ON SOME PROPERTIES OF LOCALLY COMPACT GROUPS WITH NO SMALL SUBGROUP

MORIKUNI GOTÔ and HIDEHIKO YAMABE

- 1. Let G be a locally compact group. Under a neighbourhood U we mean a symmetric (i.e. $U=U^{-1}$) neighbourhood of the identity e, with the compact closure \overline{U} . If there exists a neighbourhood U containing no subgroup other than the identity group, we say that G has no small subgroup. Now G has been called to have property (S) if
- (S) for every $x \neq e$ in a sufficiently small neighbourhood U there exists an integer n so that $x^{2^n} \notin U^{1}$.

If G has property (S), G is obviously with no small subgroup. Conversely we have

Theorem 1. A locally compact group has property (S) if it has no small subgroup.

Proof. Let G be a locally compact group and V a neighbourhood with closure having no subgroup other than the identity group. Let W be a neighbourhood such as $W^2 \subset V$.

Suppose that the theorem is not true. Then there exist sequences $\{U_n\}$ and $\{x_n\}$ of neighbourhoods and elements such that

...
$$\supset U_n \supset U_{n+1} \supset \ldots$$
,
 $\cap U_n = e$,
 $U_n \supset x_n^{2^m}$, $x_n \neq e$, $m = 0, 1, 2, \ldots$.

Because \overline{V} has no non-trivial subgroup there exists j_n such that

$$x_n \in W, \ldots, x_n^{j_{n-1}} \in W, x_n^{j_n} \notin W,$$

for every n. Then the inequality $2^{m_n-1} < j_n \le 2^{m_n}$ determines a unique integer m_n . It is to be remarked that if $1 \le s_n \le 2^{m_n}$, then $x_n^{s_n} \in W^2 \subset V$. In particular $x_n^{j_n}$ is contained in V. Hence we can choose a subsequence $\{x_n\}$ of $\{x_n\}$ such that $\lim x_n^{j_n}$ exists. Then the fact that $x_n^{j_n} \notin W$ implies that

Received Nov. 15, 1950.

¹⁾ See Kuranishi [4].

$$a = \lim_{n \to \infty} x_n^{j_{n'}} \notin W$$
, whence $a \neq e$.

Now let H be the totality of elements of the form $\lim x_{n'}^{s_{n'}}$, $1 \le s_{n'} \le 2^{m_{n'}}$. Then H is clearly contained in \overline{V} . Suppose

$$b = \lim x_{n'}^{s_{n'}}$$
 and $c = \lim x_{n'}^{t_{n'}}$

be in H. Let $u_{n'}$ be such that

$$s_{n'} - t_{n'} \equiv u_{n'} \pmod{2^{m_{n'}}},$$

 $1 \le u_{n'} \le 2^{m_{n'}}.$

Then $\lim_{n'} x_{n'}^{2^m n'} = e$ implies

$$bc^{-1} = \lim x_{n'}^{s_{n'} - t_{n'}} = \lim x_{n'}^{u_{n'}} \notin H$$
,

whence H is a subgroup in \overline{V} . Hence the non-triviality of H contradicts the hypothesis. Thus our theorem is proved.

Remark 1. A more general formulation of THEOREM 1 will appear in a forthcoming paper by the second author.²⁾

Remark 2. The following proposition is a direct consequence of our Theorem 1: Let G be a locally euclidean group having no small subgroup. Then there exists a unique one-parameter subgroup through every point sufficiently near the identity.³⁾

2. The purpose of the present section is to prove the following

Theorem 2. Let G be a locally compact group with no small subgroup, and let L be a closed invariant subgroup of G. If L is a Lie group, then the factor group G/L has no small subgroup.

In order to prove this we use the following lemmas.

Lemma 1.4 Let a locally compact group G have property (S), and Z the center of G. Then G/Z has no small subgroup.

Lemma 2. Let G be a locally compact group, and N a closed invariant subgroup. If both G/N and N have no small subgroup, then the same is true for G.

Proof. Let f be the natural homomorphic mapping from G onto G/N, and

²⁾ Yamabe [6].

³⁾ See Kuranishi [3].

⁴⁾ See Kuranishi [4].

let V be a neighbourhood of G/N having no non-trivial subgroup. Then there exists an neighbourhood W of G such that $f(W) \subset V$ and that $W \cap N$ contains no non-trivial subgroup. It is clear that the only subgroup in W is the identity group.

Proof of the theorem. First we consider some special cases.

- i) Let L be discrete. In this case G and G/L are locally isomorphic. Hence the assertion is obvious,
- ii) Let L be a connected semi-simple Lie group with the center e. Let A(L) be the group of all continuous isomorphisms of L, and I(L) the subgroup composed of inner automorphisms. It is well-known that A(L) is a linear Lie group, and I(L) coincides with the identity component of A(L).

Now let g be an element of G. Putting

$$\delta(g) l = g^{-1} lg \text{ for } l \in L$$
,

we obtain a continuous homomorphism δ of G into A(L). Denote by C the kernel of the homomorphism: $C = \{c; lc = cl, \text{ for } l \in L\}$. Next let $\widetilde{\delta}(g)$ be the coset of A(L) mod. I(L) containing $\delta(g)$. Then $\widetilde{\delta}$ gives a continuous homomorphism of G into A(L)/I(L). Let N be the kenrel of $\widetilde{\delta}$.

Because A(L)/I(L) is discrete, N is an open subgroup in G. Now every element of N induces an inner automorphism of L. Hence N=CL. On the other hand as the center of L is $e, C \cap L = e$, whence $N=C \times L$. Thus the isomorphism $N/L \cong C$ and the openness of N imply our assertion.

iii) Let L be a connected commutative Lie group. Denote by N the centralizer of L: $N = \{g; lg = gl, \text{ for } l \notin L\}$. By a similar argument as above C/N is a Lie group.

Now let Z be the center of N. Then by Lemma 1 N/Z has no small subgroup. Now, because Z has no small subgroup and is commutative, Z is a Lie group. Hence Z/L is a Lie group. Thus by using Lemma 2 twice we have the desired proposition.

iv) General case. Let L_1 be the identity component of L_1 , and L_2 the largest solvable invariant subgroup of L_1 . And let L_3 be the identity component of L_2 . Denote by L_4 the topological commutator subgroup of L_5 , L_5 the topological commutator subgroup of L_4 , and so on. Then we get a sequence

$$L_0 = L \supset L_1 \supset L_2 \supset \ldots \supset L_n \supset L_{n+1} = e$$

of characteristic subgroups of L such that every L_i/L_{i+1} is either discrete, connected commutative, or connected semi-simple with no center. Considering G/L_1 , G/L_2 , . . . , in order, we get the result in virtue of above i), ii) and iii). Q.E.D.

COROLLARY.⁵⁾ A locally compact solvable (in the finite sense) group is a Lie group if it has no small subgroup.

Proof. Let $G, G^1, \ldots, G^{(m-1)}, G^{(m)} = e$, be the series of the topological commutator subgroups of G. We shall prove by the method of mathematical induction on m. Because $G^{(m-1)}$ has no small subgroup and is commutative, it is a Lie group. Now by Theorem 2, $G/G^{(m-1)}$ has no small subgroup. Therefore by the assumption of induction $G/G^{(m-1)}$ is a Lie group. Hence the assertion follows from the extension theorem of Lie groups.

3. Applications of Theorem 2.

THEOREM 3. Let G be a locally compact group with no small subgroup, and H a closed subgroup. If H is a maximal connected Lie group in G, then the identity component of the normalizer n(H) coincides with H.

Lemma 3.7 Let G be a locally compact group having no small subgroup. If G is not 0-dimensional, then G contains a non-trivial commutative Lie group.

Proof of the theorem. Let $n(H)^*$ be the identity component of n(H). By Theorem 2 $n(H)^*/H$ has no small subgroup. Hence if $n(H)^*$ does not coincide with H, then there exists a connected Lie group A in $n(H)^*/H$. Then the complete inverse image of A in the natural homomorphism $n(H)^* \sim n(H)^*/H$ is a connected Lie group in virtue of the extension theorem. This contradicts the fact that H is a maximal connected Lie group.

LEMMA 4. Let G be a locally compact group with no small subgroup, and H_1 a closed local subgroup. If H_1 is a local Lie group, then the closure H of the subgroup generated by H_1 is a Lie group.

Proof. We have proved that H is an (L)-group in the sense of K. Iwasawa⁸⁾ for general G.⁹⁾ On the other hand H has no small subgroup. Hence H is a Lie group.

Using Theorem 3 and Lemma 4 we have readily

THEOREM 4. Let G be a locally compact group with no small subgroup, and H_1 a closed local subgroup. If H_1 is a maximal local Lie group, then the identity component of the normalizer of H_1 coincides with H_1 locally.

⁵⁾ The corollary has been proved by C. Chevally, A. Melcev, and K. Iwasawa separately. See e.g. Iwasawa [2]. The authors do not know whether their methods can be applied for non-connected case. (The authors have had no access to the former two, and Iwasawa proved the corollary only in connected case.)

⁶⁾ See Kuranishi [3] and Iwasawa [2].

⁷⁾ See Montgomery [5].

⁸⁾ See Iwasawa [2].

⁹⁾ See Gotò [1].

BIBLIOGRAPHY

- [1] M. Goto: On local Lie groups in a locally compact group, forthcoming shortly.
- [2] K. Iwasawa: On some types of topological groups, Ann. of Math., Vol. 50 (1949).
- [3] M. Kuranishi: On euclidean local groups satisfying certain conditions, Proc. Amer. Math. Soc., Vol. 1 (1950).
- [4] M. Kuranishi: On conditions of differentiability of locally compact groups, Nagoya Math. Journ., Vol. 1 (1950).
- [5] D. Montgomery: Connected one dimensional groups, Ann. of Math., Vol. 49 (1948).
- [6] H. Yamabe: On the structure of locally compact groups, Osaka Math. Journ., Vol. 3 (1951).

Mathematical Institute,

Nagoya University and Osaka University