contains subtle points beyond the general

theory. The functional equations treated there are between vectors of zeta

functions. Indeed, in the above theory in [21], Shintani’s functional equa-

tion for the prehomogeneous vector space of n×n symmetric matrices, the

space which we treat here, is between (n+ 1)-dimensional vectors each of

whose components is the zeta function associated with each real orbit of

the prehomogeneous vector space. Later, Satake and Faraut [14], [13] sim-

plified these functional equations by giving a kind of diagonalization. Since

we have given the zeta functions explicitly in the previous paper [7], we can

calculate everything explicitly, and we can show that, among n+1 compo-

nents, there exist only two or three different zeta functions, if n is odd or

even, respectively, and that the functional equation is essentially between 2-

or 3-dimensional vectors of zeta functions. Hence, our functional equations

are much simpler than the previously known ones in the general theory.

Actually, we give here a more direct proof of the functional equations inde-

pendently of any arguments by Shintani [21] or Satake and Faraut [14]. The

diagonalization of the functional equations is essentially given by Riemann

zeta functions when n is odd. In fact, when n is odd, the zeta functions

are described by the Riemann zeta functions, so the functional equations

are easily obtained. When n is even, our argument is based on the func-

tional equations of the Mellin transform of real analytic Eisenstein series

of half-integral weights, and we obtain the results for n≥ 4 by some stan-

dard arguments. In this case, we do not write the diagonalization explicitly

here since it contains nonelementary special functions and since nondiagonal

functional equations are much simpler, but it is obviously contained in our

arguments. The case n= 2 is the pathological case, since the volumes μ(x)

of the stabilizer of symmetric matrices x used in the definition of our zeta

functions for n≥ 3 are not finite for some x when n= 2. Hence, we need a
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modification of the definition of the zeta functions to obtain a good func-

tional equation. Such modification has been done first by Shintani [21] and

later by Sato [16] in a more intrinsic way. Here we give the third alternative

proof of this functional equation for n= 2 from our standpoint. The proto-

type of the proof of this style is found in Sturm [23] for the easier half of our

cases. For all n≥ 1, this direct approach allows us to evaluate special values,

locations of poles, and the residues of our zeta functions. This leads us to

an application to dimension formulas of Siegel cusp forms of general degree.

This paper is organized as follows. In Section 1, we state functional equa-

tions, poles, and residues of our zeta functions for n≥ 3. In Section 2, we

review the Fourier coefficients of the real analytic Eisenstein series of half-

integral weight, which is more or less known by [20], [3], [27], [23], and [4].

In Section 3, we introduce the Cohen-type real analytic Eisenstein series for

a general parameter. For even n≥ 4, we use it to show the functional equa-

tion between Dirichlet series D∗
n(s, δ) and Dn(s, δ) which appear in some

parts of our zeta functions. We also give an alternative proof of the func-

tional equation between certain Dirichlet series of two variables associated

to binary quadratic forms which was first proved by Shintani [21]. In Sec-

tion 4, we prove the functional equations for n≥ 3. In Section 5, we assume

that n= 2 and give the definition of zeta functions and an alternative proof

of functional equations described above. In Sections 3 and 5, we need some

calculation on the Mellin transform of real analytic Eisenstein series with

parameters. Goldfeld and Hoffstein [4] calculated this kind of Mellin trans-

form for completely different purposes from ours. Our calculation is very

similar to theirs in several points, but the details and aims are different. So,

we write the proofs in detail here. The results in Section 6 were announced

in [6], and we give here the proofs. We evaluate the values of our zeta func-

tions at nonpositive integers. As an application, we give the contribution of

central unipotent conjugacy classes to the dimension of Siegel cusp forms.

Based on these results, we propose a conjecture for explicit dimension for-

mulas for Siegel cusp forms of the principal congruence subgroups of level

N ≥ 3 of any degree. A certain philosophical background of the theory in

this paper is in [9], and some related development after 1997 can be found

in [5] and [12] and their references, as well as in [8], [15], and [26].

The first version of this paper was written in 1996 and put on the Web

as the preprint series 1997-37 of the Max-Planck-Institut für Mathematik.

We intended to publish this after adding the conjectural dimension formula

for the level 2 case, but this project has never been fulfilled. Since the
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second author passed away suddenly in 2010, the first author thinks that

publication should not be delayed further and that a possible generalization

should be given on another occasion. The first author would like to express

his profound regret and sadness over the death of Hiroshi Saito.

§1. Results on functional equations, poles, and residues

Let Vn be the vector space of n × n rational symmetric matrices. Let

ρ be the representation of GLn(C) on Vn(C) defined by ρ(g)x = gxtg for

x ∈ Vn(C) and g ∈GLn(C). Then (GLn(C), ρ, Vn(C)) is a prehomogeneous

vector space whose set of singular points is {x ∈ Vn(C); det(S) = 0}. The
real orbits of {x ∈ V (R); det(S) �= 0} are given by V i

n (0 ≤ i ≤ n), where

V i
n consists of real symmetric matrices with i positive and n − i negative

eigenvalues. For any lattice L⊂ V invariant by Γ = SLn(Z)⊂GLn(C), we

put L(i) = L∩V i
n and denote by L(i)/∼ the set of SLn(Z) equivalence classes

in L(i). In this paper, we consider the zeta functions of the prehomogeneous

vector space Vn defined for each L, n, and i by

ζi(s,L) = cn
∑

x∈Li/∼

μ(x)

det(x)s

in the case (n, i) �= (2,1), where μ(x) is a certain volume of the stabilizer of

x and cn is a certain constant, or its modification in the case (n, i) = (2,1).

(For more precise definition, see [7] for the case (n, i) �= (2,1) and Section 5

for the case (n, i) = (2,1).) In [7], an explicit formula for ζi(s,L) is given

for (n, i) �= (2,1). In this section, we give results on functional equations

between our zeta functions and their poles and residues. Here we mainly

treat the case n≥ 3. The proof will be given in Section 4. The case n= 1 is

the trivial case and will be omitted in this paper. The case n= 2 is somewhat

special but has been known by Shintani [21] and Sato [16]. This case will

be treated separately in Section 5 from our standpoint with a new proof.

First, we recall the results from the previous paper (see [7, Part I]). Let

Ln be the set of n× n integral symmetric matrices, and let L∗
n be the set

of half integral symmetric matrices. For L = Ln or L∗
n, our zeta function

ζi(s,L) was originally defined for each i with 0≤ i≤ n by a certain infinite

sum over elements of L with signature (i, n− 1) as above. We have shown

in [7] that ζi(s,L) depends only on δ = (−1)n−i and ε= (−1)(n−i)(n−i+1)/2,

and we denote it by ζ(s,L, δ, ε) (for the precise definition, see [7]). We review

the explicit formula for this zeta function.
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For the sake of simplicity, we put

bn =

∣∣∏[(n−1)/2]
i=1 B2i

∣∣
2n−1

([
n−1
2

])
!
,

where Bk is the kth Bernoulli number defined by tet/(et−1) =
∑∞

k=0Bkt
k/k!

and [x] is the greatest integer not more than x. When n is even, we also use

the notation

B′
n/2 = 2

(n
2

)
!(2π)−n/2ζ

(n
2

)
(−1)1+n/2.

For odd n, we put

Qn(s) = ζ
(
s− n− 1

2

) (n−1)/2∏
i=1

ζ
(
2s− (2i− 1)

)
,

Rn(s) = ζ(s)

(n−1)/2∏
i=1

ζ(2s− 2i).

If n is odd with n≥ 3, by [7, Theorem 1.2], we have

ζ(s,L∗
n, δ, ε) = bn2

(n−1)s
(
Qn(s) + εδ(n+1)/2(−1)(n

2−1)/8Rn(s)
)
,

ζ(s,Ln, δ, ε) = bn
(
2(n−1)/2Qn(s) + εδ(n+1)/2(−1)(n

2−1)/8Rn(s)
)
.

For even n, we put

An(s) =

n/2−1∏
i=1

ζ(2s− 2i) and Bn(s) =

n/2∏
i=1

ζ
(
2s− (2i− 1)

)
.

If n is even with n≥ 4 or (n, δ) = (2,1), we also put

D∗
n(s, δ) =

2(−1)[n/4]Γ(n/2)

(2π)n/2

×
∑

(−1)n/2δdK>0

|dK |(n−1)/2−sL
(n
2
, χK

)ζ(2s)ζ(2s− n+ 1)

L
(
2s− n

2 + 1, χK

) ,
where dK runs through all the discriminants of quadratic fields K or Q⊕Q

such that (−1)n/2δDK > 0 and χK is the Dirichlet character associated

with K. Let D∗
n(s, δ) =

∑∞
d=1H(n/2, d, δ)d−s. We define

D(s, δ) =
∞∑
i=1

H
(n
2
,4d, δ

)
d−s.

By [7, Theorem 1.3], we have
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ζ(s,L∗
n, δ, ε) = bn2

ns
(
(−1)[n/4]D∗

n(s, δ)An(s)

+ εδn(−1)n(n+2)/8
2|B′

n/2|
n

Bn(s)
)
,

ζ(s,Ln, δ, ε) = bn

(
(−1)[n/4]Dn(s, δ)An(s)

+ εδn(−1)n(n+2)/8
2(n+2)/2|B′

n/2|
n

Bn(s)
)
,

where δn = 1 if (−1)n/2 ≡ δ mod 4 and where δn = 0 otherwise.

Using the notation of Shintani [21], for any s ∈ C and a positive integer

n, we put

γn(s) =
n−1∏
i=0

Γ
(
s+ 1+

i

2

)
.

Now we state our results on functional equations and their poles and

residues. Needless to say, we can recover Shintani’s functional equation for

n≥ 3 from our simpler results, Theorems 1 and 3 below.

When n is odd with n ≥ 3, then ζ(s,L,1, ε) = ζ(s,L,−1, (−1)(n+1)/2ε)

for L = Ln or L∗
n. So, it is enough to give a functional equation between

ζ(s,L,1,1) and ζ(s,L,1,−1).

Theorem 1. When n is odd with n≥ 3, then(
ζ
(
n+1
2 − s,L∗

n,1,1
)

ζ
(
n+1
2 − s,L∗

n,1,−1
))

= 2−ns+(n2−1)/2π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
×
(
a(s) + b(s),−a(s) + b(s)

a(s)− b(s),−a(s)− b(s)

)(
ζ(s,Ln,1,1)

ζ(s,Ln,1,−1)

)
,

where

a(s) =
(
cos

πs

2

)
(cosπs)(n−1)/2

and

b(s) = (−1)(n
2−1)/8(sinπs)(n−1)/2 ×

{
cos πs

2 if n≡ 1 mod 4,

sin πs
2 if n≡ 3 mod 4.

Next, we give poles and residues of the above zeta functions. When s0 ∈C

is the possible simple pole of ζ(s,L∗
n, δ, ε) or ζ(s,Ln, δ, ε), we denote by

rn,δ,ε(s0) or r∗n,δ,ε(s0), respectively, the residue of each zeta function at s0.
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We understand that this value is zero when the zeta function is holomorphic

at s0. When n is odd, we can determine the poles and residues exactly, as

shown in the following theorem.

Theorem 2. We assume that n≥ 3 is an odd integer, and we define bn
as before. Then, the zeta function ζ(s,L∗

n, δ, ε) or ζ(s,Ln, δ, ε) has possible

poles only at s= l/2, where l is an integer with 2≤ l≤ n+ 1. The residues

are given as follows.

(1) When n= 3, we have

r∗3,δ,ε(1) = (2ε− 1)b3,

r3,δ,ε(1) = (ε− 1)b3/2.

In particular, we have r3,δ,1(1) = 0 always. When n > 3, we have r∗n,δ,ε(1) =
rn,δ,ε(1) = 0, and the zeta functions are holomorphic at 1.

(2) For each integer j with 2≤ j ≤ (n− 1)/2, we have

r∗n,δ,ε(j) = 2(n−1)j−1bnζ
(
j − (n− 1)/2

) (n−1)/2∏
i=1,i �=j

ζ(2j − 2i+ 1),

rn,δ,ε(j) = 2(n−3)/2bnζ
(
j − (n− 1)/2

) (n−1)/2∏
i=1,i �=j

ζ(2j − 2i+ 1).

In particular, if j < (n− 1)/2 and j ≡ (n− 1)/2 mod 2, then the zeta func-

tions are holomorphic at s= j.

(3) We have

r∗n,δ,ε
(
(n+ 1)/2

)
= 2(n

2−1)/2bn

(n−1)/2∏
i=1

ζ(n− 2i+ 2),

rn,δ,ε
(
(n+ 1)/2

)
= 2(n−1)/2bn

(n−1)/2∏
i=1

ζ(n− 2i+ 2).

(4) For each integer j with 1≤ j ≤ (n− 1)/2, we have

r∗n,δ,ε

(
j +

1

2

)
= ε2(n−1)(j+1/2)δ(n+1)/2(−1)(n

2−1)/8

× bnζ
(
j +

1

2

) (n−1)/2∏
i=1

ζ(2j − 2i+ 1),
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rn,δ,ε

(
j +

1

2

)
= εδ(n+1)/2(−1)(n

2−1)/8bnζ
(
j +

1

2

) (n−1)/2∏
i=1

ζ(2j − 2i+ 1).

When n is even with n ≥ 4, then ζ(s,L,1,1) = ζ(s,L,1,−1) if n ≡
2 mod 4, and ζ(s,L,−1,1) = ζ(s,L,−1,−1) if n ≡ 0 mod 4. We give the

functional equation for each case.

Theorem 3. We put c(s) = (cosπs)n/2−1 sinπs. When n≡ 0 mod 4, we

have⎛⎜⎝ ζ
(
n+1
2 − s,L∗

n,1,1
)

ζ
(
n+1
2 − s,L∗

n,1,−1
)

ζ
(
n+1
2 − s,L∗

n,−1,1
)
⎞⎟⎠

= 2−ns+n2/2−1π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
×
(

(cosπs)n/2 + (−1)n(n−2)/8(sinπs)n/2 (cosπs)n/2 − (−1)n(n−2)/8(sinπs)n/2 0

(cosπs)n/2 − (−1)n(n−2)/8(sinπs)n/2 (cosπs)n/2 + (−1)n(n−2)/8(sinπs)n/2 0

(cosπs)n/2−1 (cosπs)n/2−1 −2c(s)

)

×

⎛⎝ ζ(s,Ln,1,1)

ζ(s,Ln,1,−1)

ζ(s,Ln,−1,1)

⎞⎠ .

When n≡ 2 mod 4 with n≥ 6, we have⎛⎜⎝ ζ
(
n+1
2 − s,L∗

n,1,1
)

ζ
(
n+1
2 − s,L∗

n,−1,1
)

ζ
(
n+1
2 − s,L∗

n,−1,−1
)
⎞⎟⎠

= 2−ns+n2/2−1π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
×
(

2(cosπs)n/2 0 0

2(cosπs)n/2−1 c(s) + (−1)n(n−2)/8(sinπs)n/2 c(s)− (−1)n(n−2)/8(sinπs)n/2

2(cosπs)n/2−1 c(s)− (−1)n(n−2)/8(sinπs)n/2 c(s) + (−1)n(n−2)/8(sinπs)n/2

)

×

⎛⎝ ζ(s,Ln,1,1)

ζ(s,Ln,−1,1)

ζ(s,Ln,−1,−1)

⎞⎠ .

Now, we give locations of poles and their residues for even n.
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Theorem 4. We assume that n ≥ 4 is an even integer. Then, the zeta

function ζ(s,L∗
n, δ, ε) or ζ(s,Ln, δ, ε) has possible poles only at s= l/2, where

l is an integer with 1≤ l≤ n+ 1. The residues are given as follows.

(1) Unless (n, δ) = (4,−1), we have

r∗n,δ,ε(1) = 2nbnεδn(−1)n(n+2)/8 |Bn′/2|
n

n/2∏
i=2

ζ(3− 2i),

rn,δ,ε(1) = 2−n/2r∗n,δ,ε(1),

and if (n, δ) = (4,−1), we have

r∗4,−1,ε(1) = r4,−1,ε(1) = 12 · π−4ζ(3).

(2) For each integer j with 2≤ j ≤ n/2, we have

r∗n,δ,ε(j) = 2njbnεδn(−1)n(n+2)/8 |Bn′/2|
n

n/2∏
i=1,i �=j

ζ(2j − 2i+ 1),

rn,δ,ε(j) = 2n(1/2−j)r∗n,δ,ε(j).

In particular, if (−1)n/2 ≡−δ mod 4, then the zeta functions are holomor-

phic at s= j.

(3) We have

r∗n,δ,ε
(
(n+ 1)/2

)
= 2n

2/2bnπ
−n/2Γ(n/2)ζ(n)

n/2−1∏
i=1

ζ(n+ 1− 2i),

rn,δ,ε
(
(n+ 1)/2

)
= 2n

2/2r∗n,δ,ε
(
(n+ 1)/2

)
.

(4) For each integer j with 1≤ j ≤ n/2− 1, we have

r∗n,δ,ε(j + 1/2) = 2n(j+1/2)−1(−1)[n/4]bnD
∗
n(j + 1/2, δ)

n/2−1∏
i=1,i �=j

ζ(2i+ 1− 2j),

rn,δ,ε(j + 1/2) = (−1)[n/4]bnDn(j + 1/2, δ)

n/2−1∏
i=1,i �=j

ζ(2i+ 1− 2j).

Remark. We do not know whether D∗
n(j+1/2, δ) or Dn(j+1/2, δ) van-

ishes or not.
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§2. Fourier coefficients of Eisenstein series

In order to prove the results in Section 1 directly, we use the theory of real

analytic Eisenstein series. In this section, we review several results on Fourier

coefficients of some real analytic or holomorphic Eisenstein series of half-

integral weight of one variable. Our main results here are Proposition 2.2

and Corollary 2.4. The Fourier coefficients of such series are investigated

by, among others, Shimura [20], Siegel [22], Cohen [3], Zagier [27], Sturm

[23], and Goldfeld and Hoffstein [4]. Although we need some modification

of their results, the structure of the proof is essentially due to them. We

will sometimes sketch the proof for the convenience of the readers. For any

σ, z ∈ C with z �= 0, we define zσ = eσ log(z), where arg(z) is taken so that

−π < arg(z)≤ π. For the sake of simplicity, we write e(z) = e2πiz . We denote

the upper half-plane by H = {z ∈C; Im(z)> 0}, and we write z = x+ iy for

any z ∈H . For each σ ∈ C, each odd (positive or negative) integer k, and

z ∈H , define the Eisenstein series E(k,σ, z) by

E(k,σ, z) = y
σ
2

∞∑
d=1, odd

∞∑
c=−∞

(4c
d

)
ε−k
d (4cz + d)(k/2)|4cz + d|−σ,

where (∗/∗) is the quadratic residue symbol whose precise meaning is as

given in Shimura [19, p. 442], and εd = 1 or i, if d≡ 1 or 3 mod 4, respec-

tively. When −k+2σ−4> 0, this series converges absolutely and uniformly.

We also define E∗(k,σ, z) by

E∗(k,σ, z)

=E
(
− 1

4z

)
(−2iz)(k/2)

= y
σ
2 2(k/2)−σe

(
−k

8

) ∞∑
d=1, odd

∞∑
b=−∞

(−b

d

)
ε−k
d (dz + b)(k/2)|dz + b|−σ.

As usual, we write

Γ0(4) =

{
g =

(
a b

c d

)
∈ SL2(Z); c≡ 0 mod 4

}
.

For any element γ =
(
a b
c d

)
∈ Γ0(4), put j(γ, z) = θ(γz)/θ(z), where θ(z) =∑

n∈Z e(n
2z). It is known that

j(γ, z) = ε−1
d

( c
d

)
(cz + d)1/2.

We have
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E(k,σ, γz) = j(γ, z)−kE(k,σ, z),

E∗(k,σ, γz) = j(γ, z)−kE∗(k,σ, z),

where we write γz = (az + b)(cz + d)−1. So, these functions behave like

modular forms of weight −k/2, though they are not holomorphic if σ �= 0.

For odd k < −5, two holomorphic functions E(−k,0, z) and E∗(−k,0, z)

form a basis of the orthogonal complement of cusp forms of weight −k/2

in modular forms of weight −k/2 belonging to Γ0(4) (see [19]). After Siegel

and Shimura, we define a confluent hypergeometric function W (y,α,β) by

W (y,α,β) =

∫ ∞

0
(u+ 1)α−1uβ−1e−yu du,

where y > 0 and α, β ∈ C. This converges for Re(β)> 0 and meromorphi-

cally continues to the whole (α,β) ∈ C2. For any integer d and α, β ∈ C

with Re(α)> 0, Re(β)> 0, Re(α+ β)> 1, we also define τd(y,α,β) by

iα−β(2π)−α−βΓ(α)Γ(β)τd(y,α,β)

=

⎧⎪⎨⎪⎩
dα+β−1e−2πdyW (4πdy,α,β) (d > 0),

|d|α+β−1e−2π|d|yW (4π|d|y,β,α) (d < 0),

Γ(α+ β − 1)(4πy)1−α−β (d= 0).

This is also meromorphically continued. The Fourier expansions of E(k,σ, z)

and E∗(k,σ, z) are of the following form:

y−σ/2E(k,σ, z) = 1+
∞∑

d=−∞
β(d,σ, k)e(dx)τd

(
y,

σ− k

2
,
σ

2

)
,

y−σ/22σ−k/2e
(k
8

)
E∗(k,σ, z) =

∞∑
d=−∞

α(d,σ, k)e(dx)τd

(
y,

σ− k

2
,
σ

2

)
,

where we put z = x+ iy (x, y ∈R) and

α(d,σ, k) =
∞∑
c=1

(−4

c

)
ε−k
c ck/2−σ

c∑
m=1

(m
c

)
e(dm/c),

β(d,σ, k) =
∞∑
c=1

(4c)k/2−σ
4c∑

m=1

ε−k
m

(4c
m

)
e2πimd/4c.
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To obtain Fourier coefficients suitable for our purpose, we put

F (k,σ, z) =E(k,σ, z) + 2k/2−σ
(
e(k/8) + e(−k/8)

)
E∗(k,σ, z).

This kind of linear combination has already been considered by Cohen [3],

Zagier [27], and Sturm [23] for σ = 0. We need the coefficients also for σ �= 0,

which was calculated in Goldfeld and Hoffstein [4]. Since we need slightly

different details here, we review this. We write the Fourier expansion of

F (k,σ, z) as

y−σ/2F (k,σ, z) =
∞∑

d=−∞
cd(y)e(dx)

= 1+

∞∑
d=−∞

C(d,σ, k)e(dx)τd

(
y,

σ− k

2
,
σ

2

)
,

where each cd(y) is the Fourier coefficient depending on y and d and each

C(d,σ, k) is a constant which does not depend on z. Following the method

of Shimura [20] and Sturm [23], we can calculate C(d,σ, k) explicitly. For

the convenience of the readers, we sketch the calculation here. By definition,

C(d,σ, k) = β(d,σ, k) + 2k−2σ(1 + i−k)α(d,σ, k).

By Sturm [23, Lemma 2, arguments on p. 228], we have

C(d,σ, k) = α(d,σ, k)

(
2k−2σ(1 + i−k) +

∞∑
r=2

2r∑
l=1

ε−k
l

(2r
l

)
e
(dl
2r

)
2(k/2−σ)r

)
= α(d,σ, k)A(d,σ, k),

where

A(d,σ, k) = 2k−2σ(1 + i−k)

+
∞∑
r=2

1

2

(
(1 + i−k)Ud(r) + (1− i−k)Vd(r)

)
2(k/2−σ)r,

Ud(r) =
2r∑
l=1

(2r
l

)
e
(dl
2r

)
,

Vd(r) =
2r∑
l=1

(−2r

l

)
e
(dl
2r

)
.
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Assume that d �= 0, and put d= 2td0, where d0 is an odd (positive or neg-

ative) integer and t is a nonnegative integer. If t is even, then we see that

Ud(2i) = 22i−1 for 1≤ i≤ t/2, Ud(t+3) = (2/d0)2
t+3/2, and Ud(r) = 0 in the

remaining cases and that Vd(t+2) = 2t+1i(−1/d0), Vd(t+3) = 2t+3/2(−2/d0),

and Vd(r) = 0 for the other r. If t is odd, then Vd(r) = 0 for all r, and

Ud(2i) = 22i−1 for 1≤ i≤ (t− 1)/2, Ud(t+ 1) =−2t, and Ud(r) = 0 for the

other r. Hence, if t is even, then we have

∞∑
r=2

1

2
(1 + i−k)Ud(r)2

(k/2−σ)r

= (1+ i−k)

(
2k−2σ(1− 2(k/2−σ+1)t)

1− 2k−2σ+2
+ 23(k/2−σ)+1/2+(k/2−σ+1)t

( 2

d0

))
,

∞∑
r=2

1

2
(1− i−k)Vd(r)2

(k/2−σ)r

= (−1)(k+1)/2(1 + i−k)

×
(
23(k/2−σ)+1/2 · 2(k/2−σ+1)t

(−2

d0

)
+ 2k−2σ+(k/2−σ+1)t

(−1

d0

))
,

and if t is odd, then we have

∞∑
r=2

1

2
(1 + i−k)Ud(r)2

(k/2−σ)r

= (1+ i−k)
(
−2k/2−σ−1 · 2(k/2−σ+1)t +

2k−2σ(1− 2(k−2σ+2)(t−1)/2)

1− 2k−2σ+2

)
,

∞∑
r=2

1

2
(1− i−k)Vd(r)2

(k/2−σ)r = 0 .

We have (−1)(k+1)/2(−1/d0) = 1 or −1, if d0 ≡ (−1)(k+1)/2 mod 4 or not,

respectively. Hence we have the following.

Lemma 2.1.

(1) If d0 ≡ (−1)(k+1)/2 mod 4, then we have

∞∑
t=0

A(d02
2t, σ, k)22t(σ−k/2−1−s)

= (1+ i−k)2k−2σ+1 ×
(
1 + 2k/2−σ+1/2

(
2
d0

))(
1− 2σ−k/2−3/2−2s

(
2
d0

))
(1− 2−2s)(1− 22σ−k−2−2s)

.
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(2) If d0 �≡ (−1)(k+1)/2 mod 4, then we have

∞∑
t=0

A(d02
2t, σ, k)22t(σ−k/2−1−s) = (1+ i−k)

2−1−2s(1− 2k−2σ+1)

(1− 2−2s)(1− 22σ−k−2−2s)
.

(3) For any odd d0, we have

∞∑
t=0

A(d02
2t+1, σ, k)2(2t+1)(σ−k/2−1−s)

= (1+ i−k)
2σ−k/2−2−3s(1− 2k−2σ+1)

(1− 2−2s)(1− 22σ−k−2−2s)
.

By Shimura [20, Proposition 2], for any square-free integer m, we have

∞∑
f=1

α(mf2, σ, k)f2σ−k−2−2s

=
L2(σ− (k+ 1)/2, ω1)ζ2(2s)ζ(2s− 2σ+ k+ 2)

ζ2(2σ− k− 1)L2(2s− σ+ (k+ 3)/2, ω1)
,

where we denote by ζ2 or L2 the usual zeta or L functions such that their

Euler 2-factors are omitted and where ω1 is the primitive character defined

by

ω1(a) =
(−1

a

)(k+1)/2(4m
a

)
for (a,4m) = 1. Here (∗/∗) is the quadratic residue symbol defined in Shimura

[19]. Now, for any square-free integer m, we calculate the Dirichlet series

∞∑
f=1

e
(k
8

)
C(mf2, σ, k)(|m|f2)σ−k/2−1−s.

By the above formulas (2) and (3) in Lemma 2.1, if f is odd, then we have

C(mf2, σ, k) = 0 unless m is odd and m ≡ (−1)(k+1)/2 mod 4. Hence, we

can assume that dKf2
1 = (−1)(k+1)/2mf2 for some integer f1 and the fun-

damental discriminant dK of the quadratic field K = Q(
√
(−1)(k+1)/2m)

or dK = 1 for m = (−1)(k+1)/2. Now we are ready to prove the follow-

ing.
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Proposition 2.2. We have

∞∑
f=1

e
(k
8

)
C
(
(−1)(k+1)/2dKf2, σ, k

)
(|dK |f2)σ−k/2−1−s

= (−1)(k
2−1)/82k−2σ+3/2 |dK |σ−k/2−1

|dK |s

× L(σ− (k+ 1)/2, χK)ζ(2s)ζ(2s− 2σ+ k+ 2)

ζ(2σ− k− 1)L(2s− σ+ (k+ 3)/2, χK)
,

where χK is the Dirichlet character associated with K and regarded as the

trivial character if dK = 1.

Proof. This can be shown by calculating a kind of convolution product

of the Dirichlet series in Lemma 2.1 and Shimura’s results, noting that

e(k/8)(1 + i−k) = e(k/8) + e(−k/8) =
√
2(−1)(k

2−1)/8.

Proposition 2.3. If σ > k/2 + 1, then we have

C(0, σ, k) = 2k−2σ+1(1 + i−k)
ζ(2σ− k− 2)

ζ(2σ− k− 1)
.

Proof. When d= 0, we have V (r) = 0 for all r, and U(r) = 2r−1 or 0 for

r even or odd, respectively. Since

∞∑
r=1

U(2r)2(k/2−σ)2r =
2k−2σ+1

1− 2k−2σ+2
,

we have

A(0, σ, k) = 2k−2σ+1(1 + i−k)
1− 2k−2σ+1

1− 2k−2σ+2
.

On the other hand, by Shimura [20, p. 89, (3.9)], we have

α(0, σ, k) =
ζ2(2σ− k− 2)

ζ2(2σ− k− 1)
.

Hence, we have our results.

Corollary 2.4. We have

c0(y) = 1+ 23k/2−3σ+7/2(−1)(k
2−1)/8

× π
Γ(σ− k/2− 1)ζ(2σ− k− 2)

Γ((σ− k)/2)Γ(σ/2)ζ(2σ− k− 1)
y1−σ+k/2.
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§3. Dirichlet series associated to Eisenstein series

3.1.

First, we prove functional equations between D∗
n((n+ 1)/2 − s, δ) and

Dn(s, δ) only for even n≥ 4 with δ =±1 or (n, δ) = (2,1). The case (n, δ) =

(2,−1) is exceptional, so we exclude this case for the moment and treat it

next in Section 5. Our proof is based on the usual argument by Hecke on

functional equations of Mellin transforms of automorphic forms. This type

of functional equation has been more or less calculated by Goldfeld and

Hoffstein [4] for a different purpose, but the modular forms in question are

slightly different, and we need some new calculations here. For any function

f(z) on H , we define two operators f |kW4 and f | U4 by

(f |kW4)(z) = f(−1/4z)(−2iz)k/2,

(f | U4)(z) =
1

4

3∑
ν=0

f
(z + ν

4

)
.

We define F (z) = F (k,σ, z) as in Section 2.

Lemma 3.1. We have the following relation:

F |kW4 = 2(k+1)/2(−1)(k
2−1)/8F | U4.

Proof. This can be proved in the same way as in Kohnen [10], and we

sketch the outline. Put

g1(z) =
1

4

(
F
(z + 1

4

)
+ F

(z + 3

4

))

and

g2(z) =
1

4

(
F
(z
4

)
+ F

(z + 2

4

))
.

Then, F | U4 = g1+g2. As was shown in Section 2, the coefficients of F (z) of

e(dx) are 0, unless d≡ 0 or (−1)(k+1)/2 mod 4. Since e(d/2) + 1 = e(d/4) +

e(3d/4) if d ≡ 0 mod 4 or d ≡ 1 mod 2, we have g1 = g2. Hence, using the

same argument as in Kohnen [10, p. 255], we have
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F |U4|kW4 = 2g1|kW4

= 2−k/2−1

(
F
(
z − 1

4

)
e(−k/8) + F

(
z +

1

4

)
e(k/8)

)
.

It is easy to see that e(−d/4)e(−k/8)+e(d/4)e(k/8) =
√
2(−1)(k

2−1)/8 if d≡
0 or (−1)(k+1)/2 mod 4. Hence, F |U4|kW4 = 2−(k+1)/2(−1)(k

2−1)/8F , and

since W 2
4 acts trivially on F by Shimura [18, p. 448], we prove our lemma.

Now, we put g(z) = y−σ/2F (k,σ, z) and h(z) = (y−σ/2F (k,σ, z)) | U4. We

write the Fourier expansion of g(z) as

g(z) =
∞∑

d=−∞
cd(y)e(dx).

Then we have

h(z) =
∞∑

d=−∞
c4d(y/4)e(dx).

Put G(y) = g(iy), and putH(y) = h(iy). Then, by the above lemma, we have

G(1/4y) = (−1)(k
2−1)/8

√
2yσ−k/2H(y) and G(1/2y) = Cky

σ−k/2H(y/2),

where Ck = 2(k+1)/2−σ(−1)(k
2−1)/8. Define two Dirichlet series by

Φσ,k(s) =

∫ ∞

0

(
G(y)− c0(y)

)
ys−1 dy,

Ψσ,k(s) =

∫ ∞

0

(
H(y)− c0(y/4)

)
ys−1 dy.

Then, by the usual argument of Hecke, we have

2sΦσ,k(s) =

∫ ∞

0

(
G
(y
2

)
− c0

(y
2

))
ys−1 dy

=

∫ ∞

1

(
G
(y
2

)
− c0

(y
2

))
ys−1 dy+

∫ 1

0

(
G
(y
2

)
− c0

(y
2

))
ys−1 dy

=

∫ ∞

1

(
G
(y
2

)
− c0

(y
2

))
ys−1 dy

+

∫ ∞

1

(
CkH

(y
2

)
yσ−k/2 − c0

( 1

2y

))
y−s−1 dy
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=

∫ ∞

1

(
G
(y
2

)
− c0

(y
2

))
ys−1 dy

+Ck

∫ ∞

1

(
H
(y
2

)
− c0

(y
8

))
yσ−k/2−s−1 dy

−
∫ ∞

1
c0

( 1

2y

)
y−s−1 dy+Ck

∫ ∞

1
c0

(y
8

)
yσ−k/2−s−1 dy.

We have c0(y) = 1 + c(σ)y1−σ+k/2 for a certain function of c(σ) of σ which

does not depend on y. (The exact value is given in Corollary 2.4.) So, if

s > σ− k/2 and s > 1, then we have

2sΦσ,k(s) +

∫ ∞

1
c0

( 1

2y

)
y−s−1 dy−Ck

∫ ∞

1
c0

(y
8

)
yσ−k/2−s−1 dy

= 2sΦσ,k(s) +
c(σ)2σ−k/2−1

s− σ+ k/2 + 1

+Ck
c(σ)8σ−k/2−1

1− s
+

1

s
+Ck

1

σ− k/2− s

=

∫ ∞

1

(
G
(y
2

)
− c0

(y
2

))
ys−1 dy

+Ck

∫ ∞

1

(
H
(y
2

)
− c0

(y
8

))
yσ−k/2−s−1 dy.

We denote the last line in the above by Jk(σ, s). By Shimura [20, (2.2),

Lemma 1], we see that τd(y,α,β) is holomorphic for (α,β) ∈C2 and rapidly

decreasing for y → ∞ unless d = 0. This assures the convergence of the

integrals in Jk(σ, s) as far as the integrands are defined. So seeing the loca-

tion of poles of the integrands by Proposition 2.2 as a function of σ, it can

be proved that (σ − (k + 3)/2)ζ(2σ − k − 1)Jk(σ, s) is holomorphic at the

whole σ, s ∈ C. Hence, Φσ,k(s) is meromorphically continued to the whole

(σ, s) ∈ C2. By Corollary 2.4, we see easily that ζ(2σ − k − 1)(σ − (k +

2)/2)(σ− (k+ 3)/2)c(σ) is holomorphic as a function of σ, so

ζ(2σ− k− 1)
(
σ− (k+ 2)/2

)(
σ− (k+ 3)/2

)
× s(s− 1)(s− σ+ k/2)(s− σ+ k/2 + 1)Φσ,k(s)

is holomorphic on (σ, s) ∈C2. In the same way, we see that
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2sΨσ,k(s) =

∫ ∞

1

(
H
(y
2

)
− c0

(y
8

))
ys−1 dy

+C−1
k

∫ ∞

1

(
G
(y
2

)
− c0

(y
2

))
yσ−k/2−s−1 dy

−
∫ ∞

1
c0

( 1

8y

)
y−s−1 dy+C−1

k

∫ ∞

1
c0

(y
2

)
yσ−k/2−s−1 dy.

= C−1
k Jk(σ,σ− k/2− s)− 1

s
− c(σ)8σ−k/2−1

s− σ+ k/2 + 1

− C−1
k

σ− k/2− s
− C−1

k c(σ)2σ−k/2−1

1− s
.

By comparing this to the expression of 2sΦσ,k(s), we have the following

proposition (see [4]).

Proposition 3.2. For a fixed odd k, two functions Φσ,k(s) and Ψσ,k(s)

are meromorphically continued to the whole (σ, s) ∈ C2, and we have the

following functional equation:

Φσ,k(σ− k/2− s) = 22s−σ+k/2CkΨσ,k(s) = 22s−2σ+k+1/2(−1)(k
2−1)/8Ψσ,k(s).

3.2.

We will apply functional equations between Φσ,k(s) and Ψσ,k(s) to obtain

those between D∗(s, δ) and D(s, δ). This can be done by calculating the

Mellin transforms term by term and by specializing σ and k. The Mellin

transform of τd(y, (σ − k)/2, σ/2) has been given in [4]. For each α, β ∈R

and s ∈C, we consider the following integral:

I(s,α,β) =

∫ ∞

0

(1 + u)α−1uβ−1

(1 + 2u)s
du.

This integral converges absolutely when Re(β) > 0 and Re(s) > Re(α) +

Re(β) − 1. This is related with the usual hypergeometric functions. This

can be shown as follows. For any nonnegative integer n and a variable a, we

put (a)n = Γ(a+ n)/Γ(a). The Gauss hypergeometric function F (a, b; c;z)

is by definition

F (a, b; c;z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn
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and has an integral expression

F (a, b; c;z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt

for Re(c) > Re(b) > 0 and |z| < 1. In the integral defining I(s,α,β), by

replacing the variable u with u= v/(2− 2v), we have

I(s,α,β) =
1

2β

∫ 1

0
vβ−1(1− v)s−α−β

(
1− v

2

)α−1
dv

=
1

2β
× Γ(β)Γ(s− α− β + 1)

Γ(s− α+ 1)
F (1− α,β;s− α+ 1;1/2).

Now, we assume that Re(σ)> 0, Re(σ)> k, and Re(s)> Re(σ)− k/2− 1.

Then, the Mellin transforms of the Whittaker functions are given by∫ ∞

0
τd

(
y,

σ− k

2
,
σ

2

)
ys−1 dy

=
e(k/8)(2π)σ−k/2

Γ((σ− k)/2)Γ(σ/2)

×
{
dσ−k/2−1(2πd)−sΓ(s)I

(
s, σ−k

2 , σ2
)

if d > 0,

|d|σ−k/2−1(2π|d|)−sΓ(s)I
(
s, σ2 ,

σ−k
2

)
if d < 0.

Hence, if d= (−1)(k+1)/2dKf2 �= 0, we have∫ ∞

0
cd(y)y

s−1 dy

= e
(k
8

)
C
(
(−1)(k+1)/2dKf2, σ, k

)
(|dK |f2)σ−k/2−1−s

× (2π)σ−k/2−sΓ(s)

Γ((σ− k)/2)Γ(σ/2)
×
{
I(s, (σ− k)/2, σ/2) if d > 0,

I(s,σ/2, (σ− k)/2) if d < 0.

If Re(s)>−k/2−1, the right-hand side can be continued holomorphically

to σ = 0. Indeed, under this condition on s and k, I(s,σ/2, (σ − k)/2) is

holomorphic at σ = 0, and we also have

1

Γ(σ/2)
I
(
s,
σ− k

2
,
σ

2

)
=

1

Γ(σ/2)(eπiσ − 1)

∫ (0+)

∞

(u+ 1)(σ−k)/2−1uσ/2−1

(2u+ 1)s
du,

and this function is 1 at σ = 0.
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For the sake of simplicity, we put

Z∗(k,σ, s, dK)

= |dK |σ−k/2−1−sL(σ− (k+ 1)/2, χK)ζ(2s)ζ(2s− 2σ+ k+ 2)

ζ(2σ− k− 1)L(2s− σ+ (k+ 3)/2, χK)

and

Cσ,k = (−1)(k
2−1)/8 2k/2−σ+3/2πσ−k/2

Γ((σ− k)/2)Γ(σ/2)
.

We write Z∗(k,σ, s, dK) =
∑∞

n=1 a(n)n
−s, and we put

Z(k,σ, s, dK) =

∞∑
n=1

a(4n)

ns
.

Then, using Proposition 2.2, we have

Φσ,k(s) = (2π)−sΓ(s)Cσ,k

( ∑
(−1)(k+1)/2dK>0

Z∗(k,σ, s, dK)I
(
s,
σ− k

2
,
σ

2

)

+
∑

(−1)(k+1)/2dK<0

Z∗(k,σ, s, dK)I
(
s,
σ

2
,
σ− k

2

))

and

Ψσ,k(s) = (2π)−sΓ(s)Cσ,k

( ∑
(−1)(k+1)/2dK>0

Z(k,σ, s, dK)I
(
s,
σ− k

2
,
σ

2

)

+
∑

(−1)(k+1)/2dK<0

Z(k,σ, s, dK)I
(
s,
σ

2
,
σ− k

2

))
.

We note that the Dirichlet series Z∗(k,σ, s, dK) and Z(k,σ, s, dK) depend

on σ− k/2 but not on each σ and k separately. But the coefficients of these

in Φσ,k(s) or Ψσ,k(s) depend on k and σ.

Now, in order to give the functional equations we need, we specialize k

and σ in two different ways.

Case I. We put k =−(n+ 1) and σ = 0. We assume that n is even and

that n≥ 4. By definition, we have
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(−1)n/2dK>0

Z∗(−(n+ 1),0, s, dK
)

=
∑

(−1)n/2dK>0

|dK |(n−1)/2−sL(n/2, χK)ζ(2s)ζ(2s− n+ 1)

ζ(n)L(2s− n/2 + 1, χK)

= 2−1(2π)n/2(−1)[n/4]Γ(n/2)−1ζ(n)−1D∗
n(s,1).

Hence, we have

Φ0,−n−1(s) = (−1)n(n+2)/8+[n/4]πn+1/2

× Γ
(
(n+ 1)/2

)−1
Γ(n/2)−1ζ(n)−1(2π)−sΓ(s)D∗

n(s,1).

In the same way, we have

Ψ0,−n−1(s) = (−1)n(n+2)/8+[n/4]πn+1/2

× Γ
(
(n+ 1)/2

)−1
Γ(n/2)−1ζ(n)−1(2π)−sΓ(s)Dn(s,1).

Hence, by Proposition 3.2, we have

(2π)−(n+1)/2+sΓ
(n+ 1

2
− s

)
D∗

n

(n+ 1

2
− s,1

)
= 22s−(n+1)/2(2π)−sΓ(s)Dn(s,1)Ck,

where Ck = 2−n/2(−1)n(n+2)/8. Since

Γ
(
(n+ 1)/2− s

)−1
= (−1)n/2π−1(cosπs)Γ

(
s− (n− 1)/2

)
,

we have the following proposition.

Proposition 3.3. For any even positive integer n≥ 4, we have

D∗
n

(n+ 1

2
− s,1

)
= (−1)n(n−2)/82−n/2π−2s+(n−1)/2

× Γ(s)Γ
(
s− n− 1

2

)
(cosπs)Dn(s,1).

When n = 2 and δ = −1, we need some modification of the definition

of the zeta function and the functional equation, since L(1, χK) = ∞ if

K = Q ⊕ Q. But if δ = 1, the definitions of D2(s,1) and D∗
2(s,1) are the

same as in the case n≥ 4, and we have the following result.



ZETA OF SYMMETRIC MATRICES II 287

Proposition 3.4. We have

D∗
2(3/2− s,1) = 2−1π1/2−2sΓ(s)Γ(s− 1/2)

(
cos(πs)D2(s,1)− ζ(2s− 1)

)
.

The Dirichlet series D∗
2(s,1) and D2(s,1) are continued meromorphically

to the whole s plane and are holomorphic for s �= 1, s �= 3/2. The residue

is −1/2 or −1/4 at s= 1 for D2(s,1) or D∗
2(s,1), respectively, and π/3 or

π/12 at s= 3/2, respectively.

This proposition was first proved by Siegel [22] and Shintani [21] with-

out using Eisenstein series. (Incidentally, in Shintani’s notation, D2(s,1) =

22sξ∗−(s) and D∗
2(s,1) = ξ−(s).) Later, an alternative proof in the case n= 2

is obtained by Sturm [23]. His argument is to use the Eisenstein series

above, noting that, in the above calculation, I(s,0,3/2) is holomorphic for

s > 1/2 and that ζ(σ + 1)/Γ(σ/2) is holomorphic at σ = 0. For the case

(n, δ) = (2,−1), we need a modification of the definition, which will be

explained in Section 5.

Case II. We put k =−n+3 and σ = 2 with even n≥ 4. By changing the

variable u by v = 2u(2u+ 1)−1, we have

I
(
s,1,

n− 1

2

)
= 2−(n−1)/2

∫ 1

0
v(n−3)/2(1− v)s−(n+1)/2 dv

= 2−(n−1)/2Γ(s)−1Γ
(n− 1

2

)
Γ
(
s− n− 1

2

)
.

On the other hand, the function I(s, (n− 1)/2,1) can be continued mero-

morphically to the whole s plane and satisfies

I
(
s,
n− 1

2
,1
)
+ I

(n+ 1

2
− s,

n− 1

2
,1
)

= 2−(n−1)/2Γ
(3− n

2

)−1
Γ(1− s)Γ

(
s− n− 1

2

)
.

This can be proved easily by using the Pochhammer integral formula for

the beta function. Indeed, put v = (1+ 2u)/(2 + 2u). Then,

I
(
s,
n− 1

2
,1
)
= 2−(n−1)/2

∫ 1

1/2
v−s(1− v)s−(n+1)/2 dv.

Now, for α, β > 0, put f(x) = xα−1(1− x)β−1. Take a positive branch at

x= 1/2, and take an analytic continuation along the path starting at 1/2,
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encircling 1 and 0 in the positive direction and then encircling 1 and 0 in

the negative direction. Then,∫ (1+,0+,1−,0−)

1/2
xα(1− x)β dx=

1

(1− e2πiα)(1− e2πiβ)
B(α,β),

where B(α,β) = Γ(α)Γ(β)Γ(α + β)−1 is the usual beta function. We also

have∫ 1

1/2
vα(1− v)β dv =

1

(1− e2πiα)(1− e2πiβ)

(∫ (1+)

1/2
f(x)dx+

∫ (1−)

1/2
f(x)dx

)
and∫ 1/2

0
vα(1−v)β dv =

1

(1− e2πiα)(1− e2πiβ)

(∫ (0+)

1/2
f(x)dx+

∫ (0−)

1/2
f(x)dx

)
,

and we obtain the above functional equation of I(s, (n− 1)/2,1). By virtue

of the integral expressions above, Γ(s− (n− 1)/2)−1I(s, (n− 1)/2,1) is an

entire function, and we see that I(s, (n− 1)/2,1) has simple poles only

at s = (n + 1)/2 − m (m = 1,2, . . .). The residue for each m is given by

(−1)m−12−(n−1)/2Γ(m− (n− 1)/2)Γ((3− n)/2)−1Γ(m)−1.

By definition, we have

Φ2,−n+3(s) = (−1)n(n+2)/8+1+[n/4]πn+1/2

× Γ(n/2)−1Γ
(
(n− 1)/2

)−1
ζ(n)−1(2π)−sΓ(s)

×
(
D∗

n(s,1)I
(
s,
n− 1

2
,1
)
+D∗

n(s,−1)I
(
s,1,

n− 1

2

))
and

Ψ2,−n+3(s) = (−1)n(n+2)/8+1+[n/4]πn+1/2

× Γ(n/2)−1Γ
(
(n− 1)/2

)−1
ζ(n)−1(2π)−sΓ(s)

×
(
Dn(s,1)I

(
s,
n− 1

2
,1
)
+Dn(s,−1)I

(
s,1,

n− 1

2

))
.

Hence, by Proposition 3.2, we have
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(2π)s−(n+1)/2Γ
(n+ 1

2

)
×
(
D∗

n

(n+ 1

2
− s,1

)
I
(n+ 1

2
− s,

n− 1

2
,1
)

+D∗
n

(n+ 1

2
− s,−1

)
I
(n+ 1

2
− s,1,

n− 1

2

))
= 22s−n−1/2(−1)n(n+2)/8+1(2π)−sΓ(s)

×
(
Dn(s,1)I

(
s,
n− 1

2
,1
)
+Dn(s,−1)I

(
s,1,

n− 1

2

))
.

Here, using the functional equation between D∗
n(s,1) and Dn(s,1) and the

formulas for I(s,1, (n− 1)/2) and I(s, (n− 1)/2,1), we have

(2π)s−(n+1)/22−(n−1)/2Γ
(n− 1

2

)
Γ(1− s)D∗

n

(n+ 1

2
− s,−1

)
= 22s−n−1/2(−1)n(n+2)/8+1(2π)−sΓ(s)2−(n−1)/2

×
(
Γ
(3− n

2

)−1
Dn(s,1)Γ(1− s)Γ

(
s− n− 1

2

)
+Γ

(n− 1

2

)
Dn(s,−1)Γ(s)−1Γ

(
s− n− 1

2

))
.

Since Γ(s)Γ(1− s) = π/ sinπs and Γ((n− 1)/2)Γ((3− n)/2) = π/ sin
(
((n−

1)/2)π
)
= π(−1)n/2+1, we have the following proposition.

Proposition 3.5. For even n≥ 4, we have

D∗
n

(n+ 1

2
− s,−1

)
= 2−n/2π−2s+(n−1)/2(−1)n(n+2)/8+1Γ(s)Γ

(
s− n− 1

2

)
×
(
(sinπs)Dn(s,−1) + (−1)n/2+1Dn(s,1)

)
.

For the necessary modification in case n= 2, see Section 5.

For later use, we will give poles and residues of D∗
n(s, δ) and Dn(s, δ)

(δ =±1). If σ = 0 and k =−(n+ 1), then c0(y) = 1. So Φ0,k(s) or Ψ0,k(s)

has simple poles only at s= 0 and (n+ 1)/2.

Proposition 3.6. The Dirichlet series D∗
n(s,1) or Dn(s,1) is holomor-

phic except for a simple pole at s = (n+ 1)/2 with the residue (−1)[n/4] ×
(2π)−n/2Γ(n/2)ζ(n) or (−1)[n/4]2n/2π−n/2Γ(n/2)ζ(n), respectively. The
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Dirichlet series D∗
n(s,−1) or Dn(s,−1) is holomorphic except for simple

poles at s= 1 and s= (n+ 1)/2. The residue at s= 1 is π−n−1/2Γ(n/2)×
Γ((n−1)/2)ζ(n−1) or 2π−n−1/2Γ(n/2)Γ((n−1)/2)ζ(n−1), and the residue

at s= (n+ 1)/2 is (−1)[n/4](2π)−n/2Γ(n/2)ζ(n) or (−1)[n/4]2n/2π−n/2Γ(n/

2)ζ(n), respectively.

Proof. Since Φ0,−n−1(s) or Ψ0,−n−1(s) has a simple pole at s = 0,

Φ0,−n−1(s)/Γ(s) or Ψ0,−n−1(s)/Γ(s) is holomorphic at s= 0. Hence,D∗
n(s,1)

or Dn(s,1) is holomorphic for s �= (n+ 1)/2. At s= (n+ 1)/2, the residue

of Φ0,−n−1(s) or Ψ0,−n−1(s) is 2−n−1/2(−1)n(n+2)/8 or 2−1/2(−1)n(n+2)/8.

Hence, we have our results for D∗
n(s, δ) and Dn(s, δ) for δ = 1. Next, we

treat the case δ = −1. By the results in Section 3.1, for even n ≥ 4, we

see that Φ2,−n+3(s) and Ψ2,−n+3(s) are holomorphic except for s = 0, 1,

(n− 1)/2, and (n+ 1)/2 and that Γ(s)D∗
n(s,1) or Γ(s)Dn(s,1) has simple

poles only at s= 0, (n+ 1)/2. Since Γ(s− (n− 1))/2)−1I(s, (n− 1)/2,1) is

entire, it is easy to see that D∗
n(s,−1) and Dn(s,−1) are holomorphic at

s �= 0, 1, and (n+ 1)/2. Now, by Proposition 3.3 and the above result, we

have

D∗
n(0,1) =Dn(0,1) = (−1)n(n+2)/8+1+[n/4]π−n−1/2Γ(n/2)Γ

(
(n+ 1)/2

)
ζ(n).

Since the residue of Φ2,−n+3(s) and Ψ2,−n+3(s) at s= 0 is −1 and I(0, (n−
1)/2,1) = −2/(n− 1), we see that D∗

n(s,−1) and Dn(s,−1) are holomor-

phic at s= 0. The residue of Φ2,−n+3(s) or Ψ2,−n+3(s) at s= (n+ 1)/2 is

2−n−1/2(−1)n(n+2)/8+1 or 2−1/2(−1)n(n+2)/8+1 and at s = 1 is 2−(n+1)/2×
ζ(n− 1)ζ(n)−1 or 2(1−n)/2ζ(n− 1)ζ(n)−1, respectively. Using I((n+ 1)/2,

(n− 1)/2,1) = 2 × (1− 2(1−n)/2)/(n− 1) and the estimates of residues of

Dn(s,1) and D∗
n(s,1) at s= (n+ 1)/2 just obtained, we can easily obtain

the residues for δ =−1.

3.3. Functional equation of Dirichlet series of two variables

In [21] Shintani introduced certain Dirichlet series of two variables

ξi(s1, s2) and ξ∗i (s1, s2) and used the functional equation between them to

derive a similar result on Dirichlet series of one variable such as those in

Section 3.2 (see [21]). In the review of this paper, the referee asked if we can

prove his functional equation of two variables by our method. Indeed, we can

prove it, and we sketch the proof here. For a positive integer m and an inte-

ger n, we write A(m,n) the number of x mod m such that x2 ≡ n mod m.
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For i= 1, 2, following Shintani [21], we define

ξi(s1, s2) =
∞∑

m,n=1

A
(
4m, (−1)i−1n

)
m−s1n−s2 ,

ξ∗i (s1, s2) =
∞∑

m,n=1

A
(
m, (−1)i−1

)
m−s1(4n)−s2 .

(Note that in [21] there is a typo in the introduction and that the definition

at [21, p. 35] is the correct one.) We also put

η∗i (σ, s) =
∑

(−1)i−1dK>0

Z∗
(
k,σ+

k+ 1

2
, s, dK

)
,

ηi(σ, s) =
∑

(−1)i−1dK>0

Z
(
k,σ+

k+ 1

2
, s, dK

)
.

We note that these series do not depend on k, while the coefficients in

Φσ+(k+1)/2,k and Ψσ+(k+1)/2,k do so. By applying [27], we see easily that

η∗i (σ, s) = ζ(σ)−1ξi

(
σ, s+

1

2
− σ

)
,

ηi(σ, s) = 22sζ(σ)−1ξ∗i

(
σ, s+

1

2
− σ

)
.

Our aim here is to reprove the functional equation in [21, Theorem 1], which

is equivalent to the following.

Proposition 3.7. We have(
η∗1
(
σ,σ+ 1

2 − s
)

η∗2
(
σ,σ+ 1

2 − s
))=

Γ(s)Γ(s+ 1
2 − σ)

2σπ2s−σ+1/2
M(s)

(
η1(σ, s)

η2(σ, s)

)
,

where we put

M(s) =

(
cosπ

(
s− σ

2

)
sin πσ

2

cos πσ
2 − sinπ

(
s− σ

2

)) .

By virtue of Proposition 3.2, we can obtain the functional equation

between η∗i and ηi as far as we have relations between I(∗, α,β) and I(∗, α,β)
for (α,β) = ((σ/2) + (−k+ 1)/4, (σ/2) + (k+ 1)/4) which appear in
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Φσ+(k+1)/2,k or Ψσ+(k+1)/2,k. Now such relations are obtained as follows.

The following relations of the hypergeometric functions are well known:

F (a, b; c : z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b : a+ b− c+ 1,1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)

× F (c− a, c− b; c− a− b+ 1;1− z)

and

F (a, b; c;z) = (1− z)c−a−bF (c− a, c− b; c;z).

By taking z = 1/2 in the above relations, we have

I(s,α,β) =
Γ(β)Γ(s− β)

2βΓ(s)
F (1− α,β;β − s+ 1;1/2)

+
1

2α
Γ(s− α− β + 1)Γ(β − s)

Γ(1− α)
F (1− β,α;s− β + 1;1/2).

Here the first term is equal to

Γ(s− β)Γ(β − s+ 1)

Γ(s)Γ(1− s)
I(α+ β − s,α,β),

and the second term is equal to

Γ(β − s)Γ(s− β + 1)

Γ(1− α)Γ(α)
I(s,β,α).

Hence, we have

I(s,α,β) =
Γ(s− β)Γ(β − s+ 1)

Γ(s)Γ(1− s)
I(α+ β − s,α,β)

+
Γ(β − s)Γ(s− β + 1)

Γ(1− α)Γ(α)
I(s,β,α).

Since Γ(s− β)Γ(β − s+ 1) = π/(sinπ(s− β)) =−Γ(β − s)Γ(s− β + 1), we

have

I(α+ β − s) =
Γ(s)Γ(1− s)

Γ(s− β)Γ(β − s+ 1)
I(s,α,β) +

Γ(s)Γ(1− s)

Γ(1− α)Γ(α)
I(s,β,α),
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I(α+ β − s) =
Γ(s)Γ(1− s)

Γ(s− α)Γ(α− s+ 1)
I(s,β,α) +

Γ(s)Γ(1− s)

Γ(1− β)Γ(β)
I(s,α,β).

In other words, if we put

N(s,α,β) =

(
sinπ(s− β) sinπβ

sinπα sinπ(s− α)

)
,

then we have (
I(α+ β − s,α,β), I(α+ β − s,β,α)

)
=
(
I(s,α,β), I(s,β,α)

)
×N(s,α,β)× 1

sinπs
.

By taking k ≡ 7 mod 8 and α ≡ (σ/2) + (1/2) mod 2, β ≡ σ/2 mod 2, we

have

N(s,α,β) =

(
sinπ

(
s− σ

2

)
sin πσ

2

cos πσ
2 − cosπ

(
s− σ

2

)) .

By noting that

sinπs sinπ
(
s+

1

2
− σ

)
= sin

πσ

2
cos

πσ

2
+ sinπ

(
s− σ

2

)
cosπ

(
s− σ

2

)
,

we have

sinπs sinπ
(
s+

1

2
− σ

)
N(s,α,β)−1 =M(s).

We can do the same calculation for each odd k mod 8. Denote by v(k) a 2-

dimensional vectorwhose componentsare coefficients (includingCσ+(k+1)/2,k)

of η∗1(σ, s) and η∗2(σ, s) in Φσ+(k+1)/2(s). Then for k1 ≡ 7 mod 8 and k2 ≡
3 mod 8, two vectors v(k1) and v(k2) are linearly independent over mero-

morphic functions as is shown in the argument in Section 3.2. Then by

using the functional equation in Proposition 3.2 and the above formula for

N(s,α,β), we can easily prove Proposition 3.7 by direct calculation. Propo-

sitions 3.3 and 3.5 can be seen as special cases of Proposition 3.7. We omit

the details here.

§4. Proof of functional equations for n≥ 3

The functional equations for the case where n≥ 3, as well as the residues,

are easily obtained from the well-known facts on the Riemann zeta function
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and results onD∗(s, δ) andD(s, δ) in Section 3. We carry out this calculation

in this section. By using the well-known functional equation

ζ(1− s) = π−s−1/2
(
cos

πs

2

)
Γ
(s
2

)
Γ
(s+ 1

2

)
ζ(s)

= π−s21−s
(
cos

πs

2

)
Γ(s)ζ(s),

we have

ζ

(
2
(n+ 1

2
− s

)
− (2i− 1)

)
= π−2s+n−2i+1/2Γ

(
s+ i− n

2

)
Γ
(
s+ i− n+ 1

2

)
ζ(2s+ 2i− n− 1)

×
{
(−1)i−(n+1)/2 cosπs if n is odd,

(−1)i−n/2 sinπs if n is even,

ζ

(
2
(n+ 1

2
− s

)
− 2i

)
= π−2s+n−2i−1/2Γ

(
s+ i− n

2

)
Γ
(
s+ i− n− 1

2

)
ζ(2s+ 2i− n)

×
{
(−1)i−(n−1)/2 sinπs if n is odd,

(−1)i−n/2 cosπs if n is even.

Hence, for even n≥ 4, we have

An

(n+ 1

2
− s

)
= (−1)n(n−2)/8π−(n−2)s+n(n−3)/4+1/2

× (cosπs)
n
2
−1 γn

(
s− n+1

2

)
Γ(s)Γ

(
s− n−1

2

)An(s),

Bn

(n+ 1

2
− s

)
= (−1)n(n−2)/8π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
(sinπs)n/2Bn(s).

Using Propositions 3.3 and 3.5, we have

D∗
n

(n+ 1

2
− s,1

)
An

(n+ 1

2
− s

)
= 2−n/2π−ns+n(n−1)/4(cosπs)n/2γn

(
s− n+ 1

2

)
An(s)Dn(s,1),

D∗
n

(n+ 1

2
− s,−1

)
An

(n+ 1

2
− s

)
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= 2−n/2π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
An(s)

×
(
(−1)n

2/4+1(cosπs)n/2−1(sinπs)Dn(s,−1)

+ (cosπs)n/2−1Dn(s,1)
)
.

For odd n≥ 3, we have

Qn

(n+ 1

2
− s

)
= π−ns+n(n−1)/421−s(−1)(n

2−1)/8

× γn

(
s− n+ 1

2

)(
cos

πs

2

)
(cosπs)(n−1)/2Rn(s),

Rn

(n+ 1

2
− s

)
= π−ns+n(n−1)/42(n+1)/2−s

× γn

(
s− n+ 1

2

)
(sinπs)(n−1)/2Qn(s)

×
{
cos πs

2 if n≡ 1 mod 4,

sin πs
2 if n≡ 3 mod 4.

Now, the functional equations in Section 1 are proved as follows. We put

ε0 = εδ(n+1)/2.

When n is odd, then for L = L∗
n or Ln, the zeta function ζ(s,L, ε, δ)

depends only on ε0. For the sake of simplicity, we put ζ(s,L, ε, δ) = ζ+(s,L)

or ζ−(s,L), if ε= 1 or −1, respectively. We have

ζ
(n+ 1

2
− s,L∗

n, δ, ε
)

= bn2
(n−1)((n+1)/2−s)

(
Qn

(n+ 1

2
− s

)
+ ε0(−1)(n

2−1)/8Rn

(n+ 1

2
− s

))
= π−ns+n(n−1)/42−ns+(n2+1)/2γ

(
s− n+ 1

2

)
×
(
cos

πs

2
(cosπs)(n−1)/2Rn(s)

+ (−1)(n
2−1)/82(n−1)/2ε0(sinπs)

(n−1)/2f(s)Qn(s)
)
,

where we denote f(s) = cos(πs/2) or sin(πs/2), if n≡ 1 mod 4 or 3 mod 4,

respectively. We have the following equalities easily from the definitions:

Qn(s) = b−1
n 2−(n+1)/2

(
ζ+(s,Ln) + ζ−(s,Ln)

)
,
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Rn(s) = b−1
n 2−1

(
ζ+(s,Ln)− ζ−(s,Ln)

)
.

Hence, we have

ζ±
(n+ 1

2
− s,L∗

n

)
= (2π)−nsπn(n−1)/42(n

2−1)/2γn

(
s− n+ 1

2

)
×
((

cos
πs

2
(cosπs)(n−1)/2 ± (−1)(n

2−1)/8(sinπs)(n−1)/2f(s)
)
ζ+(s,Ln)

+
(
− cos

πs

2
(cosπs)(n−1)/2 ± (−1)(n

2−1)/8(sinπs)(n−1)/2f(s)
)

× ζ−(s,Ln)

)
.

Thus, we have proved Theorem 1.

Next, we treat the case when n is even. We prove the functional equation

for each δ and n.

Case I. Let δ = 1, and let n≡ 0 mod 4. Then, δn = 1, and

bn(−1)[n/4]Dn(s,1)An(s) = 2−1
(
ζ(s,Ln,1,1) + ζ(s,Ln,1,−1)

)
,

bn(−1)n(n+2)/8
2|B′

n/2|
n

Bn(s) = 2−n/2−1
(
ζ(s,Ln,1,1)− ζ(s,Ln,1,−1)

)
.

So, we have

ζ
(n+ 1

2
− s,L∗

n,1, ε
)

= 2−ns+n2/2−1π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
×
(
(cosπs)n/2 × (ζ(s,Ln,1,1) + ζ(s,Ln,1,−1))

+ ε(−1)n(n−2)/8(sinπs)n/2 × (ζ(s,Ln,1,1)− ζ(s,Ln,1,−1))
)
.

Case II. Let δ = −1, and let n ≡ 0 mod 4. Then δn = 0, and the zeta

functions do not depend on ε:

ζ
(n+ 1

2
− s,L∗

n,−1, ε
)

= 2−ns−n2/2π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
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×
(
(−1)n

2/4+1(cosπs)n/2−1(sinπs)ζ(s,Ln,−1, ε)

+ (cosπs)n/2−12−1(ζ(s,Ln,1,1)− ζ(s,Ln,1,−1))
)
.

Case III. Let δ = 1, and let n ≡ 2 mod 4 with n ≥ 4. Then, the zeta

functions do not depend on ε. In this case, we have

ζ
(n+ 1

2
− s,L∗

n,1, ε
)
= 2n(n+1/2−s)2−n/2π−ns+n(n−1)/4

×(cosπs)n/2γn

(
s− n+ 1

2

)
ζ(s,Ln,1, ε).

Case IV. Let δ =−1, and let n≡ 2 mod 4 with n≥ 4. In this case, δn = 1

and

ζ
(n+ 1

2
− s,L∗

n,−1, ε
)

= 2−ns−n2/2π−ns+n(n−1)/4γn

(
s− n+ 1

2

)
×
(
(−1)n

2/4+12−1(cosπs)n/2−1(sinπs)

× (ζ(s,Ln,−1,1) + ζ(s,Ln,−1,−1))

+ (−1)n(n−2)/82−1ε(sinπs)n/2(ζ(s,Ln,−1,1)− ζ(s,Ln,−1,−1))

+ (cosπs)n/2−1ζ(s,Ln,1, ε)
)
.

Hence, we have proved Theorem 3.

As is well known, ζ(s) has a simple pole at s= 1 with residue 1 and is holo-

morphic for the other s. Also, we have ζ(−2m) = 0 for all positive integersm.

Theorem 2 follows very easily from these facts and the explicit formula of

the zeta functions. We can prove Theorem 4 by using Proposition 3.6.

§5. Functional equation for n= 2

When n = 2, we need some modification of the definition of our zeta

functions since the volume μ(x) in the definition of zeta functions for n≥ 3

is infinite for some x ∈ V when n = 2. Shintani [21] has given a modified

definition of the zeta function and has shown the functional equations for

such zeta functions. Later, Sato [16] gave a more theoretical definition of

Shintani’s modification by using a zeta function of two variables which is

naturally obtained by applying the general theory of the prehomogeneous

vector spaces for (GL2 ×GL1, V ×C2), and also gave an alternative proof
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of the functional equation. Here we give the third alternative proof of Shin-

tani’s results above by using real analytic Eisenstein series of half-integral

weight. More precisely, we give a natural modification of the definition from

our standpoint, show the functional equation of our zeta functions, and give

the location of poles and the principal parts of the Laurent expansion there.

For the zeta function of definite symmetric matrices (i.e., ζ2(s,L,1,1)), this

approach has already been used by Sturm [23]. So the main point is the

case for indefinite symmetric matrices (i.e. ζ(s,L,−1,−1)). Our idea is as

follows. When we fix an odd integer k, the functional equation of the Mellin

transforms of Eisenstein series in the previous section is valid as a mero-

morphic function of s and σ for the whole C2 plane. Now we fix k to be 1

throughout this section. Then each side of the functional equation between

Φσ,1 and Ψσ,1 has a pole at σ = 2, and this is the reason that the origi-

nal definition of our zeta function cannot be applied in the case n= 2. In

fact, most of the coefficients of the Dirichlet series Φσ,1(s) and Ψσ,1(s) with

respect to s have definite values at σ = 2, which form the main part of our

zeta function of the prehomogeneous vector space, but the modified terms

come from the coefficients which have a pole at σ = 2. Even if they have a

pole, each term of the Laurent expansions of Φσ,1(s) and Ψσ,1(s) along σ = 2

still satisfies the functional equation. So by comparing the constant terms of

the Laurent expansion of both sides of the above functional equation associ-

ated with Eisenstein series at σ = 2, we give a suitable modification of zeta

functions and the functional equation at the same time. By the way, it is

easy to see that both coefficients of (σ− 2)−1 in the Laurent expansions are

C2,1ζ(2)
−12s−2π1/2−sΓ(s− 1/2)ζ(2s− 1),

and this gives us nothing new. Now we define the main part of our zeta

functions. Define four Dirichlet series

ξM+ (s) = ζ(2s)
∞∑
d=1

h(d) log(εd)d
−s,

ξ∗,M+ (s) = ζ(2s)
( ∞∑
d=1

h(4d) log(ε4d)

(4d)s
+ 2−2s

∞∑
d=1

h(4d+ 1) log(ε4d+1)

(4d+ 1)s

)
,

ξ−(s) = 2ζ(2s)
∞∑
d=1

h(−d)w−1
−dd

−s,
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ξ∗−(s) = 2ζ(2s)
( ∞∑
d=1

h(−4d)

w−4d(4d)s
+ 2−2s

∞∑
d=1

h(−4d+ 1)

w−4d+1(4d− 1)s

)
,

where h(d) is the class number in the narrow sense of the order Od of dis-

criminant d in a quadratic field, εd is the fundamental unit of norm 1 of

Od, and wd is the number of units of Od. When d is a square or not a

discriminant, we regard h(d) = 0.

Then, by the classical class number formula, we can show that

ξM+ (s) =
∑

dK>0,dK �=1

ζ(2)Z∗(1,2, s, dK),

πξ−(s) =
∑
dK<0

ζ(2)Z∗(1,2, s, dK).

Now we consider Z(1, σ, s,1) or Z∗(1, σ, s,1), the terms corresponding to

dK = 1. If we write

ζ(2s)ζ(2s− 2σ+ 3)

ζ(2s− σ+ 2)
=

∞∑
n=1

a(n)

ns
,

then we have

∞∑
n=1

a(4n)

ns
=

ζ(2s)ζ(2s− 2σ+ 3)

ζ(2s− σ+ 2)
× 1− 2σ−2 + 22σ−3 − 2−2s+2σ−3

1− 2−2s+σ−2
.

So we put

h(σ, s) =
ζ(2s)ζ(2s− 2σ+ 3)

ζ(2σ− 2)ζ(2s− σ+ 2)
I
(
s,σ/2, (σ − 1)/2

)
,

h∗(σ, s) =
ζ(2s)ζ(2s− 2σ+ 3)

ζ(2σ− 2)ζ(2s− σ+ 2)

(1− 2σ−2 + 22σ−3 − 2−2s+2σ−3)

(1− 2−2s+σ−2)

× I
(
s,σ/2, (σ − 1)/2

)
.

We define two functions g(σ, s) and g∗(σ, s) so that the following equalities
hold:

Φσ,1(s) = Cσ,1(2π)
−sΓ(s)

(
g(σ, s) + ζ(σ− 1)h(σ, s)

)
,

Ψσ,1(s) = Cσ,1(2π)
−sΓ(s)

(
g∗(σ, s) + ζ(σ− 1)h∗(σ, s)

)
.

Then, we have
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g(2, s) = ζ(2)−1
(
ξM+ (s)I(s,1,1/2) + πξ−(s)I(s,1/2,1)

)
,

g∗(2, s) = 22sζ(2)−1
(
ξ∗,M+ (s)I(s,1,1/2) + πξ∗−(s)I(s,1/2,1)

)
.

To obtain the functional equation which coincides with Shintani’s original

version (see [21]), it is convenient to multiply both sides of the functional

equation between Φσ,1(σ− s− 1/2) and Ψσ,1(s) in Proposition 3.2 by

ε(σ, s) =C−1
σ,1(2π)

σ−s−1/22(σ−1)/2ζ(2σ− 2)Γ
(
(σ− 1)/2

)−1
Γ(1− s)−1.

To rewrite the functional equation in this form, we put

A(σ, s) =
2

σ−1
2 ζ(2σ− 2)

Γ(σ−1
2 )

·
Γ(σ− s− 1

2)

Γ(1− s)
g
(
σ,σ− s− 1

2

)
,

A∗(σ, s) =
2

σ−1
2 ζ(2σ− 2)

Γ(σ−1
2 )

· 2−σ+1πσ−2s−1/2 Γ(s)

Γ(1− s)
g∗(σ, s),

B(σ, s) =
Γ(σ− s− 1

2)

Γ(σ+1
2 − s)

ζ(2σ− 1− 2s)ζ(2− 2s)

ζ(σ+ 1− 2s)

× F2(σ, s),

B∗(σ, s) = 2−σ+1πσ−2s−1/2 Γ(s)Γ(s− σ+ 3
2)

Γ(1− s)Γ(s− σ
2 + 1)

× ζ(2s)ζ(2s− 2σ+ 3)

ζ(2s− σ+ 2)
× 1− 2σ−2 + 22σ−3 − 2−2s+2σ−3

1− 2−2s+σ−2

× F1(σ, s),

where we put

F1(σ, s) = F
(
1− σ

2
,
σ− 1

2
;s− σ

2
+ 1;

1

2

)
,

F2(σ, s) = F
(
1− σ

2
,
σ− 1

2
,
σ+ 1

2
− s;

1

2

)
.

Then we have

ε(σ, s)Φσ,1

(
σ− s− 1

2

)
=A(σ, s) +B(σ, s)ζ(σ− 1),

22s−2σ+3/2ε(σ, s)Ψσ,1(s) =A∗(σ, s) + ζ(σ− 1)B∗(σ, s).
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So the functional equation in Proposition 3.2 reads

A(σ, s) +B(σ, s)ζ(σ− 1) =A∗(σ, s) + ζ(σ− 1)B∗(σ, s).

The residue of each side at σ = 2 is given by B(2, s) or B∗(2, s). But

since F1(2, s) = F2(2, s) = 1, we have B(2, s) = ζ(2 − 2s) and B∗(2, s) =
π3/2−2sΓ(s− 1/2)ζ(2s− 1)/Γ(1− s), so B(2, s) =B∗(2, s) by the functional

equation of the Riemann zeta function. Comparing the constant terms of

the above functional equation at σ = 2, we have

A(2, s) +
d

dσ
B(σ, s)|σ=2 +B(2, s)γ

=A∗(2, s) +
d

dσ
B∗(σ, s)|σ=2 +B∗(2, s)γ,

where γ is the Euler constant. As is well known, we have ζ(σ− 1) = 1/(σ−
2)+ γ+O(σ− 2) and γ =−Γ′(1). Since we have B(2, s) =B∗(2, s), the last
terms cancel each other out. Since I(s,1,1/2) =

√
πΓ(s− 1/2)/

√
2Γ(s), we

can show easily that

A(2, s) = ξM+ (3/2− s)

+
√
2π

Γ(3/2− s)

Γ(1− s)
ξ−(3/2− s)I(3/2− s,1/2,1),

A∗(2, s) = 22s−1π1/2−2sΓ(s)Γ(s− 1/2)

×
(
sin(πs)ξ∗,M+ (s) + π3/2

√
2

ξ∗−(s)

Γ(s− 1/2)Γ(1− s)
I(s,1/2,1)

)
.

It was proved in Section 3.2 that

ξ−(3/2− s) = 22s−1π−2s+1/2Γ(s)Γ(s− 1/2) cos(πs)ξ∗−(s)

− 2−1π−2s+1/2Γ(s)Γ(s− 1/2)ζ(2s− 1).

Using this functional equation and the well-known fact that

cos(πs) =−π/Γ(s− 1/2)Γ(3/2− s),

we have

A(2, s) = ξM+ (3/2− s)

− 22s−1/2π2−2sΓ(s)Γ(1− s)−1ξ∗−(s)I(3/2− s,1/2,1)
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− 2−1/2π1−2sΓ(s)Γ(s− 1/2)Γ(3/2− s)Γ(1− s)−1

× ζ(2s− 1)I(3/2− s,1/2,1).

Hence, by using the formula

I(s,1/2,1) + I(3/2− s,1/2,1) =
Γ(1− s)Γ(s− 1/2)√

2π

and applying the functional equation, we have

ξM+ (3/2− s) +
d

dσ
B(σ, s)|σ=2

= 22s−1π−2s+1/2Γ(s)Γ(s− 1/2)
{
sin(πs)ξ∗,M+ (s) + πξ∗−(s)

}
+

π1−2s

√
2

Γ(s)Γ(s− 1/2)Γ(3/2− s)

Γ(1− s)

× ζ(2s− 1)I
(3
2
− s,

1

2
,1
)
+

d

dσ
B∗(σ, s)|σ=2.

In order to write the functional equation more explicitly, we must calcu-

late the difference

d

dσ
B∗(σ, s)|σ=2 −

d

dσ
B(σ, s)|σ=2.

When we differentiate B(σ, s) and B∗(σ, s), we regard these roughly as

products of functions of σ which are powers of 2, the shifted Riemann zeta

functions, gamma factors, and hypergeometric functions. We have

d

dσ
B(σ, s)|σ=2 = ζ(2− 2s)

(ζ ′(3− 2s)

ζ(3− 2s)
− ζ ′(2− 2s)

ζ(2− 2s)

)
+ ζ ′(2− 2s)

+
1

2
ζ(2− 2s)

Γ′(3/2− s)

Γ(3/2− s)

+ ζ(2− 2s)
d

dσ
F2(σ, s)|σ=2

and

d

dσ
B∗(σ, s)|σ=2

= π3/2−2sΓ(s− 1/2)

Γ(1− s)

(
ζ(2s− 1)

(ζ ′(2s)
ζ(2s)

− ζ ′(2s− 1)

ζ(2s− 1)

)
− ζ ′(2s− 1)

)
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+ (logπ)π3/2−2sζ(2s− 1)
Γ(s− 1/2)

Γ(1− s)

+ (log 2)π3/2−2sΓ(s− 1/2)

Γ(1− s)

ζ(2s− 1)

2(1− 2−2s)

+ 2−1π1/2−2sζ(2s− 1)Γ(s)Γ(s− 1/2)(sinπs)
(Γ′(s)

Γ(s)
− Γ′(s− 1/2)

Γ(s− 1/2)

)
− 2−1π1/2−2sζ(2s− 1)Γ(s)Γ(s− 1/2)(sinπs)

Γ′(s− 1/2)

Γ(s− 1/2)

+ π3/2−2sζ(2s− 1)
Γ(s− 1/2)

Γ(1− s)

d

dσ
F1(σ, s)|σ=2.

By the functional equation of the Riemann zeta function and the well-known

formula Γ(s)Γ(1− s) = π/ sin(πs), we have

ζ(2− 2s) = π3/2−2sζ(2s− 1)
Γ(s− 1/2)

Γ(1− s)

= π1/2−2s(sinπs)ζ(2s− 1)Γ(s)Γ(s− 1/2).

Now we will calculate

ζ(2− 2s)
d

dσ

(
F1(σ, s)− F2(σ, s)

)
|σ=2.

The following formula of the hypergeometric functions is well known:

F (a, b; c, z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b;a+ b− c+ 1;1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)

× F (c− a, c− b; c− a− b+ 1;1− z).

So, we have

F1(σ, s) =
Γ(s− σ/2 + 1)Γ(s− (σ− 1)/2)

Γ(s)Γ(s− σ+ 3/2)
F2(σ, s)

+ 2−s+(σ−1)/2Γ(s− σ/2 + 1)Γ(−s+ (σ− 1)/2)

Γ(1− σ/2)Γ((σ− 1)/2)

× F
(
s, s− σ+ 3/2;s− (σ− 3)/2;

1

2

)
.
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Now, we differentiate at σ = 2 both sides of the above formula. Since Γ(1−
σ/2)−1 has a simple zero at σ = 2 and (d/dσ)Γ(1−σ/2)−1|σ=2 =−1/2, the

differential coefficient at σ = 2 of the second term of the right-hand side is

−2−1/2−sΓ(s)Γ(1/2− s)

Γ(1/2)
F (s, s− 1/2;s+ 1/2; 1/2),

but we see that

F
(
s, s− 1

2
;s+

1

2
;
1

2

)
=

Γ
(
s+ 1

2

)
Γ
(
s− 1

2

) ∫ 1

0
ts−3/2

(
1− 1

2
t
)−s

dt

= 2s−1/2Γ
(
s+ 1

2

)
Γ
(
s− 1

2

) ∫ 1

1/2
(1− v)s−3/2v−s dt

= 2s
Γ
(
s+ 1

2

)
Γ
(
s− 1

2

)I(s, 1
2
,1
)
.

Hence, we have

d

dσ
(F1 − F2)|σ=2 =−1

2

(
Γ′(s)

Γ(s)
− Γ′(s− 1/2)

Γ(s− 1/2)

)
− (2π)−1/2Γ(s)Γ(1/2− s)Γ(s+ 1/2)

Γ(s− 1/2)
I(s,1/2,1).

Using the notation of Shintani [21], we define

ξ+(s) = ξM+ (s) + ζ(2s− 1)
(ζ ′(2s)
ζ(2s)

− ζ ′(2s− 1)

ζ(2s− 1)

)
,

ξ∗+(s) = ξ∗,M+ (s) + 21−2sζ(2s− 1)
(ζ ′(2s)
ζ(2s)

− ζ ′(2s− 1)

ζ(2s− 1)

)
,

+ 2−2s(log 2)(1− 2−2s)−1ζ(2s− 1).

We prepare two more relations. By differentiating the usual functional

equation of the Riemann zeta function, we have

ζ ′(2− 2s)

ζ(2− 2s)
= logπ− 1

2

Γ′(s− 1/2)

Γ(s− 1/2)
− 1

2

Γ′(1− s)

Γ(1− s)
− ζ ′(2s− 1)

ζ(2s− 1)
.

On the other hand, by differentiating the relations Γ(s)Γ(1− s) = π/ sinπs

and Γ(s− 1/2)Γ(3/2− s) =−π/ cosπs, we have

Γ′(s− 1/2)

Γ(s− 1/2)
+

Γ′(1− s)

Γ(1− s)
=

π

(cosπs)(sinπs)
+

Γ′(s)

Γ(s)
+

Γ′(3/2− s)

Γ(3/2− s)
.
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By comparing all the equalities we obtained above, we have the alternative

proof of the functional equation in Proposition 5.1 below. This was first

obtained by Shintani [21] by using Dirichlet series of two variables attached

to quadratic forms. These Dirichlet series of two variables are natural objects

corresponding to the theory of quadratic forms, but his method of the proof

itself is somewhat more technical and not necessarily easy to understand

conceptually.

Proposition 5.1 (Shintani [21], Sato [16]). Two zeta functions ξ+(s)

and ξ∗+(s) are meromorphically continued to the whole s plane and satisfy

the following functional equation:

ξ+(3/2− s)

= 22s−1π−2s+1/2Γ(s)Γ(s− 1/2)
(
(sinπs)ξ∗+(s) + πξ∗−(s)

)
+ 2−1π−2s+1/2Γ(s)Γ(s− 1/2)ζ(2s− 1)(sinπs)

(Γ′(s)

Γ(s)
− Γ′(s− 1/2)

Γ(s− 1/2)

)
.

Next, for the sake of completeness, we will calculate the principal part

of the Laurent expansion at poles of ξ+(s) and ξ∗+(s) by our method. For

that purpose, we need more precise information on the location of poles and

their residues of the functions which appear in Φσ,1(s) and Ψσ,1(s).

We define

I2(s) =
Γ(3/2− s)

2
√
πΓ(1− s)

∫ 1

0
u−1/2(1− u)−s log(1− u/2)du.

This function converges when Re(s)< 1. Differentiating the integral expres-

sion of the beta function

B
(
t+

1

2
,1− s

)
=

Γ(t+ 1/2)Γ(1− s)

Γ(t+ 3/2− s)
=

∫ 1

0
ut−1/2(1− u)−s du

at t= 0 under the integral sign, we have

Γ(3/2− s)√
πΓ(1− s)

∫ 1

0
u−1/2(1− u)−s log(u)du

=
Γ′(1/2)Γ(3/2− s)− Γ(1/2)Γ′(3/2− s)√

πΓ(3/2− s)
.

Using this relation, and differentiating under the integral sign, we have

d

dσ

(
F2(σ, s)

)
|σ=2 = I2(s),
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d

dσ

(
F1(σ, s)

)
|σ=2 = I2

(3
2
− s

)
.

As before, for a nonnegative integer n and a variable number a, we put

(a)n = Γ(a + n)/Γ(a). We define the Barnes generalized hypergeometric

function 3F2 as usual by

3F2(α1, α2, α3;β1, β2;z) =
∞∑
n=0

(α1)n(α2)n(α3)n
(β1)n(β2)n

zn

n!
.

Then, we also have

I2(s) =−
∞∑
n=1

1

2n+1n

Γ(n+ 1/2)Γ(3/2− s)√
πΓ(n+ 3/2− s)

=− Γ(3/2− s)

23Γ(5/2− s)
3F2(1,1,3/2; 2,5/2− s; 1/2).

Since I2(s) is holomorphic for Re(s)< 1 and I2(3/2− s) for Re(s)> 1/2,

I2(s) is meromorphically continued to the whole s plane by virtue of the

formula for I2(3/2− s)− I2(s) that we gave before. It is also easy to show

that I2(s) has simple poles at s= 1/2 +m (m= 1,2, . . .) with residues

(−1)m+12−1/2−2m(2m)!(m!)−2mI(1/2 +m,1/2,1)

and that it is holomorphic for all other s. We have

d

dσ
B(σ, s)|σ=2 = ζ(2− 2s)

(ζ ′(3− 2s)

ζ(3− 2s)
− ζ ′(2− 2s)

ζ(2− 2s)

)
+ ζ ′(2− 2s)

+
1

2
ζ(2− 2s)

Γ′(3/2− s)

Γ(3/2− s)
+ ζ(2− 2s)I2(s).

We write Ur(a) = {σ ∈ C; |σ − a| < r}. Then it was shown in Section 3

that the function

(σ− 2)s(s− σ+ 1/2)(s− σ+ 3/2)ε(σ, s)Φσ,1(σ− 1/2− s)

is holomorphic on (σ, s) ∈ U3/2(2)×C. Now, notation being as in Section 3,

we put
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J̃(σ, s) = 2s+1/2−σε(σ, s)

×
(∫ ∞

1

(
G1(y/2)− c0(y/2)

)
yσ−3/2−s dy

+C1

∫ ∞

1

(
H1(y/2)− c0(y/8)

)
ys−1 dy

)
.

Then, (σ − 2)Γ(1− s)J̃(σ, s) is holomorphic on (σ, s) ∈ U3/2(2)×C. Using

the Hecke-type integral expression of Φσ,k(s) obtained in Section 3 for k = 1,

we have

A(σ, s) + ζ(σ− 1)B(σ, s)

= J̃(σ, s)− π1−s Γ(σ− 3/2)ζ(2σ− 3)

Γ((σ− 1)/2)Γ(1− s)
×
( 2σ/2−1

s− σ+ 3/2
+

21−σ/2

1− s

)
− π−sΓ(σ/2)ζ(2σ− 2)

Γ(1− s)
×
(2(σ−3)/2

s
+

2(3σ−5)/2

σ− 1/2− s

)
.

We compare the constant term of the Laurent expansion at σ = 2 of the

above equality. We write the Laurent expansion of J̃(σ, s) at σ = 2 as

J−1(s)/(σ−2)+J0(s)+O(σ−2). Here J−1(s) and J0(s) are entire functions

of s. Then the constant term of the left-hand side is given by

f(s) =A(2, s) +
d

dσ
B(σ, s)|σ=2 + γB(2, s)

= ξ+(3/2− s)

+
√
2π

Γ(3/2− s)

Γ(1− s)
ξ−(3/2− s)I(3/2− s,1/2,1) + ζ ′(2− 2s)

+
1

2
ζ(2− 2s)

Γ′(3/2− s)

Γ(3/2− s)
+ ζ(2− 2s)I2(s) + γζ(2− 2s).

We calculate the constant term g(s) of the right-hand side. We have

ζ(2σ− 3) =
1

2(σ− 2)
+ γ +O(σ− 2),

1

s− σ+ 3/2
= (s− 1/2)−1 + (s− 1/2)−2(σ− 2) +O

(
(σ− 2)2

)
,

2σ/2−1 = 1+
1

2
log(2)(σ− 2) +O

(
(σ− 2)2

)
,
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Γ(σ− 3/2)

Γ((σ− 1)/2)
= 1+

Γ′(1/2)

2Γ(1/2)
(σ− 2) +O

(
(σ− 2)2

)
.

Here it is well known that Γ(1/2) =
√
π and that Γ′(1/2)/Γ(1/2) = −γ −

2 log(2). Hence, we have

g(s) = J0(s)− π−s ζ(2)

Γ(1− s)

( 1√
2s

+

√
2

3/2− s

)
− π1−s

Γ(1− s)(1− s)

( Γ′(1/2)

4Γ(1/2)
− 1

4
log(2) + γ

)
− γπ1−s

Γ(1− s)(s− 1/2)
+

1

2

( π1−s(γ + log(2))

2(s− 1/2)Γ(1− s)
− π1−s

(s− 1/2)2Γ(1− s)

)
.

We have f(s) = g(s) by definition. We compare the principal part of the

Laurent expansion of f(s) = g(s) at s= 1/2. First, we see that the order of

the pole of ξ+(3/2− s) at s = 1/2 is at most 2, so we write the principal

part of the Laurent expansion of ξ+(s) at s= 1 by ξ+(s) = a−2(s− 1)−2 +

a−1(s− 1)−1+O(1). Then we have ξ+(3/2− s) = a−2(s− 1/2)−2 − a−1(s−
1/2)−1 +O(1). We compare the coefficients of (s− 1/2)−2. Then, since

ζ ′(2− 2s) =−1

4
(s− 1/2)−2 + γ +O(s− 1/2),

we have a−2 − 1/4 =−1/2 and a−2 =−1/4. Next, we compare the residues

at s = 1/2. Using the values I(1,1/2,1) =
√
2 log(

√
2 + 1) and I2(1/2) =

−2−13 log(2)+ log(
√
2+1) and the fact that ξ−(3/2−s) = 4−1(s−1/2)−1+

O(1), we see that the residue of f(s) at s= 1/2 is given by

−a−1 −
1

4
γ +

3

4
log(2).

Since we have

π1−s

Γ(1− s)
= 1+

(Γ′(1/2)

Γ(1/2)
− log(π)

)(
s− 1

2

)
+O

((
s− 1

2

)2)
,

the residue of g(s) at s= 1/2 is

−γ +
1

2

(γ
2
+

1

2
log(2)−

(
−γ − 2 log(2)− log(π)

))
=−1

4
γ +

5

4
log(2) +

1

2
log(π).



ZETA OF SYMMETRIC MATRICES II 309

Hence, we have a−1 =−2−1 log(2π).

Next, we see the principal part around s= 3/2. We denote the residue of

ξ+(s) at s= 3/2 by d. Since ξ−(3/2−s) =−π/(12s)+ · · · and I(3/2,1/2,1) =

2−
√
2, comparing the residues of f(s) and g(s) at s= 0, we see that −d−

(
√
2)−1(π2/12)(2−

√
2) =−π2/6

√
2. So we have d= π2/12.

Now, we will show that ξ+(s) is holomorphic for all s �= 1, 3/2. Since

Γ(1− s)−1I(3/2− s,1/2,1) is entire, and since I2(s) has poles only at s=

1/2+m (m= 1,2, . . .), we see that ξ+(3/2−s) is holomorphic for s �= 0,1/2,

1/2+m. Since the residue of Γ(1/2− s) at s=m+1/2 is (−1)m/Γ(m+1),

we see that the residue at s=m+ 1/2 of I2(s)/2 is

(−1)m2−2π−1Γ(m)−1Γ(m+ 1/2)I(1/2 +m,1/2,1).

The residue of Γ′(3/2− s)/Γ(3/2− s) at m+1/2 is −1/2. By the functional

equation for ξ−(s), we see that ξ−(1−m) =−2−1(−1)mζ(1− 2m) for posi-

tive integers m≥ 2 and ξ−(0) = 2−1ζ(−1)+1/12. We have I(1−m,1/2,1)+

I(m + 1/2,1/2,1) = (2π)−1Γ(1/2 − m)Γ(m) and I(3/2,1/2,1) = 2 −
√
2,

I(0,1/2,1) = −2. So, comparing the Laurent expansions at s = m + 1/2

of f(s) and g(s), it is easy to see that ξ+(3/2− s) is holomorphic also at

s=m+ 1/2 for positive integers m. Thus, we obtained all the locations of

poles of ξ+(s) and its principal part of the Laurent expansion at each pole.

For ξ∗+(s), if we denote by f∗(s) the constant term of the Laurent expansion

of A∗(σ, s) + ζ(σ− 1)B∗(σ, s) at σ = 2, then we have

21−2sπ2s−3/2Γ(1− s)Γ(s− 1/2)−1f∗(s)

= ξ∗+(s) + (2π)1/2
Γ(s)

Γ(s− 1/2)
ξ∗−(s)I(s,1/2,1)

− 21−2sζ ′(2s− 1) + 21−2s log(π)ζ(2s− 1) + 21−2sγζ(2s− 1)

+ 2−2sζ(2s− 1)
(Γ′(s)

Γ(s)
− 2

Γ′(s− 1/2)

Γ(s− 1/2)

)
+ 21−2sζ(2s− 1)× I2(3/2− s).

By the functional equation, we have ξ∗−(1−m) = (−1)m+122m−2ζ(1− 2m)

for m= 2,3, . . . and ξ∗−(0) = 0. Using this and comparing with the integral

expression of the Hecke type in Section 3, we have the location of poles and

the expansion of ξ∗+(s) at poles almost in the same way as before. We omit

the details here. Thus, we have the alternative proof of the following results

first obtained by Shintani [21] and Sato [16].
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Proposition 5.2. Both zeta functions ξ+(s) and ξ∗+(s) are holomorphic

except for s = 1 and s = 3/2. The principal part of the Laurent expan-

sions are given as follows. At s = 1, we have ξ+(s) = −4−1(s − 1)−2 −
2−1 log(2π)(s − 1)−1 + · · · and ξ∗+(s) = −8−1(s − 1)−2 − 4−1 log(2π)(s −
1)−1 + · · · . At s= 3/2, we have ξ+(s) = 12−1π2(s− 3/2) + · · · and ξ∗+(s) =
24−1π2(s− 3/2)−1 + · · · .

§6. Special values of zeta functions and dimensions of Siegel cusp

forms

The values ζ(1 − m,L∗
n,1,1) for positive integers m are related with

dimension formulas of Siegel cusp forms and are important. In this sec-

tion, first we give the formulas for the values of ζ(s,L,1,1) at nonpositive

integers for L= L∗
n or Ln. These are rational and are described by Bernoulli

numbers explicitly. Second, we apply these results to the dimension formu-

las of Siegel cusp forms. The results in this section have been announced in

[6], but we reproduce them with more detailed explanation and the proof.

For each nonnegative integer m, we denote by Bm the Bernoulli number

defined by

tet

et − 1
=

∞∑
m=0

Bm
tm

m!
.

Now, we will give special values of the above zeta functions.

Theorem 5. When n is odd (including the case n= 1), for each positive

integer number m, we have

ζ(1−m,L∗
n,1,1)

=
(−1)(n+1)/2|B2B4 · · ·Bn−1|Bm+n−1

2
B2mB2m+2 · · ·B2m+n−3

2(2m+1)(n−1)/2
(
n−1
2

)
!m(m+ 1) · · ·

(
m+ n−1

2

) ,

ζ(1−m,Ln,1,1) = 2(2m−1)(n−1)/2ζ(1−m,L∗
n,1,1).

Theorem 6. When n is even, for each positive integer m with nm �= 2,

we have

ζ(1−m,L∗
n,1,1) =

(−1)[
n
4
]+nm/2|B2B4 · · ·Bn−2Bn/2|B2mB2m+2 · · ·B2m+n−2

2nm+(n−2)/2
(
n
2

)
!m(m+ 1) · · ·

(
m+ n−2

2

) ,

ζ(1−m,Ln,1,1) = 2nm−n/2ζ(1−m,L∗
n,1,1).
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When nm = 2, which means that (n,m) = (2,1), we have ζ(0,L∗
2,1,1) =

1/48, ζ(0,L2,1,1) = 0. In particular, if n≡ 2 mod 4 and n > 2, then ζ(1−
m,L∗

n,1,1) = ζ(1−m,Ln,1,1) = 0.

Proofs of Theorems 5 and 6. The case when n is odd is obvious, noting

the well-known relation ζ(1 − m) = −Bm/m for the Riemann zeta func-

tion. Now, assume that n is even. By Propositions 3.3 and 3.4, D∗
n(s,1)

and Dn(s,1) are holomorphic at 1−m (m= 1,2, . . .). When n= 2, we have

ζ(s,L∗
2,1,1) = 22s−1D∗

2(s,1) and ζ(s,L2,1,1) = 2−1D2(s,1). So, our results

easily follow from Proposition 3.4. When n ≥ 4, using notation as in Sec-

tion 1, we have An(1−m) = 0 and

Bn(1−m) = (−1)n/2
n/2∏
i=1

B2m+2i−2/(2m+ 2i− 2),

and we obtain the special values.

Remark. When n= 2, these values have been essentially known by the

functional equation. When n= 3, as a special case of the above results, we

have ζ(0,L∗
3) = 1/3456. This value has been obtained by an indirect method

by Hashimoto and Tsushima. They compared two complicated expressions

of the dimension of Siegel cusp forms of degree 3, one by the Selberg trace

formula and the other by the Riemann-Roch theorem.

Next, we will give explicit values of the contribution of “central” unipo-

tent elements to the dimension of Siegel cusp forms. For any positive integers

n and N , we denote by Γn(1) = Sp(n,Z) the full Siegel modular group of

size 2n and by Γn(N) the principal congruence subgroup of level N of degree

n defined as usual by

Γn(N) =
{
g ∈ Sp(n,Z);g ≡ 12n mod N

}
.

For a positive integer k, we denote by Sk(Γn(N)) the space of Siegel cusp

forms of weight k belonging to Γn(N). First, we review the Godement

dimension formula.

Theorem 7 (Godement). For any integer k > 2n, we have

dimSk

(
Γn(N)

)
=

an(k)

#Z(Γn)

∫
Γn\Hn

∑
γ∈Γn

Hγ(Z)dZ,
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where dZ = (det(Y ))−n−1 dX dY ,

Hγ(Z) = det
(Z − γZ̄

2i

)−k
det(CZ̄ +D)−k(detY )k,

and

an(k) =
1

2n(2π)n(n+1)/2

n−1∏
j=0

Γ
(
k− n−1

2 + j
2

)
Γ
(
k− n+ j

2

)
=

1

2n2+2nπn(n+1)/2

∏
1≤i≤j≤n

(2k− 2n+ i+ j − 2).

Now, for each integer r with 0 ≤ r ≤ n, let Πr be the set of elements u

of Γn(N) such that u is Sp(n,Z)-conjugate to a matrix of the form
(
1n x
0 1n

)
,

where x ∈ Ln and is of rank r. When r = 0, this is nothing but 12n. When

r ≥ 1, we call such unipotent elements central because they are Sp(n,Q)-

conjugate to some elements of the center of the unipotent radical of a max-

imal parabolic subgroup of Sp(n,Q). Using Shintani’s notation, we denote

by In(Πr,N,k) the contribution of Πr to dimSk(Γn(N)). That is, we put

In(Πr,N,k) =
an(k)

#Z(Γn)

∫
Γn\Hn

∑
γ∈Πr

Hγ(Z)dZ.

Shintani [21] has given a formula to express each In(Πr,N,k) as a product

of some elementary factors and a special value of ζ(s,L∗
n,1,1) as follows.

For each positive integer l, we put

ω =

l∏
i=1

ζ(2i)

and

Ul =

l∏
i=1

2πi

Γ(i)
.

Theorem 8 (Shintani [21]). For each positive integer n and each integer

k > 2n, we have

In(Π0,N,k) = [Γn(1) : Γn(N)]
ωn

Un(4π)n(n+1)/2

n∏
i=1

i−1∏
j=0

(2k− n− i+ 2j),
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and for each r with 1≤ r ≤ n− 1, we have

In(Πr,N,k) = [Γn(1) : Γn(N)]
ωn−r

Un(4π)(n−r)(n−r+1)/2

×
n−r∏
i=1

i−1∏
j=0

(2k− n− i+ 2j)ζ(r− n,L∗
r ,1,1).

Remark. In Shintani’s original theorem, he assumed that k ≥ 2n+3, but

it is easy to show that this also holds for k ≥ 2n+ 1 by applying carefully

the estimation he used. Incidentally, ζ(s,L∗
n,1,1) = ζ∗r (s) in his notation.

Using Theorem 8, we obtain an explicit formula for In(Πr,N,k) as a

corollary to our Theorems 5 and 6. We state this below.

Before stating this result, we prepare more notation. For each nonnegative

integer r with 0≤ r ≤ n, we set

Cn−r = Cn−r(k,N)

= [Sp(n,Z) : Γn(N)]N−r(n−(r−1)/2)
n−r∏
t=1

t!

(2t− 1)!!

(
k− 1− n

2 + t
2

t

)
,

where, for any positive integer t, we denote by
(
α
t

)
the binomial coefficient(

α

t

)
=

α(α− 1) · · · (α− t+ 1)

t!
,

and (2t− 1)!! = 1 · 3 · · · (2t− 1) = 2−tt!
(
2t
t

)
. When r = n, the product part

in the above definition of Cn−r is regarded as 1.

Theorem 9. For any positive integers n, N , k with k > 2n, the contri-

bution In(Πr, k,N) is given as follows.
(1) For odd r with 1≤ r ≤ n,

In(Πr, k,N)

=Cn−r

×
(−1)[

n+1
2

]|Bn− r−1
2

B2B4 · · ·Br−1B2B4 · · ·B2n−2rB2n−2r+2B2n−2r+4 · · ·B2n−r−1|

2n+ r−1
2

(
n− r−1

2

)
!
(
r−1
2

)
!

.

In particular, if n− (r− 1)/2 is an odd number greater than 1, then In(Πr,

k,N) = 0.
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(2) For even r with 0≤ r ≤ n,

In(Πr, k,N)

=Cn−r

×
(−1)r(1+δnr)/2|B2B4 · · ·Br−2B r

2
| · |B2B4 · · ·B2n−2rB2n−2r+2B2n−2r+4 · · ·B2n−r|

22n−r/2
(
r
2

)
!
(
n− r

2

)
!

,

where δnr is the Kronecker symbol. In particular, for r such that r ≡ 2 mod 4

with r �= 2, we have In(Πr, k,N) = 0.

The proof is straightforward if we note that π−iΓ(i)ζ(2i) =
(
(2i−1)/

((2i− 1)!!)
)
πi|B2i|.

When N ≥ 3, it is conjectured, independently by several mathematicians,

that any contribution to dimSk(Γn(N)) of conjugacy classes other than cen-

tral unipotent conjugacy classes and the identity element should vanish. So,

we are naturally led to the following conjecture. The point of our conjecture

is that everything is explicit.

Conjecture. When N ≥ 3 and k > 2n,

dimSk

(
Γn(N)

)
=

n∑
r=0

In(Πr, k,N),

where each In(Πr, k,N) is as given explicitly in Theorem 5 above.

This conjecture is known to be true for n ≤ 3 by Christian [1] and [2],

Morita [11], Yamazaki [25], and Tsushima [24].

Numerical examples of the conjecture

We assume that N ≥ 3 hereafter.

(1) When n= 4 and k > 8, the conjecture reads

dimSk

(
Γ4(N)

)
= [Sp(4,Z) : Γ4(N)]

×
( 1

225 · 38 · 54 · 72 (2k− 2)(2k− 3)(2k− 4)2

× (2k− 5)2(2k− 6)2(2k− 7)(2k− 8)

+
1

N4
× 1

217 · 37 · 53 · 7(2k− 3)(2k− 4)(2k− 5)2(2k− 6)(2k− 7)

− 1

N7
× 1

215 · 35 · 5 · 7(2k− 4)(2k− 5)(2k− 6) +
1

N10
× 1

212 · 34 · 5
)
.
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(2) When n= 5 and k > 10, the conjecture reads

dimSk

(
Γ5(N)

)
= [Sp(5,Z) : Γ5(N)]

×
(
(2k− 2)(2k− 3)(2k− 4)2(2k− 5)2(2k− 6)3(2k− 7)2(2k− 8)2(2k− 9)(2k− 10)

233 · 312 · 55 · 73 · 11

− 1

N9
× 1

223 · 37 · 53 · 7(2k− 4)(2k− 5)(2k− 6)2(2k− 7)(2k− 8)

− 1

N12
× 1

217 · 37 · 52 · 7(2k− 5)(2k− 6)(2k− 7)

+
1

N14
× 1

216 · 36 · 5 · 7(2k− 6)
)
.
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[16] F. Satō, On zeta functions of ternary zero forms, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 28 (1981), 585–604.

[17] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector
spaces, Ann. of Math. (2) 100 (1974), 131–170.

[18] G. Shimura, “Modular forms of half integral weight” in Modular Forms of One Vari-
able, I (Antwerp, 1972), Lecture Notes in Math. 320, Springer, Berlin, 1973, 57–74.

[19] , On modular forms of half integral weight, Ann. of Math. (2) 97 (1973),
440–481.

[20] , On the holomorphy of certain Dirichlet series, Proc. Lond. Math. Soc. (3)
31 (1975), 79–98.

[21] T. Shintani, On zeta functions associated with the vector space of quadratic forms,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 25–65.
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