Open Access
Translator Disclaimer
2008 On certain Rankin-Selberg integrals on $GE_{6}$
David Ginzburg, Joseph Hundley
Nagoya Math. J. 191: 21-78 (2008).

Abstract

In this paper we begin the study of two Rankin-Selberg integrals defined on the exceptional group of type $GE_{6}$. We show that each factorizes and that the contribution from the unramified places is, in one case, the degree 54 Euler product $L^{S}(\pi \times \tau, E_{6} \times GL_{2}, s)$ and in the other case the degree 30 Euler product $L^{S}(\pi \times \tau, \wedge^{2} \times GL_{2}, s)$.

Citation

Download Citation

David Ginzburg. Joseph Hundley. "On certain Rankin-Selberg integrals on $GE_{6}$." Nagoya Math. J. 191 21 - 78, 2008.

Information

Published: 2008
First available in Project Euclid: 17 September 2008

zbMATH: 1230.11060
MathSciNet: MR2451220

Subjects:
Primary: 11F66 , 11F70

Rights: Copyright © 2008 Editorial Board, Nagoya Mathematical Journal

JOURNAL ARTICLE
58 PAGES


SHARE
Vol.191 • 2008
Back to Top